IB-08 COMPUTATIONAL IMAGING FEATURES DERIVED FROM MRI IMAGES OF THE BRAIN CAN DISCRIMINATE IMMUNE SIGNATURE STATUS IN GLIOBLASTOMA MULTIFORME (GBM)
PURPOSE: To determine which computationally derived imaging features are correlated with immune gene-signature activity in GBM. Recently, we showed that immune-related genes are enriched within molecular subtypes of GBMs. The significance of immune system response to the tumor is becoming relevant a...
Saved in:
| Published in | Neuro-oncology (Charlottesville, Va.) Vol. 16; no. suppl 5; p. v108 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.11.2014
|
| Online Access | Get full text |
| ISSN | 1522-8517 1523-5866 1523-5866 |
| DOI | 10.1093/neuonc/nou257.8 |
Cover
| Abstract | PURPOSE: To determine which computationally derived imaging features are correlated with immune gene-signature activity in GBM. Recently, we showed that immune-related genes are enriched within molecular subtypes of GBMs. The significance of immune system response to the tumor is becoming relevant as a therapeutic strategy. In this study, we investigated an imaging-based method for determining the immune system response to GBM. METHODS AND MATERIALS: The study was conducted on pre-surgical Contrast enhanced T1-post and T2-FLAIR MRI images from 83 GBM patients from The Cancer Genome Atlas(TCGA) database. The tumors were segmented semi-automatically (MITK toolkit). Image heterogeneity features were extracted for 3D volumes using in-house MatlabTM scripts . Features include three-dimensional statistical, transform-based and model-based features, pertaining to pixel gray-level heterogeneity measures such as energy, entropy, correlationGenetic programming-based models are used to discriminate subjects according to up- or down-regulation of six immune signatures (measured using Gene Set Enrichment Analysis): immune effector, immune suppression, immune effector process, regulation of the immune effector process, positive regulation of immune system process and negative regulation of immune system process. Receiver Operating Characteristic curves (ROC), and true positive/false positive rates (TPR/FPR) were used to assess the performance of the immune signature status classifier. RESULTS: Based on six different gene-sets associated with immune response, we found that image-derived features are capable of accurately predicting immune signature status in GBMs. ROC analysis reveals that image-features are capable of determining up- or down regulation of diverse immune signatures. The true positive rates (TPR) for each of the six immune signatures are 89%, 83%, 80%, 78%, 72% and 69% respectively (with FPR less than 20%). CONCLUSION: This study presents preliminary evidence that MRI image-derived volumetric and texture features are predictive of immune activity in GBM at the molecular level. |
|---|---|
| AbstractList | PURPOSE: To determine which computationally derived imaging features are correlated with immune gene-signature activity in GBM. Recently, we showed that immune-related genes are enriched within molecular subtypes of GBMs. The significance of immune system response to the tumor is becoming relevant as a therapeutic strategy. In this study, we investigated an imaging-based method for determining the immune system response to GBM. METHODS AND MATERIALS: The study was conducted on pre-surgical Contrast enhanced T1-post and T2-FLAIR MRI images from 83 GBM patients from The Cancer Genome Atlas(TCGA) database. The tumors were segmented semi-automatically (MITK toolkit). Image heterogeneity features were extracted for 3D volumes using in-house MatlabTM scripts . Features include three-dimensional statistical, transform-based and model-based features, pertaining to pixel gray-level heterogeneity measures such as energy, entropy, correlationGenetic programming-based models are used to discriminate subjects according to up- or down-regulation of six immune signatures (measured using Gene Set Enrichment Analysis): immune effector, immune suppression, immune effector process, regulation of the immune effector process, positive regulation of immune system process and negative regulation of immune system process. Receiver Operating Characteristic curves (ROC), and true positive/false positive rates (TPR/FPR) were used to assess the performance of the immune signature status classifier. RESULTS: Based on six different gene-sets associated with immune response, we found that image-derived features are capable of accurately predicting immune signature status in GBMs. ROC analysis reveals that image-features are capable of determining up- or down regulation of diverse immune signatures. The true positive rates (TPR) for each of the six immune signatures are 89%, 83%, 80%, 78%, 72% and 69% respectively (with FPR less than 20%). CONCLUSION: This study presents preliminary evidence that MRI image-derived volumetric and texture features are predictive of immune activity in GBM at the molecular level. |
| Author | Martinez, J. Rao, A. Narang, S. Rao, G. Heimberger, A. |
| Author_xml | – sequence: 1 givenname: S. surname: Narang fullname: Narang, S. – sequence: 2 givenname: G. surname: Rao fullname: Rao, G. – sequence: 3 givenname: A. surname: Heimberger fullname: Heimberger, A. – sequence: 4 givenname: J. surname: Martinez fullname: Martinez, J. – sequence: 5 givenname: A. surname: Rao fullname: Rao, A. |
| BookMark | eNqFkEtPhDAUhRujic-12y51gdMWCp1lhylMEwqGh1tSmJJoEEaQmPkd_mFxcG9yk3tz851zknMNzru-MwDcY_SE0dpedWbqu3rV9ROh3hM7A1eYEtuizHXPTzexGMXeJbgexzeECKYuvgLfcmMhBv1EPRc5z2US8whKxUMZhzAQPC9SkcGtSOWL2MIgTRRUqTwR8z8JYL4TcJNyGUOfx3ArMz-VSsY8FzOkiljATIbxyQdmc0KRwZkNI5lsIp7lieJQFVEugyRVAj6EG_V4Cy4a3Y7m7m_fgCIQub-zoiSUPo-sGmOHWRpRbZi2K0xIQ4jGe0Ir02jjORSjxrNNrStts73RrkYOXs9g5bi0Ims8j7FvAFp8p-6gj1-6bcvD8Pquh2OJUflbarmUWi6llmyWPCySw9B_TGb8LN9fx9q0re5MP40lZoi5Dll7dEZXC1oP_TgOpvnX_AdUQoH4 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7T5 7TK H94 ADTOC UNPAY |
| DOI | 10.1093/neuonc/nou257.8 |
| DatabaseName | CrossRef Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef AIDS and Cancer Research Abstracts Neurosciences Abstracts Immunology Abstracts |
| DatabaseTitleList | AIDS and Cancer Research Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1523-5866 |
| EndPage | v108 |
| ExternalDocumentID | 10.1093/neuonc/nou257.8 10_1093_neuonc_nou257_8 |
| GroupedDBID | --- .2P .I3 .XZ .ZR 0R~ 123 18M 1TH 2WC 36B 4.4 48X 53G 5VS 5WD 70D AABZA AACZT AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAVAP AAYXX ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABKDP ABNHQ ABNKS ABPQP ABPTD ABQLI ABQNK ABVGC ABWST ABXVV ABZBJ ACGFO ACGFS ACUFI ACUTO ACYHN ADBBV ADEYI ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZXQ AEGPL AEGXH AEJOX AEKSI AEMDU AEMQT AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AFXAL AGINJ AGKEF AGQXC AGSYK AGUTN AHMMS AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX AOIJS APIBT APWMN ATGXG AXUDD BAWUL BAYMD BCRHZ BEYMZ BHONS BTRTY BVRKM C45 CDBKE CITATION CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMB EMOBN ENERS F5P F9B FECEO FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HYE HZ~ IOX J21 JXSIZ KBUDW KOP KQ8 KSI KSN MHKGH N9A NGC NOMLY NOYVH NU- O9- OAUYM OAWHX OCZFY ODMLO OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P P6G PAFKI PEELM Q1. Q5Y RD5 ROX RPM RUSNO RW1 RXO SV3 TEORI TJX TR2 W8F WOQ X7H YAYTL YKOAZ YXANX ~91 7T5 7TK H94 29N AAUQX ADTOC AHGBF O0~ UDS UNPAY |
| ID | FETCH-LOGICAL-c1148-a05ae8a3b122f22a1d25befae74510f73ecaba38dea6a0419b12b465b291291e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1522-8517 1523-5866 |
| IngestDate | Sun Oct 26 03:17:45 EDT 2025 Wed Oct 01 14:17:51 EDT 2025 Wed Oct 01 01:15:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | suppl 5 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1148-a05ae8a3b122f22a1d25befae74510f73ecaba38dea6a0419b12b465b291291e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/neuro-oncology/article-pdf/16/suppl_5/v108/3600633/nou257.8.pdf |
| PQID | 1808642975 |
| PQPubID | 23462 |
| ParticipantIDs | unpaywall_primary_10_1093_neuonc_nou257_8 proquest_miscellaneous_1808642975 crossref_primary_10_1093_neuonc_nou257_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-11-01 20141101 |
| PublicationDateYYYYMMDD | 2014-11-01 |
| PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Neuro-oncology (Charlottesville, Va.) |
| PublicationYear | 2014 |
| SSID | ssj0021561 |
| Score | 2.069216 |
| Snippet | PURPOSE: To determine which computationally derived imaging features are correlated with immune gene-signature activity in GBM. Recently, we showed that... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | v108 |
| Title | IB-08 COMPUTATIONAL IMAGING FEATURES DERIVED FROM MRI IMAGES OF THE BRAIN CAN DISCRIMINATE IMMUNE SIGNATURE STATUS IN GLIOBLASTOMA MULTIFORME (GBM) |
| URI | https://www.proquest.com/docview/1808642975 https://academic.oup.com/neuro-oncology/article-pdf/16/suppl_5/v108/3600633/nou257.8.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1523-5866 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021561 issn: 1523-5866 databaseCode: KQ8 dateStart: 19990101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1523-5866 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021561 issn: 1523-5866 databaseCode: DIK dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1523-5866 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021561 issn: 1523-5866 databaseCode: GX1 dateStart: 19990101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1523-5866 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0021561 issn: 1523-5866 databaseCode: RPM dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELZ2s1J76rtqqnblSj3sHkwCBgNHkgChimEVoEpPyBBz6YpEbdhV-jf6hzu8tt29VD2UE0KDLdtjzzea8TcIfbQEWCWVGWTKipLoYLNIzoRNdHhgB5aG2VYt4SFbpvqnjbE5QZvhLozos8KV4UpDS-tIdlXL4Xyc9PNJ9ttyojJYLcBqmTG5aarZUNYYXDqpdjUoomIpIHSKzpgBKH2EztLwyvnS0qeC_9WUpO_eKTEsxgbWH5s2PUJ3d63cN1i_UejjutqL4624vv7DIHlP0XEYSpeH8lWpD7lS_HjA8vg_xvoMPelRLHa6X5-jE1m9QI94H6d_iX4GMzK18DziV2nS8-3igDt-EPrYc9tcixgvwIn87C6wt4445uuglYDvkYeTpYtnaycI8dwJ8SKI52s4ZUMncUGIp6GL48DvcjZwDD2kMQZZfxVEs5UTJxF3ME9XSQA-LnfxhT_jl69Q6rnJfEn68g-kaJw0IqaGkJaguapppaYJdasZuSyFNHU4SEqTykLkglpbKZiY6qoNgrnOjFyzAcSokr5Go2pXyTcIa1SolmAALgvwh3NTaKUwt2CnaWFLwFxjdDGscbbvWD6yLjpPs04dsm6iM2uMPgw6kMFObMIropK7-numWuAe6s1N5TG6vFOOv7X39h9k36HR4Vst3wMMOuTn6NTfqOe9Xv8CUQr_ww |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj5swELa2Wak99V01q7ZypR52DyYBg4EjSYBQxbAKUKUnZIi5dEWibthV9m_sH-7w2j4uVQ_lhNBgy_bY841m_A1CnywBVkllBpmyoiQ62CySM2ETHR7YgaVhtlVLeMiWqf55Y2xO0Ga4CyP6rHBluNLQ0jqSXdVyOB8n_XyS_bacqAxWC7BaZkxummo2lDUGl06qXQ2KqFgKCD1Cp8wAlD5Cp2l46Xxt6VPB_2pK0nfvlBgWYwPrj02bHqG7h1Z-N1g_UeiTutqL4624uvrFIHnP0HEYSpeH8k2pD7lS3P3B8vg_xvocPe1RLHa6X1-gE1m9RI95H6d_he6DGZlaeB7xyzTp-XZxwB0_CH3suW2uRYwX4ER-cRfYW0cc83XQSsD3yMPJ0sWztROEeO6EeBHE8zWcsqGTuCDE09DFceB3ORs4hh7SGIOsvwqi2cqJk4g7mKerJAAfl7v43J_xi9co9dxkviR9-QdSNE4aEVNDSEvQXNW0UtOEutWMXJZCmjocJKVJZSFyQa2tFExMddUGwVxnRq7ZAGJUSd-gUbWr5FuENSpUSzAAlwX4w7kptFKYW7DTtLAlYK4xOh_WONt3LB9ZF52nWacOWTfRmTVGHwcdyGAnNuEVUcldfZ2pFriHenNTeYwuHpTjb-2d_YPsOzQ6fK_le4BBh_xDr9E_AFfm_tI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IB-08+COMPUTATIONAL+IMAGING+FEATURES+DERIVED+FROM+MRI+IMAGES+OF+THE+BRAIN+CAN+DISCRIMINATE+IMMUNE+SIGNATURE+STATUS+IN+GLIOBLASTOMA+MULTIFORME+%28GBM%29&rft.jtitle=Neuro-oncology+%28Charlottesville%2C+Va.%29&rft.au=Narang%2C+S.&rft.au=Rao%2C+G.&rft.au=Heimberger%2C+A.&rft.au=Martinez%2C+J.&rft.date=2014-11-01&rft.issn=1522-8517&rft.eissn=1523-5866&rft.volume=16&rft.issue=suppl+5&rft.spage=v108&rft.epage=v108&rft_id=info:doi/10.1093%2Fneuonc%2Fnou257.8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_neuonc_nou257_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1522-8517&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1522-8517&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1522-8517&client=summon |