Deep learning based normative models identify structures that become abnormal with Alzheimer’s disease
Background Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how far individuals deviate from healthy controls (HC), may help to better situate subjects along the spectrum. To determine whether this is the...
Saved in:
| Published in | Alzheimer's & dementia Vol. 19; no. S17 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2023
|
| Online Access | Get full text |
| ISSN | 1552-5260 1552-5279 1552-5279 |
| DOI | 10.1002/alz.075865 |
Cover
| Abstract | Background
Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how far individuals deviate from healthy controls (HC), may help to better situate subjects along the spectrum. To determine whether this is the case, we implemented a deep learning based normative model and tested it on structural neuroimaging data from subjects with HC, mild cognitive impairment (MCI), and Alzheimer’s disease (AD).
Method
We developed an adversarial autoencoder (AAE) (Figure 1) leveraging FreeSurfer features, namely cortical surface area of 68 cortical subregions (34 by hemisphere; Desikan‐Killiany atlas) and volumes of 33 neuroanatomical structures (Aseg atlas). Our model not only returns individual “deviation” scores—divergence from HC—but also identifies regions of interest that contribute to said score, facilitating interpretability. We retrieved T1‐weighted MRI scans (n = 204) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (HC/MCI/AD 105/29/60; Table 1). We trained our AAE on 71 HC samples (n = 71) and tested it on the rest (n = 133). We used bootstrapping to compute confidence intervals (CI) for each point estimate and examined regions where scores differed for the considered groups [1].
Result
Deviation scores were lowest for HC (mean 0.74 [95%‐CI 0.63–0.88]), highest for AD (mean 1.21 [95%‐CI 1.03–1.50]), and intermediate for MCI (mean 1.04 [95%‐CI 0.88–1.27]), implying subjects indeed fell along the AD spectrum (Figure 2A). Said scores also enabled classifying subjects into HC, MCI, and AD with a mean area under the curve (AUC) of 75% (Figure 2B‐C; HC vs. MCI: 0.75 [95%‐CI 0.62–0.85]; HC vs. AD: 0.76 [95%‐CI 0.64–0.82]). According to the AAE, the hippocampus, parahippocampal cortex, ventricles, and inferior parietal lobe contributed to such differences (Figure 2D‐E).
Conclusion
Normative models can identify structures that become abnormal as the brain undergoes ageing and AD, in line with the literature. Further testing on a larger and more heterogeneous sample will reveal the potential of this tool and its potential deployment in clinics.
References
:
[1] W. H. L. Pinaya et al., “Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross‐sectional multi‐cohort study”, Scientific reports, vol. 11 1, p. 15746, 2021. |
|---|---|
| AbstractList | Background
Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how far individuals deviate from healthy controls (HC), may help to better situate subjects along the spectrum. To determine whether this is the case, we implemented a deep learning based normative model and tested it on structural neuroimaging data from subjects with HC, mild cognitive impairment (MCI), and Alzheimer’s disease (AD).
Method
We developed an adversarial autoencoder (AAE) (Figure 1) leveraging FreeSurfer features, namely cortical surface area of 68 cortical subregions (34 by hemisphere; Desikan‐Killiany atlas) and volumes of 33 neuroanatomical structures (Aseg atlas). Our model not only returns individual “deviation” scores—divergence from HC—but also identifies regions of interest that contribute to said score, facilitating interpretability. We retrieved T1‐weighted MRI scans (n = 204) from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (HC/MCI/AD 105/29/60; Table 1). We trained our AAE on 71 HC samples (n = 71) and tested it on the rest (n = 133). We used bootstrapping to compute confidence intervals (CI) for each point estimate and examined regions where scores differed for the considered groups [1].
Result
Deviation scores were lowest for HC (mean 0.74 [95%‐CI 0.63–0.88]), highest for AD (mean 1.21 [95%‐CI 1.03–1.50]), and intermediate for MCI (mean 1.04 [95%‐CI 0.88–1.27]), implying subjects indeed fell along the AD spectrum (Figure 2A). Said scores also enabled classifying subjects into HC, MCI, and AD with a mean area under the curve (AUC) of 75% (Figure 2B‐C; HC vs. MCI: 0.75 [95%‐CI 0.62–0.85]; HC vs. AD: 0.76 [95%‐CI 0.64–0.82]). According to the AAE, the hippocampus, parahippocampal cortex, ventricles, and inferior parietal lobe contributed to such differences (Figure 2D‐E).
Conclusion
Normative models can identify structures that become abnormal as the brain undergoes ageing and AD, in line with the literature. Further testing on a larger and more heterogeneous sample will reveal the potential of this tool and its potential deployment in clinics.
References
:
[1] W. H. L. Pinaya et al., “Using normative modelling to detect disease progression in mild cognitive impairment and Alzheimer’s disease in a cross‐sectional multi‐cohort study”, Scientific reports, vol. 11 1, p. 15746, 2021. |
| Author | Bernal, Jose Trujillo, Maria Jaramillo, Camilo |
| Author_xml | – sequence: 1 givenname: Camilo surname: Jaramillo fullname: Jaramillo, Camilo email: jaramillo.camilo@correounivalle.edu.co organization: School of Systems and Computing Engineering, Universidad del Valle, Cali – sequence: 2 givenname: Maria surname: Trujillo fullname: Trujillo, Maria organization: School of Systems and Computing Engineering, Universidad del Valle, Cali – sequence: 3 givenname: Jose surname: Bernal fullname: Bernal, Jose organization: German Center for Neurodegenerative Diseases (DZNE), Magdeburg |
| BookMark | eNp9kL1OwzAUhS0EEm1h4Qk8g1LsOE7SsSq_UiUWWFiiG_uaGDlJZadU6cRr8Ho8CYVUjJ3OGb5zhm9Mjpu2QUIuOJtyxuJrcNspy2SeyiMy4lLGkYyz2fF_T9kpGYfwzljCci5HpLpBXFGH4BvbvNESAmratL6Gzn4grVuNLlCrsems6Wno_Fp1a4-BdhV0tETV1kih_Js4urFdReduW6Gt0X9_fgWqbcDd6xk5MeACnu9zQl7ubp8XD9Hy6f5xMV9GinMhozLJEhSKCcFzLVgaa6UTbRIElYNi3My0gixX3IgsNmkKErjmgoFAmAmTigm5Gn7XzQr6DThXrLytwfcFZ8WvpGInqRgk7ejLgVa-DcGjOQzzAd5Yh_0BspgvX_ebH215fQc |
| ContentType | Journal Article |
| Copyright | 2020 the Alzheimer's Association |
| Copyright_xml | – notice: 2020 the Alzheimer's Association |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1002/alz.075865 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1552-5279 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/alz.075865 10_1002_alz_075865 ALZ075865 |
| Genre | abstract |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- AAMMB AAYWO AAYXX ACVFH ADCNI AEFGJ AEUPX AFPUW AGHNM AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION EFLBG PHGZM PHGZT PJZUB PPXIY ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1135-b474e3c03318d3062dcd4df4eac8ac01f9dca78c1f372f66a5a1d130a3ea93f63 |
| IEDL.DBID | UNPAY |
| ISSN | 1552-5260 1552-5279 |
| IngestDate | Tue Aug 19 22:46:52 EDT 2025 Thu Oct 16 04:30:34 EDT 2025 Wed Jan 22 16:17:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1135-b474e3c03318d3062dcd4df4eac8ac01f9dca78c1f372f66a5a1d130a3ea93f63 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.075865 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1002_alz_075865 crossref_primary_10_1002_alz_075865 wiley_primary_10_1002_alz_075865_ALZ075865 |
| PublicationCentury | 2000 |
| PublicationDate | December 2023 2023-12-00 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: December 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Alzheimer's & dementia |
| PublicationYear | 2023 |
| SSID | ssj0040815 |
| Score | 2.3803985 |
| Snippet | Background
Improving dementia diagnosis is a major global concern, given that up to 20% of subjects are misdiagnosed. Normative modelling, which quantifies how... |
| SourceID | unpaywall crossref wiley |
| SourceType | Open Access Repository Index Database Publisher |
| Title | Deep learning based normative models identify structures that become abnormal with Alzheimer’s disease |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.075865 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.075865 |
| UnpaywallVersion | publishedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: .~1 dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: AKRWK dateStart: 20170701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: OVEED dateStart: 20150101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4oHDz5EzVqlGwiJ5Mi7Xa37bERCDGKHsSgl2a7P0IspZGigZOv4ev5JG67hYAHYuJtD7NNOzM738xu9xsAqpxhVifcVM7LHcNWQgaVhBkMSUehryVR3mPptkPaXfu6h3tLt_g1P8Riwy1bGXm8zhZ4wqWO88XpvnVJo1lNYZ5L8CYoE6yy8RIodzv3_lNOk4qzOktfFNZjx1swlC5PXsGkrUmc0OkHjaLVfDUHnNYOoPNX1f-ZvNYmaVhjs18sjv_5ll2wXWSj0Nfuswc2RLwP-g0hEli0k3iBGc5xGOvc9l3AvHfOGA7yG75yCjUD7USV7TDt0xQqc42GAtIwnxLBbKcX-tGsLwZD8fb9-TWGxanQAei2mg9XbaNoyGAw00TYCG3HFojVkQoEXNUaFmfc5tJWwdulrG5KjzPquMyUyLEkIRRTkyuQpEhQD0mCDkEpHsXiCECLOJLRrHp0mR0y6UklyzAVNvakINYxOJ-bJEg070agGZatQGkq0Jo6BtWFtdaKXeTaXyMS-DfPenTyt2eegpJSrzhTKUkaVkD57rHZbFQK7_sBQ1PmsA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF60PXjygYoVlQV7ElKb7CPJMailiBYPFqqXsNmHLaZpsKnSnvwb_j1_iZtsWloPRfC2h9mQzMzON7Ob_QaAuuCEN6mwtfMK18JayGKKcosj5Wr0dRQqeizdd2i7i297pLd0i9_wQyw23PKVUcTrfIGnQpk4X57uO5csnjU05nmUbIIqJTobr4Bqt_MQPBU0qSSvs8xFYTN2_QVD6fLkFUzamiQpm36wOF7NVwvAae0ANn9V85_Ja2OSRQ0--8Xi-J9v2QXbZTYKA-M-e2BDJvugfy1lCst2Ei8wxzkBE5PbvktY9M4Zw0Fxw1dNoWGgneiyHWZ9lkFtrtFQQhYVU2KY7_TCIJ715WAo374_v8awPBU6AN3WzeNV2yobMljcthGxIuxiiXgT6UAgdK3hCC6wUFgHb4_xpq18wZnrcVsh11GUMsJsoUGSIcl8pCg6BJVklMgjAB3qKs7y6tHjOOLKV1qWEyYx8ZWkTg2cz00SpoZ3IzQMy06oNRUaTdVAfWGttWIXhfbXiITB3bMZHf_tmSegotUrT3VKkkVnpdf9ABVc5Ro |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+normative+models+identify+structures+that+become+abnormal+with+Alzheimer%E2%80%99s+disease&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Jaramillo%2C+Camilo&rft.au=Trujillo%2C+Maria&rft.au=Bernal%2C+Jose&rft.date=2023-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=19&rft.issue=S17&rft_id=info:doi/10.1002%2Falz.075865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_alz_075865 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |