Deep learning based normative models identify structures that become abnormal with Alzheimer’s disease

Background Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how far individuals deviate from healthy controls (HC), may help to better situate subjects along the spectrum. To determine whether this is the...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 19; no. S17
Main Authors Jaramillo, Camilo, Trujillo, Maria, Bernal, Jose
Format Journal Article
LanguageEnglish
Published 01.12.2023
Online AccessGet full text
ISSN1552-5260
1552-5279
1552-5279
DOI10.1002/alz.075865

Cover

Abstract Background Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how far individuals deviate from healthy controls (HC), may help to better situate subjects along the spectrum. To determine whether this is the case, we implemented a deep learning based normative model and tested it on structural neuroimaging data from subjects with HC, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Method We developed an adversarial autoencoder (AAE) (Figure 1) leveraging FreeSurfer features, namely cortical surface area of 68 cortical subregions (34 by hemisphere; Desikan‐Killiany atlas) and volumes of 33 neuroanatomical structures (Aseg atlas). Our model not only returns individual “deviation” scores—divergence from HC—but also identifies regions of interest that contribute to said score, facilitating interpretability. We retrieved T1‐weighted MRI scans (n = 204) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (HC/MCI/AD 105/29/60; Table 1). We trained our AAE on 71 HC samples (n = 71) and tested it on the rest (n = 133). We used bootstrapping to compute confidence intervals (CI) for each point estimate and examined regions where scores differed for the considered groups [1]. Result Deviation scores were lowest for HC (mean 0.74 [95%‐CI 0.63–0.88]), highest for AD (mean 1.21 [95%‐CI 1.03–1.50]), and intermediate for MCI (mean 1.04 [95%‐CI 0.88–1.27]), implying subjects indeed fell along the AD spectrum (Figure 2A). Said scores also enabled classifying subjects into HC, MCI, and AD with a mean area under the curve (AUC) of 75% (Figure 2B‐C; HC vs. MCI: 0.75 [95%‐CI 0.62–0.85]; HC vs. AD: 0.76 [95%‐CI 0.64–0.82]). According to the AAE, the hippocampus, parahippocampal cortex, ventricles, and inferior parietal lobe contributed to such differences (Figure 2D‐E). Conclusion Normative models can identify structures that become abnormal as the brain undergoes ageing and AD, in line with the literature. Further testing on a larger and more heterogeneous sample will reveal the potential of this tool and its potential deployment in clinics. References : [1] W. H. L. Pinaya et al., “Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross‐sectional multi‐cohort study”, Scientific reports, vol. 11 1, p. 15746, 2021.
AbstractList Background Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how far individuals deviate from healthy controls (HC), may help to better situate subjects along the spectrum. To determine whether this is the case, we implemented a deep learning based normative model and tested it on structural neuroimaging data from subjects with HC, mild cognitive impairment (MCI), and Alzheimer’s disease (AD). Method We developed an adversarial autoencoder (AAE) (Figure 1) leveraging FreeSurfer features, namely cortical surface area of 68 cortical subregions (34 by hemisphere; Desikan‐Killiany atlas) and volumes of 33 neuroanatomical structures (Aseg atlas). Our model not only returns individual “deviation” scores—divergence from HC—but also identifies regions of interest that contribute to said score, facilitating interpretability. We retrieved T1‐weighted MRI scans (n = 204) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (HC/MCI/AD 105/29/60; Table 1). We trained our AAE on 71 HC samples (n = 71) and tested it on the rest (n = 133). We used bootstrapping to compute confidence intervals (CI) for each point estimate and examined regions where scores differed for the considered groups [1]. Result Deviation scores were lowest for HC (mean 0.74 [95%‐CI 0.63–0.88]), highest for AD (mean 1.21 [95%‐CI 1.03–1.50]), and intermediate for MCI (mean 1.04 [95%‐CI 0.88–1.27]), implying subjects indeed fell along the AD spectrum (Figure 2A). Said scores also enabled classifying subjects into HC, MCI, and AD with a mean area under the curve (AUC) of 75% (Figure 2B‐C; HC vs. MCI: 0.75 [95%‐CI 0.62–0.85]; HC vs. AD: 0.76 [95%‐CI 0.64–0.82]). According to the AAE, the hippocampus, parahippocampal cortex, ventricles, and inferior parietal lobe contributed to such differences (Figure 2D‐E). Conclusion Normative models can identify structures that become abnormal as the brain undergoes ageing and AD, in line with the literature. Further testing on a larger and more heterogeneous sample will reveal the potential of this tool and its potential deployment in clinics. References : [1] W. H. L. Pinaya et al., “Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross‐sectional multi‐cohort study”, Scientific reports, vol. 11 1, p. 15746, 2021.
Author Bernal, Jose
Trujillo, Maria
Jaramillo, Camilo
Author_xml – sequence: 1
  givenname: Camilo
  surname: Jaramillo
  fullname: Jaramillo, Camilo
  email: jaramillo.camilo@correounivalle.edu.co
  organization: School of Systems and Computing Engineering, Universidad del Valle, Cali
– sequence: 2
  givenname: Maria
  surname: Trujillo
  fullname: Trujillo, Maria
  organization: School of Systems and Computing Engineering, Universidad del Valle, Cali
– sequence: 3
  givenname: Jose
  surname: Bernal
  fullname: Bernal, Jose
  organization: German Center for Neurodegenerative Diseases (DZNE), Magdeburg
BookMark eNp9kL1OwzAUhS0EEm1h4Qk8g1LsOE7SsSq_UiUWWFiiG_uaGDlJZadU6cRr8Ho8CYVUjJ3OGb5zhm9Mjpu2QUIuOJtyxuJrcNspy2SeyiMy4lLGkYyz2fF_T9kpGYfwzljCci5HpLpBXFGH4BvbvNESAmratL6Gzn4grVuNLlCrsems6Wno_Fp1a4-BdhV0tETV1kih_Js4urFdReduW6Gt0X9_fgWqbcDd6xk5MeACnu9zQl7ubp8XD9Hy6f5xMV9GinMhozLJEhSKCcFzLVgaa6UTbRIElYNi3My0gixX3IgsNmkKErjmgoFAmAmTigm5Gn7XzQr6DThXrLytwfcFZ8WvpGInqRgk7ejLgVa-DcGjOQzzAd5Yh_0BspgvX_ebH215fQc
ContentType Journal Article
Copyright 2020 the Alzheimer's Association
Copyright_xml – notice: 2020 the Alzheimer's Association
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1002/alz.075865
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage n/a
ExternalDocumentID 10.1002/alz.075865
10_1002_alz_075865
ALZ075865
Genre abstract
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AFPUW
AGHNM
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
EFLBG
PHGZM
PHGZT
PJZUB
PPXIY
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c1135-b474e3c03318d3062dcd4df4eac8ac01f9dca78c1f372f66a5a1d130a3ea93f63
IEDL.DBID UNPAY
ISSN 1552-5260
1552-5279
IngestDate Tue Aug 19 22:46:52 EDT 2025
Thu Oct 16 04:30:34 EDT 2025
Wed Jan 22 16:17:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1135-b474e3c03318d3062dcd4df4eac8ac01f9dca78c1f372f66a5a1d130a3ea93f63
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.075865
PageCount 1
ParticipantIDs unpaywall_primary_10_1002_alz_075865
crossref_primary_10_1002_alz_075865
wiley_primary_10_1002_alz_075865_ALZ075865
PublicationCentury 2000
PublicationDate December 2023
2023-12-00
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: December 2023
PublicationDecade 2020
PublicationTitle Alzheimer's & dementia
PublicationYear 2023
SSID ssj0040815
Score 2.3803985
Snippet Background Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how...
SourceID unpaywall
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
Title Deep learning based normative models identify structures that become abnormal with Alzheimer’s disease
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.075865
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.075865
UnpaywallVersion publishedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: .~1
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: AKRWK
  dateStart: 20170701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: OVEED
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4oHDz5EzVqlGwiJ5Mi7Xa37bERCDGKHsSgl2a7P0IspZGigZOv4ev5JG67hYAHYuJtD7NNOzM738xu9xsAqpxhVifcVM7LHcNWQgaVhBkMSUehryVR3mPptkPaXfu6h3tLt_g1P8Riwy1bGXm8zhZ4wqWO88XpvnVJo1lNYZ5L8CYoE6yy8RIodzv3_lNOk4qzOktfFNZjx1swlC5PXsGkrUmc0OkHjaLVfDUHnNYOoPNX1f-ZvNYmaVhjs18sjv_5ll2wXWSj0Nfuswc2RLwP-g0hEli0k3iBGc5xGOvc9l3AvHfOGA7yG75yCjUD7USV7TDt0xQqc42GAtIwnxLBbKcX-tGsLwZD8fb9-TWGxanQAei2mg9XbaNoyGAw00TYCG3HFojVkQoEXNUaFmfc5tJWwdulrG5KjzPquMyUyLEkIRRTkyuQpEhQD0mCDkEpHsXiCECLOJLRrHp0mR0y6UklyzAVNvakINYxOJ-bJEg070agGZatQGkq0Jo6BtWFtdaKXeTaXyMS-DfPenTyt2eegpJSrzhTKUkaVkD57rHZbFQK7_sBQ1PmsA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60PXjygYoVlQV7ElKb7CPJMailiBYPFqqXsNmHLaZpsKnSnvwb_j1_iZtsWloPRfC2h9mQzMzON7Ob_QaAuuCEN6mwtfMK18JayGKKcosj5Wr0dRQqeizdd2i7i297pLd0i9_wQyw23PKVUcTrfIGnQpk4X57uO5csnjU05nmUbIIqJTobr4Bqt_MQPBU0qSSvs8xFYTN2_QVD6fLkFUzamiQpm36wOF7NVwvAae0ANn9V85_Ja2OSRQ0--8Xi-J9v2QXbZTYKA-M-e2BDJvugfy1lCst2Ei8wxzkBE5PbvktY9M4Zw0Fxw1dNoWGgneiyHWZ9lkFtrtFQQhYVU2KY7_TCIJ715WAo374_v8awPBU6AN3WzeNV2yobMljcthGxIuxiiXgT6UAgdK3hCC6wUFgHb4_xpq18wZnrcVsh11GUMsJsoUGSIcl8pCg6BJVklMgjAB3qKs7y6tHjOOLKV1qWEyYx8ZWkTg2cz00SpoZ3IzQMy06oNRUaTdVAfWGttWIXhfbXiITB3bMZHf_tmSegotUrT3VKkkVnpdf9ABVc5Ro
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+normative+models+identify+structures+that+become+abnormal+with+Alzheimer%E2%80%99s+disease&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Jaramillo%2C+Camilo&rft.au=Trujillo%2C+Maria&rft.au=Bernal%2C+Jose&rft.date=2023-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=19&rft.issue=S17&rft_id=info:doi/10.1002%2Falz.075865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_alz_075865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon