A predictive contrivance for recognising traits in keystroke dynamics

Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing keystroke dynamics (KD) attributes is a challenging area. However, it has a variety of applications in e-commerce, e-banking, e-teaching/learnin...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational intelligence Vol. 5; no. 2; p. 3
Main Authors Roy, Soumen, Roy, Utpal, Sinha, Devadatta, Pal, Rajat Kumar
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2730-7794
2730-7808
DOI10.1007/s43674-025-00081-1

Cover

Abstract Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing keystroke dynamics (KD) attributes is a challenging area. However, it has a variety of applications in e-commerce, e-banking, e-teaching/learning, e-exams, forensics, and social networking. The main bottleneck of this problem is addressing the imbalanced nature of KD datasets using conventional machine learning (ML) approaches. By their inherent nature, KD datasets are often imbalanced from various perspectives due to the non-uniformity of diverse user traits and their varied usage patterns. This study proposes a predictive model for both fixed and free-text modes, considering the effect of attached smartphone sensors. We adopt a score-level fusion of eXtreme Gradient Boosting (XGBoost) models on several balanced bootstrapped training samples to address the limitations of conventional approaches. This ensemble approach utilizes multiple bootstrapped training sets, where the class distribution in each set is equally balanced for more accurate and robust performance. Furthermore, we observe the positive impact of incorporating these prediction scores and labels with primary biometric attributes in KD-based user authentication and identification, both in static/entry-point and continuous/active security designs—a previously unanswered challenges. The predictive mechanism and its adaptation in unique KD-based designs, based on datasets collected from a considerable number of volunteers with diverse age groups, genders, professions, and education levels through a smartphone in a web environment, demonstrate the novelty of our approach.
AbstractList Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing keystroke dynamics (KD) attributes is a challenging area. However, it has a variety of applications in e-commerce, e-banking, e-teaching/learning, e-exams, forensics, and social networking. The main bottleneck of this problem is addressing the imbalanced nature of KD datasets using conventional machine learning (ML) approaches. By their inherent nature, KD datasets are often imbalanced from various perspectives due to the non-uniformity of diverse user traits and their varied usage patterns. This study proposes a predictive model for both fixed and free-text modes, considering the effect of attached smartphone sensors. We adopt a score-level fusion of eXtreme Gradient Boosting (XGBoost) models on several balanced bootstrapped training samples to address the limitations of conventional approaches. This ensemble approach utilizes multiple bootstrapped training sets, where the class distribution in each set is equally balanced for more accurate and robust performance. Furthermore, we observe the positive impact of incorporating these prediction scores and labels with primary biometric attributes in KD-based user authentication and identification, both in static/entry-point and continuous/active security designs—a previously unanswered challenges. The predictive mechanism and its adaptation in unique KD-based designs, based on datasets collected from a considerable number of volunteers with diverse age groups, genders, professions, and education levels through a smartphone in a web environment, demonstrate the novelty of our approach.
ArticleNumber 3
Author Pal, Rajat Kumar
Sinha, Devadatta
Roy, Utpal
Roy, Soumen
Author_xml – sequence: 1
  givenname: Soumen
  orcidid: 0000-0003-0223-8904
  surname: Roy
  fullname: Roy, Soumen
  email: soumen.roy_2007@yahoo.co.in
  organization: Department of Computer Science, Bagnan College
– sequence: 2
  givenname: Utpal
  surname: Roy
  fullname: Roy, Utpal
  organization: Department of Computer and System Sciences, Visva-Bharati
– sequence: 3
  givenname: Devadatta
  surname: Sinha
  fullname: Sinha, Devadatta
  organization: Department of Computer Science and Engineering, University of Calcutta
– sequence: 4
  givenname: Rajat Kumar
  surname: Pal
  fullname: Pal, Rajat Kumar
  organization: Department of Computer Science and Engineering, University of Calcutta
BookMark eNp9kD1PwzAQhi1UJErpH2CyxBzw2Ulsj1VVPqRKLDBb5uJUbqld7LRS_j2BgNiY7obnfe_0XJJJiMERcg3sFhiTd7kUtSwLxquCMaaggDMy5VKwQiqmJr-71OUFmee8HSAugXHOp2S1oIfkGo-dPzmKMXTJn2xAR9uYaHIYN8FnHza0S9Z3mfpAd67PXYo7R5s-2L3HfEXOW_ue3fxnzsjr_epl-Visnx-elot1gQAVDO84rvGt0aKphZatRamsBldXlZMWtUK0CmylXMlQKSXKstKtRlujtGCZmJGbsfeQ4sfR5c5s4zGF4aQRHEStNdT1QPGRwhRzTq41h-T3NvUGmPkyZkZjZjBmvo0ZGEJiDOUBDhuX_qr_SX0Cl-Vv1Q
Cites_doi 10.1145/3347450.3357663
10.21817/ijet/2017/v9i3/170903S044
10.1109/SACI.2016.7507379
10.1007/978-3-642-39094-4_2
10.1002/per.2113
10.1109/icsmc.2000.886039
10.1109/ACCESS.2020.3008019
10.1145/75577.75582
10.1109/BIOSIG.2016.7736910
10.1007/978-981-10-7590-2_5
10.1007/978-3-030-29516-5_15
10.1007/978-3-319-30927-9_57
10.1145/3351246
10.1088/1742-6596/1529/2/022086
10.1007/s10916-020-1530-z
10.1016/j.patrec.2015.11.011
10.1121/1.401664
10.1016/j.cose.2014.03.005
10.1080/0144929X.2014.907343
10.1007/978-981-15-2774-6_54
10.1007/978-3-030-24097-4_23
10.1109/WIFS47025.2019.9035100
10.1007/978-981-13-1343-1_46
10.18178/ijmlc.2020.10.1.910
10.1145/2939672.2939785
10.1109/SAUPEC/RobMech/PRASA48453.2020.9040956
10.1016/j.sigpro.2010.02.015
10.1016/j.patrec.2005.08.018
10.1109/BTAS.2013.6712742
10.1109/TIFS.2010.2049842
10.1108/IntR-04-2015-0100
10.1109/ACCESS.2020.2968918
10.1049/ic.2011.0124
10.1109/IIH-MSP.2012.10
10.1038/s41598-018-25999-0.
10.1145/3357419.3357425
10.1109/ISS1.2017.8389306
10.1007/978-3-540-74549-5_62
10.23919/EUSIPCO.2017.8081600
10.1109/ISCAIE47305.2020.9108839
10.1007/s11334-018-0317-6
10.1117/12.542890
10.1016/j.protcy.2015.02.118
10.1145/3345336.3345337
10.1007/978-3-540-25976-3_24
10.1016/j.diin.2018.01.018
10.1049/ic.2015.0112
10.1007/978-3-319-91189-2_33
10.1109/TLA.2011.5893788
10.1016/j.cose.2014.05.008
10.1016/j.eswa.2019.113091
10.1201/9781315269849-6
10.1016/j.ijhcs.2016.01.001
10.1088/1757-899X/917/1/012075
10.1016/j.eswa.2017.10.017
10.3389/fict.2018.00028
10.1109/ICCTICT.2016.7514649
10.1109/TSP49548.2020.9163524
10.3233/JCS-171017
10.1109/IISA.2017.8316380
10.1371/journal.pone.0188226
10.1109/ICIP.2009.5413917
10.1145/1978942.1979046
10.1177/1550147719899371
10.1044/jshr.0902.273
10.1145/3333165.3333176
10.1155/2018/2567463
10.1109/TIFS.2012.2225048
10.1145/3314023
10.1016/j.patrec.2015.01.011
10.1007/s11042-010-0635-7
10.1007/978-3-030-37548-5_2
10.1016/j.cose.2016.03.003
10.1007/978-3-030-15032-7_103
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s43674-025-00081-1
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2730-7808
ExternalDocumentID 10_1007_s43674_025_00081_1
GroupedDBID 0R~
406
88I
AACDK
AAFHI
AAJBT
AASML
AATNV
AAUYE
ABAKF
ABBRH
ABDBE
ABFSG
ABJNI
ABTEG
ABTKH
ABUWG
ACAOD
ACDTI
ACHSB
ACPIV
ACSTC
ACYDH
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFOHR
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ARAPS
ATHPR
AYFIA
AZQEC
BENPR
BGLVJ
CCPQU
DPUIP
DWQXO
EBLON
EBS
FIGPU
GNUQQ
HCIFZ
IKXTQ
IWAJR
JZLTJ
K7-
LLZTM
M2P
NPVJJ
NQJWS
PHGZM
PHGZT
PT4
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAYXX
ABRTQ
CITATION
PQGLB
PUEGO
JQ2
ID FETCH-LOGICAL-c1151-78e29cbd93d6397fac78a91e655e7ac98cca81a58e40c88834459f9ca6c7a1a03
ISSN 2730-7794
IngestDate Fri Jul 25 09:11:27 EDT 2025
Wed Oct 01 05:47:28 EDT 2025
Fri Jun 27 01:49:40 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords Personal trait
Bootstrapping
Soft biometrics
Smartphone sensors
LOUOCV
Keystroke dynamics
XGBoost
Smartphone security
Ensemble learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1151-78e29cbd93d6397fac78a91e655e7ac98cca81a58e40c88834459f9ca6c7a1a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0223-8904
PQID 3213699166
PQPubID 6623282
ParticipantIDs proquest_journals_3213699166
crossref_primary_10_1007_s43674_025_00081_1
springer_journals_10_1007_s43674_025_00081_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250600
2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 6
  year: 2025
  text: 20250600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Salerno
PublicationTitle Advances in computational intelligence
PublicationTitleAbbrev Adv. in Comp. Int
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References N TehPS Zhang (81_CR76) 2016; 59
81_CR11
81_CR55
81_CR12
81_CR56
C Stachl (81_CR75) 2017; 31
Bokor Z AntalM (81_CR8) 2015; 56
81_CR52
81_CR53
81_CR18
81_CR19
81_CR7
I Hazan (81_CR36) 2019; 143
81_CR58
81_CR5
81_CR16
BS Saini (81_CR73) 2020; 8
M Antal (81_CR9) 2015; 19
81_CR17
DI Kim (81_CR49) 2020; 8
T Chen (81_CR20) 2020; 90
MM Dehshibi (81_CR25) 2010; 90
H Lee (81_CR51) 2018; 2018
PH Ptacek (81_CR62) 1966; 9
81_CR65
81_CR23
81_CR67
81_CR24
81_CR68
81_CR61
A Kołakowska (81_CR50) 2016; 26
81_CR63
81_CR64
A Andrean (81_CR6) 2020; 10
D Iakovakis (81_CR37) 2018; 5
S Roy (81_CR66) 2017; 9
81_CR26
R Joyce (81_CR45) 1990; 33
81_CR27
81_CR28
81_CR4
81_CR1
D Iakovakis (81_CR38) 2018; 8
81_CR60
A Dantcheva (81_CR22) 2011; 51
81_CR32
81_CR77
G Antipov (81_CR10) 2016; 70
81_CR34
81_CR35
81_CR79
81_CR72
U Park (81_CR59) 2010; 5
81_CR30
81_CR31
EV Cunha Urtiga (81_CR21) 2011; 9
C Bevan (81_CR15) 2016; 88
81_CR39
KO Bailey (81_CR13) 2014; 43
A Jain (81_CR41) 2018; 93
L Gonzalez-Manzano (81_CR33) 2019
81_CR70
81_CR71
81_CR43
81_CR44
M Frank (81_CR29) 2013; 8
81_CR46
81_CR83
81_CR40
S Roy (81_CR69) 2018; 15
K Wu (81_CR81) 1991; 90
EA Sagbas (81_CR74) 2020; 44
AK Jain (81_CR42) 2024; 5404
81_CR47
I Tsimperidis (81_CR78) 2018
81_CR48
KS Balagani (81_CR14) 2018; 26
MN Yaacob (81_CR82) 2020
WR Adams (81_CR2) 2017; 12
ANH Nahin (81_CR57) 2014; 33
81_CR80
X Liang (81_CR54) 2020; 16
H Ailisto (81_CR3) 2006; 27
References_xml – ident: 81_CR1
  doi: 10.1145/3347450.3357663
– volume: 9
  start-page: 279
  issue: 35
  year: 2017
  ident: 81_CR66
  publication-title: Int J Eng Technol
  doi: 10.21817/ijet/2017/v9i3/170903S044
– ident: 81_CR7
  doi: 10.1109/SACI.2016.7507379
– ident: 81_CR39
  doi: 10.1007/978-3-642-39094-4_2
– volume: 31
  start-page: 701
  issue: 6
  year: 2017
  ident: 81_CR75
  publication-title: Eur J Person
  doi: 10.1002/per.2113
– ident: 81_CR35
  doi: 10.1109/icsmc.2000.886039
– volume: 8
  start-page: 125909
  year: 2020
  ident: 81_CR73
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3008019
– volume: 33
  start-page: 168
  issue: 2
  year: 1990
  ident: 81_CR45
  publication-title: Commun ACM
  doi: 10.1145/75577.75582
– ident: 81_CR17
  doi: 10.1109/BIOSIG.2016.7736910
– ident: 81_CR79
– ident: 81_CR72
  doi: 10.1007/978-981-10-7590-2_5
– ident: 81_CR18
  doi: 10.1007/978-3-030-29516-5_15
– ident: 81_CR65
  doi: 10.1007/978-3-319-30927-9_57
– ident: 81_CR47
  doi: 10.1145/3351246
– year: 2020
  ident: 81_CR82
  publication-title: J Phys Conf Ser
  doi: 10.1088/1742-6596/1529/2/022086
– volume: 44
  start-page: 1
  issue: 2020
  year: 2020
  ident: 81_CR74
  publication-title: J Med Syst
  doi: 10.1007/s10916-020-1530-z
– volume: 70
  start-page: 59
  year: 2016
  ident: 81_CR10
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.11.011
– volume: 90
  start-page: 1841
  issue: 4
  year: 1991
  ident: 81_CR81
  publication-title: J Acoust Soc Am
  doi: 10.1121/1.401664
– volume: 43
  start-page: 77
  year: 2014
  ident: 81_CR13
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2014.03.005
– volume: 33
  start-page: 987
  issue: 9
  year: 2014
  ident: 81_CR57
  publication-title: Behav Inf Technol
  doi: 10.1080/0144929X.2014.907343
– ident: 81_CR23
  doi: 10.1007/978-981-15-2774-6_54
– ident: 81_CR64
  doi: 10.1007/978-3-030-24097-4_23
– ident: 81_CR31
  doi: 10.1109/WIFS47025.2019.9035100
– ident: 81_CR68
  doi: 10.1007/978-981-13-1343-1_46
– volume: 10
  start-page: 134
  issue: 1
  year: 2020
  ident: 81_CR6
  publication-title: Int J Mach Learn Comput
  doi: 10.18178/ijmlc.2020.10.1.910
– ident: 81_CR19
  doi: 10.1145/2939672.2939785
– ident: 81_CR55
  doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9040956
– volume: 90
  start-page: 2431
  issue: 8
  year: 2010
  ident: 81_CR25
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2010.02.015
– volume: 27
  start-page: 325
  issue: 5
  year: 2006
  ident: 81_CR3
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2005.08.018
– ident: 81_CR34
  doi: 10.1109/BTAS.2013.6712742
– volume: 5
  start-page: 406
  issue: 3
  year: 2010
  ident: 81_CR59
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2010.2049842
– volume: 26
  start-page: 1093
  issue: 5
  year: 2016
  ident: 81_CR50
  publication-title: Internet Res
  doi: 10.1108/IntR-04-2015-0100
– ident: 81_CR52
– volume: 8
  start-page: 27901
  year: 2020
  ident: 81_CR49
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2968918
– ident: 81_CR27
  doi: 10.1049/ic.2011.0124
– ident: 81_CR32
  doi: 10.1109/IIH-MSP.2012.10
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 81_CR38
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25999-0.
– ident: 81_CR11
  doi: 10.1145/3357419.3357425
– ident: 81_CR63
  doi: 10.1109/ISS1.2017.8389306
– ident: 81_CR44
  doi: 10.1007/978-3-540-74549-5_62
– ident: 81_CR24
  doi: 10.23919/EUSIPCO.2017.8081600
– ident: 81_CR77
  doi: 10.1109/ISCAIE47305.2020.9108839
– volume: 15
  start-page: 27
  issue: 1
  year: 2018
  ident: 81_CR69
  publication-title: Innov Syst Softw Eng
  doi: 10.1007/s11334-018-0317-6
– ident: 81_CR4
– volume: 5404
  start-page: 561
  year: 2024
  ident: 81_CR42
  publication-title: Biometr Technol Hum Identif
  doi: 10.1117/12.542890
– ident: 81_CR12
– volume: 19
  start-page: 820
  year: 2015
  ident: 81_CR9
  publication-title: Procedia Technol
  doi: 10.1016/j.protcy.2015.02.118
– ident: 81_CR16
  doi: 10.1145/3345336.3345337
– ident: 81_CR70
– ident: 81_CR43
  doi: 10.1007/978-3-540-25976-3_24
– year: 2018
  ident: 81_CR78
  publication-title: Digit Invest
  doi: 10.1016/j.diin.2018.01.018
– ident: 81_CR28
  doi: 10.1049/ic.2015.0112
– ident: 81_CR80
– ident: 81_CR61
  doi: 10.1007/978-3-319-91189-2_33
– ident: 81_CR48
– volume: 9
  start-page: 383
  issue: 3
  year: 2011
  ident: 81_CR21
  publication-title: IEEE Lat Am Trans
  doi: 10.1109/TLA.2011.5893788
– ident: 81_CR83
  doi: 10.1016/j.cose.2014.05.008
– volume: 143
  start-page: 113091
  year: 2019
  ident: 81_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113091
– ident: 81_CR67
  doi: 10.1201/9781315269849-6
– volume: 88
  start-page: 51
  issue: 216
  year: 2016
  ident: 81_CR15
  publication-title: Int J Hum Comput Stud
  doi: 10.1016/j.ijhcs.2016.01.001
– ident: 81_CR58
  doi: 10.1088/1757-899X/917/1/012075
– volume: 93
  start-page: 257
  year: 2018
  ident: 81_CR41
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.017
– volume: 5
  start-page: 1
  year: 2018
  ident: 81_CR37
  publication-title: Front ICT
  doi: 10.3389/fict.2018.00028
– ident: 81_CR40
  doi: 10.1109/ICCTICT.2016.7514649
– ident: 81_CR46
  doi: 10.1109/TSP49548.2020.9163524
– volume: 26
  start-page: 543
  year: 2018
  ident: 81_CR14
  publication-title: J Comput Secur
  doi: 10.3233/JCS-171017
– ident: 81_CR60
  doi: 10.1109/IISA.2017.8316380
– volume: 12
  start-page: 1
  issue: 11
  year: 2017
  ident: 81_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0188226
– ident: 81_CR71
– ident: 81_CR53
  doi: 10.1109/ICIP.2009.5413917
– ident: 81_CR26
  doi: 10.1145/1978942.1979046
– volume: 16
  start-page: 1
  issue: 1
  year: 2020
  ident: 81_CR54
  publication-title: Int J Distrib Sens Netw
  doi: 10.1177/1550147719899371
– volume: 9
  start-page: 273
  issue: 2
  year: 1966
  ident: 81_CR62
  publication-title: J Speech Hear Res
  doi: 10.1044/jshr.0902.273
– ident: 81_CR56
  doi: 10.1145/3333165.3333176
– volume: 2018
  start-page: 1
  year: 2018
  ident: 81_CR51
  publication-title: Secur Commun Netw
  doi: 10.1155/2018/2567463
– volume: 8
  start-page: 136
  issue: 1
  year: 2013
  ident: 81_CR29
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2012.2225048
– year: 2019
  ident: 81_CR33
  publication-title: ACM Comput Surv
  doi: 10.1145/3314023
– volume: 56
  start-page: 7
  year: 2015
  ident: 81_CR8
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2015.01.011
– volume: 51
  start-page: 739
  issue: 2
  year: 2011
  ident: 81_CR22
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-010-0635-7
– ident: 81_CR30
  doi: 10.1007/978-3-030-37548-5_2
– volume: 59
  start-page: 210
  year: 2016
  ident: 81_CR76
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2016.03.003
– volume: 90
  start-page: 1
  issue: 2019
  year: 2020
  ident: 81_CR20
  publication-title: R version
  doi: 10.1145/2939672.2939785
– ident: 81_CR5
  doi: 10.1007/978-3-030-15032-7_103
SSID ssj0002710222
Score 2.2954586
Snippet Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 3
SubjectTerms Access control
Accuracy
Adaptation
Age groups
Artificial Intelligence
Biometrics
Computational Intelligence
Datasets
Electronic banking
Engineering
Gender
Handedness
Interactive computer systems
Keyboards
Machine Learning
Nonuniformity
Original Article
Personal information
Prediction models
Sensors
Smartphones
Title A predictive contrivance for recognising traits in keystroke dynamics
URI https://link.springer.com/article/10.1007/s43674-025-00081-1
https://www.proquest.com/docview/3213699166
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2730-7808
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002710222
  issn: 2730-7794
  databaseCode: AFBBN
  dateStart: 20210522
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-yXrzIExXXp5KDt7XSj6RNjlUUERRRF7yVJE2hT-iKjR78650m_XJVeHopS7abbjO_TGYyv8kgdCijIId1l3mCFMQjOice9yXz8iDRslAcftbsQ15dxxdzcvlAH4YNfZtdYuSxevsyr-Q3UoU2kGuTJfsDyfadQgN8BvnCFSQM1_-Scdqk-OelVVmOdF7aiL7lDrbUoLorBGEs8xXmbG2eF496lrta9PXYPE0dI8DeqWy9h26vsBwd3TkEaRxRbAH6rVpqnJsn0ZM37sqqjSvpV5ELY_q14MbWG5jdin_CzCzde7wNEdKBLuW0FZhBPpjqrmLxsR61MZ-N1S0doSr8Uok73kZNojghnn1UY7h4wbBkdWH6pZWs5xf2ZzHbPjLoI7N9ZOAnr4ag__0JWk3PT06u-_24MLG-b1OLsHuTNsfKZlp--jMf7ZjBOVmKp1sz5f4PWm_9C5w6sGygFV1torMUD0DBI6BgAAoeAQU7oOCywj1QcAeULTQ_P7s_vfDa-hmeAjs_gJHXIVcy51HehG8LoRImeKBjSnUiFGcwe1kgKNPEV4w1FVcoL7gSsUpEIPxoG02qRaV3EJahoKDdhYbBI2CSMqIpVbGUBUkiLoopmnWjkT25Y1Ky74UwRXvdgGXtdKqzKAyiuPFW4ik66gZx-Pr73nZ_9Oy_aG2A7x6amOcXvQ92pZEHLSTeATX3dLI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+contrivance+for+recognising+traits+in+keystroke+dynamics&rft.jtitle=Advances+in+computational+intelligence&rft.au=Roy%2C+Soumen&rft.au=Roy%2C+Utpal&rft.au=Sinha%2C+Devadatta&rft.au=Pal%2C+Rajat+Kumar&rft.date=2025-06-01&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1007%2Fs43674-025-00081-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43674_025_00081_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon