A predictive contrivance for recognising traits in keystroke dynamics
Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing keystroke dynamics (KD) attributes is a challenging area. However, it has a variety of applications in e-commerce, e-banking, e-teaching/learnin...
Saved in:
| Published in | Advances in computational intelligence Vol. 5; no. 2; p. 3 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cham
Springer International Publishing
01.06.2025
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2730-7794 2730-7808 |
| DOI | 10.1007/s43674-025-00081-1 |
Cover
| Abstract | Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing keystroke dynamics (KD) attributes is a challenging area. However, it has a variety of applications in e-commerce, e-banking, e-teaching/learning, e-exams, forensics, and social networking. The main bottleneck of this problem is addressing the imbalanced nature of KD datasets using conventional machine learning (ML) approaches. By their inherent nature, KD datasets are often imbalanced from various perspectives due to the non-uniformity of diverse user traits and their varied usage patterns. This study proposes a predictive model for both fixed and free-text modes, considering the effect of attached smartphone sensors. We adopt a score-level fusion of eXtreme Gradient Boosting (XGBoost) models on several balanced bootstrapped training samples to address the limitations of conventional approaches. This ensemble approach utilizes multiple bootstrapped training sets, where the class distribution in each set is equally balanced for more accurate and robust performance. Furthermore, we observe the positive impact of incorporating these prediction scores and labels with primary biometric attributes in KD-based user authentication and identification, both in static/entry-point and continuous/active security designs—a previously unanswered challenges. The predictive mechanism and its adaptation in unique KD-based designs, based on datasets collected from a considerable number of volunteers with diverse age groups, genders, professions, and education levels through a smartphone in a web environment, demonstrate the novelty of our approach. |
|---|---|
| AbstractList | Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing keystroke dynamics (KD) attributes is a challenging area. However, it has a variety of applications in e-commerce, e-banking, e-teaching/learning, e-exams, forensics, and social networking. The main bottleneck of this problem is addressing the imbalanced nature of KD datasets using conventional machine learning (ML) approaches. By their inherent nature, KD datasets are often imbalanced from various perspectives due to the non-uniformity of diverse user traits and their varied usage patterns. This study proposes a predictive model for both fixed and free-text modes, considering the effect of attached smartphone sensors. We adopt a score-level fusion of eXtreme Gradient Boosting (XGBoost) models on several balanced bootstrapped training samples to address the limitations of conventional approaches. This ensemble approach utilizes multiple bootstrapped training sets, where the class distribution in each set is equally balanced for more accurate and robust performance. Furthermore, we observe the positive impact of incorporating these prediction scores and labels with primary biometric attributes in KD-based user authentication and identification, both in static/entry-point and continuous/active security designs—a previously unanswered challenges. The predictive mechanism and its adaptation in unique KD-based designs, based on datasets collected from a considerable number of volunteers with diverse age groups, genders, professions, and education levels through a smartphone in a web environment, demonstrate the novelty of our approach. |
| ArticleNumber | 3 |
| Author | Pal, Rajat Kumar Sinha, Devadatta Roy, Utpal Roy, Soumen |
| Author_xml | – sequence: 1 givenname: Soumen orcidid: 0000-0003-0223-8904 surname: Roy fullname: Roy, Soumen email: soumen.roy_2007@yahoo.co.in organization: Department of Computer Science, Bagnan College – sequence: 2 givenname: Utpal surname: Roy fullname: Roy, Utpal organization: Department of Computer and System Sciences, Visva-Bharati – sequence: 3 givenname: Devadatta surname: Sinha fullname: Sinha, Devadatta organization: Department of Computer Science and Engineering, University of Calcutta – sequence: 4 givenname: Rajat Kumar surname: Pal fullname: Pal, Rajat Kumar organization: Department of Computer Science and Engineering, University of Calcutta |
| BookMark | eNp9kD1PwzAQhi1UJErpH2CyxBzw2Ulsj1VVPqRKLDBb5uJUbqld7LRS_j2BgNiY7obnfe_0XJJJiMERcg3sFhiTd7kUtSwLxquCMaaggDMy5VKwQiqmJr-71OUFmee8HSAugXHOp2S1oIfkGo-dPzmKMXTJn2xAR9uYaHIYN8FnHza0S9Z3mfpAd67PXYo7R5s-2L3HfEXOW_ue3fxnzsjr_epl-Visnx-elot1gQAVDO84rvGt0aKphZatRamsBldXlZMWtUK0CmylXMlQKSXKstKtRlujtGCZmJGbsfeQ4sfR5c5s4zGF4aQRHEStNdT1QPGRwhRzTq41h-T3NvUGmPkyZkZjZjBmvo0ZGEJiDOUBDhuX_qr_SX0Cl-Vv1Q |
| Cites_doi | 10.1145/3347450.3357663 10.21817/ijet/2017/v9i3/170903S044 10.1109/SACI.2016.7507379 10.1007/978-3-642-39094-4_2 10.1002/per.2113 10.1109/icsmc.2000.886039 10.1109/ACCESS.2020.3008019 10.1145/75577.75582 10.1109/BIOSIG.2016.7736910 10.1007/978-981-10-7590-2_5 10.1007/978-3-030-29516-5_15 10.1007/978-3-319-30927-9_57 10.1145/3351246 10.1088/1742-6596/1529/2/022086 10.1007/s10916-020-1530-z 10.1016/j.patrec.2015.11.011 10.1121/1.401664 10.1016/j.cose.2014.03.005 10.1080/0144929X.2014.907343 10.1007/978-981-15-2774-6_54 10.1007/978-3-030-24097-4_23 10.1109/WIFS47025.2019.9035100 10.1007/978-981-13-1343-1_46 10.18178/ijmlc.2020.10.1.910 10.1145/2939672.2939785 10.1109/SAUPEC/RobMech/PRASA48453.2020.9040956 10.1016/j.sigpro.2010.02.015 10.1016/j.patrec.2005.08.018 10.1109/BTAS.2013.6712742 10.1109/TIFS.2010.2049842 10.1108/IntR-04-2015-0100 10.1109/ACCESS.2020.2968918 10.1049/ic.2011.0124 10.1109/IIH-MSP.2012.10 10.1038/s41598-018-25999-0. 10.1145/3357419.3357425 10.1109/ISS1.2017.8389306 10.1007/978-3-540-74549-5_62 10.23919/EUSIPCO.2017.8081600 10.1109/ISCAIE47305.2020.9108839 10.1007/s11334-018-0317-6 10.1117/12.542890 10.1016/j.protcy.2015.02.118 10.1145/3345336.3345337 10.1007/978-3-540-25976-3_24 10.1016/j.diin.2018.01.018 10.1049/ic.2015.0112 10.1007/978-3-319-91189-2_33 10.1109/TLA.2011.5893788 10.1016/j.cose.2014.05.008 10.1016/j.eswa.2019.113091 10.1201/9781315269849-6 10.1016/j.ijhcs.2016.01.001 10.1088/1757-899X/917/1/012075 10.1016/j.eswa.2017.10.017 10.3389/fict.2018.00028 10.1109/ICCTICT.2016.7514649 10.1109/TSP49548.2020.9163524 10.3233/JCS-171017 10.1109/IISA.2017.8316380 10.1371/journal.pone.0188226 10.1109/ICIP.2009.5413917 10.1145/1978942.1979046 10.1177/1550147719899371 10.1044/jshr.0902.273 10.1145/3333165.3333176 10.1155/2018/2567463 10.1109/TIFS.2012.2225048 10.1145/3314023 10.1016/j.patrec.2015.01.011 10.1007/s11042-010-0635-7 10.1007/978-3-030-37548-5_2 10.1016/j.cose.2016.03.003 10.1007/978-3-030-15032-7_103 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s43674-025-00081-1 |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2730-7808 |
| ExternalDocumentID | 10_1007_s43674_025_00081_1 |
| GroupedDBID | 0R~ 406 88I AACDK AAFHI AAJBT AASML AATNV AAUYE ABAKF ABBRH ABDBE ABFSG ABJNI ABTEG ABTKH ABUWG ACAOD ACDTI ACHSB ACPIV ACSTC ACYDH ACZOJ ADTPH AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFKRA AFOHR AGMZJ AGQEE AHPBZ AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ARAPS ATHPR AYFIA AZQEC BENPR BGLVJ CCPQU DPUIP DWQXO EBLON EBS FIGPU GNUQQ HCIFZ IKXTQ IWAJR JZLTJ K7- LLZTM M2P NPVJJ NQJWS PHGZM PHGZT PT4 ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX ABRTQ CITATION PQGLB PUEGO JQ2 |
| ID | FETCH-LOGICAL-c1151-78e29cbd93d6397fac78a91e655e7ac98cca81a58e40c88834459f9ca6c7a1a03 |
| ISSN | 2730-7794 |
| IngestDate | Fri Jul 25 09:11:27 EDT 2025 Wed Oct 01 05:47:28 EDT 2025 Fri Jun 27 01:49:40 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Personal trait Bootstrapping Soft biometrics Smartphone sensors LOUOCV Keystroke dynamics XGBoost Smartphone security Ensemble learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c1151-78e29cbd93d6397fac78a91e655e7ac98cca81a58e40c88834459f9ca6c7a1a03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0223-8904 |
| PQID | 3213699166 |
| PQPubID | 6623282 |
| ParticipantIDs | proquest_journals_3213699166 crossref_primary_10_1007_s43674_025_00081_1 springer_journals_10_1007_s43674_025_00081_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | Cham |
| PublicationPlace_xml | – name: Cham – name: Salerno |
| PublicationTitle | Advances in computational intelligence |
| PublicationTitleAbbrev | Adv. in Comp. Int |
| PublicationYear | 2025 |
| Publisher | Springer International Publishing Springer Nature B.V |
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
| References | N TehPS Zhang (81_CR76) 2016; 59 81_CR11 81_CR55 81_CR12 81_CR56 C Stachl (81_CR75) 2017; 31 Bokor Z AntalM (81_CR8) 2015; 56 81_CR52 81_CR53 81_CR18 81_CR19 81_CR7 I Hazan (81_CR36) 2019; 143 81_CR58 81_CR5 81_CR16 BS Saini (81_CR73) 2020; 8 M Antal (81_CR9) 2015; 19 81_CR17 DI Kim (81_CR49) 2020; 8 T Chen (81_CR20) 2020; 90 MM Dehshibi (81_CR25) 2010; 90 H Lee (81_CR51) 2018; 2018 PH Ptacek (81_CR62) 1966; 9 81_CR65 81_CR23 81_CR67 81_CR24 81_CR68 81_CR61 A Kołakowska (81_CR50) 2016; 26 81_CR63 81_CR64 A Andrean (81_CR6) 2020; 10 D Iakovakis (81_CR37) 2018; 5 S Roy (81_CR66) 2017; 9 81_CR26 R Joyce (81_CR45) 1990; 33 81_CR27 81_CR28 81_CR4 81_CR1 D Iakovakis (81_CR38) 2018; 8 81_CR60 A Dantcheva (81_CR22) 2011; 51 81_CR32 81_CR77 G Antipov (81_CR10) 2016; 70 81_CR34 81_CR35 81_CR79 81_CR72 U Park (81_CR59) 2010; 5 81_CR30 81_CR31 EV Cunha Urtiga (81_CR21) 2011; 9 C Bevan (81_CR15) 2016; 88 81_CR39 KO Bailey (81_CR13) 2014; 43 A Jain (81_CR41) 2018; 93 L Gonzalez-Manzano (81_CR33) 2019 81_CR70 81_CR71 81_CR43 81_CR44 M Frank (81_CR29) 2013; 8 81_CR46 81_CR83 81_CR40 S Roy (81_CR69) 2018; 15 K Wu (81_CR81) 1991; 90 EA Sagbas (81_CR74) 2020; 44 AK Jain (81_CR42) 2024; 5404 81_CR47 I Tsimperidis (81_CR78) 2018 81_CR48 KS Balagani (81_CR14) 2018; 26 MN Yaacob (81_CR82) 2020 WR Adams (81_CR2) 2017; 12 ANH Nahin (81_CR57) 2014; 33 81_CR80 X Liang (81_CR54) 2020; 16 H Ailisto (81_CR3) 2006; 27 |
| References_xml | – ident: 81_CR1 doi: 10.1145/3347450.3357663 – volume: 9 start-page: 279 issue: 35 year: 2017 ident: 81_CR66 publication-title: Int J Eng Technol doi: 10.21817/ijet/2017/v9i3/170903S044 – ident: 81_CR7 doi: 10.1109/SACI.2016.7507379 – ident: 81_CR39 doi: 10.1007/978-3-642-39094-4_2 – volume: 31 start-page: 701 issue: 6 year: 2017 ident: 81_CR75 publication-title: Eur J Person doi: 10.1002/per.2113 – ident: 81_CR35 doi: 10.1109/icsmc.2000.886039 – volume: 8 start-page: 125909 year: 2020 ident: 81_CR73 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3008019 – volume: 33 start-page: 168 issue: 2 year: 1990 ident: 81_CR45 publication-title: Commun ACM doi: 10.1145/75577.75582 – ident: 81_CR17 doi: 10.1109/BIOSIG.2016.7736910 – ident: 81_CR79 – ident: 81_CR72 doi: 10.1007/978-981-10-7590-2_5 – ident: 81_CR18 doi: 10.1007/978-3-030-29516-5_15 – ident: 81_CR65 doi: 10.1007/978-3-319-30927-9_57 – ident: 81_CR47 doi: 10.1145/3351246 – year: 2020 ident: 81_CR82 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1529/2/022086 – volume: 44 start-page: 1 issue: 2020 year: 2020 ident: 81_CR74 publication-title: J Med Syst doi: 10.1007/s10916-020-1530-z – volume: 70 start-page: 59 year: 2016 ident: 81_CR10 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.11.011 – volume: 90 start-page: 1841 issue: 4 year: 1991 ident: 81_CR81 publication-title: J Acoust Soc Am doi: 10.1121/1.401664 – volume: 43 start-page: 77 year: 2014 ident: 81_CR13 publication-title: Comput Secur doi: 10.1016/j.cose.2014.03.005 – volume: 33 start-page: 987 issue: 9 year: 2014 ident: 81_CR57 publication-title: Behav Inf Technol doi: 10.1080/0144929X.2014.907343 – ident: 81_CR23 doi: 10.1007/978-981-15-2774-6_54 – ident: 81_CR64 doi: 10.1007/978-3-030-24097-4_23 – ident: 81_CR31 doi: 10.1109/WIFS47025.2019.9035100 – ident: 81_CR68 doi: 10.1007/978-981-13-1343-1_46 – volume: 10 start-page: 134 issue: 1 year: 2020 ident: 81_CR6 publication-title: Int J Mach Learn Comput doi: 10.18178/ijmlc.2020.10.1.910 – ident: 81_CR19 doi: 10.1145/2939672.2939785 – ident: 81_CR55 doi: 10.1109/SAUPEC/RobMech/PRASA48453.2020.9040956 – volume: 90 start-page: 2431 issue: 8 year: 2010 ident: 81_CR25 publication-title: Signal Process doi: 10.1016/j.sigpro.2010.02.015 – volume: 27 start-page: 325 issue: 5 year: 2006 ident: 81_CR3 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2005.08.018 – ident: 81_CR34 doi: 10.1109/BTAS.2013.6712742 – volume: 5 start-page: 406 issue: 3 year: 2010 ident: 81_CR59 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2010.2049842 – volume: 26 start-page: 1093 issue: 5 year: 2016 ident: 81_CR50 publication-title: Internet Res doi: 10.1108/IntR-04-2015-0100 – ident: 81_CR52 – volume: 8 start-page: 27901 year: 2020 ident: 81_CR49 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2968918 – ident: 81_CR27 doi: 10.1049/ic.2011.0124 – ident: 81_CR32 doi: 10.1109/IIH-MSP.2012.10 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 81_CR38 publication-title: Sci Rep doi: 10.1038/s41598-018-25999-0. – ident: 81_CR11 doi: 10.1145/3357419.3357425 – ident: 81_CR63 doi: 10.1109/ISS1.2017.8389306 – ident: 81_CR44 doi: 10.1007/978-3-540-74549-5_62 – ident: 81_CR24 doi: 10.23919/EUSIPCO.2017.8081600 – ident: 81_CR77 doi: 10.1109/ISCAIE47305.2020.9108839 – volume: 15 start-page: 27 issue: 1 year: 2018 ident: 81_CR69 publication-title: Innov Syst Softw Eng doi: 10.1007/s11334-018-0317-6 – ident: 81_CR4 – volume: 5404 start-page: 561 year: 2024 ident: 81_CR42 publication-title: Biometr Technol Hum Identif doi: 10.1117/12.542890 – ident: 81_CR12 – volume: 19 start-page: 820 year: 2015 ident: 81_CR9 publication-title: Procedia Technol doi: 10.1016/j.protcy.2015.02.118 – ident: 81_CR16 doi: 10.1145/3345336.3345337 – ident: 81_CR70 – ident: 81_CR43 doi: 10.1007/978-3-540-25976-3_24 – year: 2018 ident: 81_CR78 publication-title: Digit Invest doi: 10.1016/j.diin.2018.01.018 – ident: 81_CR28 doi: 10.1049/ic.2015.0112 – ident: 81_CR80 – ident: 81_CR61 doi: 10.1007/978-3-319-91189-2_33 – ident: 81_CR48 – volume: 9 start-page: 383 issue: 3 year: 2011 ident: 81_CR21 publication-title: IEEE Lat Am Trans doi: 10.1109/TLA.2011.5893788 – ident: 81_CR83 doi: 10.1016/j.cose.2014.05.008 – volume: 143 start-page: 113091 year: 2019 ident: 81_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113091 – ident: 81_CR67 doi: 10.1201/9781315269849-6 – volume: 88 start-page: 51 issue: 216 year: 2016 ident: 81_CR15 publication-title: Int J Hum Comput Stud doi: 10.1016/j.ijhcs.2016.01.001 – ident: 81_CR58 doi: 10.1088/1757-899X/917/1/012075 – volume: 93 start-page: 257 year: 2018 ident: 81_CR41 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.017 – volume: 5 start-page: 1 year: 2018 ident: 81_CR37 publication-title: Front ICT doi: 10.3389/fict.2018.00028 – ident: 81_CR40 doi: 10.1109/ICCTICT.2016.7514649 – ident: 81_CR46 doi: 10.1109/TSP49548.2020.9163524 – volume: 26 start-page: 543 year: 2018 ident: 81_CR14 publication-title: J Comput Secur doi: 10.3233/JCS-171017 – ident: 81_CR60 doi: 10.1109/IISA.2017.8316380 – volume: 12 start-page: 1 issue: 11 year: 2017 ident: 81_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0188226 – ident: 81_CR71 – ident: 81_CR53 doi: 10.1109/ICIP.2009.5413917 – ident: 81_CR26 doi: 10.1145/1978942.1979046 – volume: 16 start-page: 1 issue: 1 year: 2020 ident: 81_CR54 publication-title: Int J Distrib Sens Netw doi: 10.1177/1550147719899371 – volume: 9 start-page: 273 issue: 2 year: 1966 ident: 81_CR62 publication-title: J Speech Hear Res doi: 10.1044/jshr.0902.273 – ident: 81_CR56 doi: 10.1145/3333165.3333176 – volume: 2018 start-page: 1 year: 2018 ident: 81_CR51 publication-title: Secur Commun Netw doi: 10.1155/2018/2567463 – volume: 8 start-page: 136 issue: 1 year: 2013 ident: 81_CR29 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2012.2225048 – year: 2019 ident: 81_CR33 publication-title: ACM Comput Surv doi: 10.1145/3314023 – volume: 56 start-page: 7 year: 2015 ident: 81_CR8 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2015.01.011 – volume: 51 start-page: 739 issue: 2 year: 2011 ident: 81_CR22 publication-title: Multimed Tools Appl doi: 10.1007/s11042-010-0635-7 – ident: 81_CR30 doi: 10.1007/978-3-030-37548-5_2 – volume: 59 start-page: 210 year: 2016 ident: 81_CR76 publication-title: Comput Secur doi: 10.1016/j.cose.2016.03.003 – volume: 90 start-page: 1 issue: 2019 year: 2020 ident: 81_CR20 publication-title: R version doi: 10.1145/2939672.2939785 – ident: 81_CR5 doi: 10.1007/978-3-030-15032-7_103 |
| SSID | ssj0002710222 |
| Score | 2.2954586 |
| Snippet | Predicting personal traits, particularly age group, gender, handedness, and hand(s) used, in the form of digital identity for smartphone users by analysing... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3 |
| SubjectTerms | Access control Accuracy Adaptation Age groups Artificial Intelligence Biometrics Computational Intelligence Datasets Electronic banking Engineering Gender Handedness Interactive computer systems Keyboards Machine Learning Nonuniformity Original Article Personal information Prediction models Sensors Smartphones |
| Title | A predictive contrivance for recognising traits in keystroke dynamics |
| URI | https://link.springer.com/article/10.1007/s43674-025-00081-1 https://www.proquest.com/docview/3213699166 |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2730-7808 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002710222 issn: 2730-7794 databaseCode: AFBBN dateStart: 20210522 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS-wwEA-yXrzIExXXp5KDt7XSj6RNjlUUERRRF7yVJE2hT-iKjR78650m_XJVeHopS7abbjO_TGYyv8kgdCijIId1l3mCFMQjOice9yXz8iDRslAcftbsQ15dxxdzcvlAH4YNfZtdYuSxevsyr-Q3UoU2kGuTJfsDyfadQgN8BvnCFSQM1_-Scdqk-OelVVmOdF7aiL7lDrbUoLorBGEs8xXmbG2eF496lrta9PXYPE0dI8DeqWy9h26vsBwd3TkEaRxRbAH6rVpqnJsn0ZM37sqqjSvpV5ELY_q14MbWG5jdin_CzCzde7wNEdKBLuW0FZhBPpjqrmLxsR61MZ-N1S0doSr8Uok73kZNojghnn1UY7h4wbBkdWH6pZWs5xf2ZzHbPjLoI7N9ZOAnr4ag__0JWk3PT06u-_24MLG-b1OLsHuTNsfKZlp--jMf7ZjBOVmKp1sz5f4PWm_9C5w6sGygFV1torMUD0DBI6BgAAoeAQU7oOCywj1QcAeULTQ_P7s_vfDa-hmeAjs_gJHXIVcy51HehG8LoRImeKBjSnUiFGcwe1kgKNPEV4w1FVcoL7gSsUpEIPxoG02qRaV3EJahoKDdhYbBI2CSMqIpVbGUBUkiLoopmnWjkT25Y1Ky74UwRXvdgGXtdKqzKAyiuPFW4ik66gZx-Pr73nZ_9Oy_aG2A7x6amOcXvQ92pZEHLSTeATX3dLI |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+predictive+contrivance+for+recognising+traits+in+keystroke+dynamics&rft.jtitle=Advances+in+computational+intelligence&rft.au=Roy%2C+Soumen&rft.au=Roy%2C+Utpal&rft.au=Sinha%2C+Devadatta&rft.au=Pal%2C+Rajat+Kumar&rft.date=2025-06-01&rft.issn=2730-7794&rft.eissn=2730-7808&rft.volume=5&rft.issue=2&rft_id=info:doi/10.1007%2Fs43674-025-00081-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43674_025_00081_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7794&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7794&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7794&client=summon |