Supervised machine learning method tailored for five brain MRI events is predictive of cognitive status
Background Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular feature/even that can precisely delineate a cognitively normal subject from cognitively impaired and Alzheimer’s disease (AD). Increasing lifespan o...
Saved in:
| Published in | Alzheimer's & dementia Vol. 17; no. S4 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.12.2021
|
| Online Access | Get full text |
| ISSN | 1552-5260 1552-5279 1552-5279 |
| DOI | 10.1002/alz.055375 |
Cover
| Abstract | Background
Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular feature/even that can precisely delineate a cognitively normal subject from cognitively impaired and Alzheimer’s disease (AD). Increasing lifespan of population accompanied with increased prevalence of cardiovascular risks across globe demands for precise early detection of AD and cognitive status (impaired or normal) in the aging individuals. Here, we have employed machine learning (ML) method on neuroanatomic volume and white matter hyperintensity (WMH) volume obtained from MRI analyses of data from National Alzheimer’s Coordinating Center (NACC) to identify participants as cognitively normal (CN), cognitively impaired with etiological diagnosis as AD and cognitively impaired (CI) subjects.
Method
Brain segmentation outputs for neuroanatomic‐volume and White matter hyperintensity (WMH) was obtained from NACC for 1290 unique subjects with total of 3684 longitudinal‐MRI. Supervised ML was performed using the MRI parameters for identifying the subjects as AD, CI, and CN. 50% of the MRI were used as training set while another 50% was used as test. Various combinations of neuroanatomic volume with WMH quantity were tested for accuracy of delineating the AD, CI and CN groups using random forest method. Furthermore, various ML methods such as XGB classifiers, classification tree, bagging classifier and simple classification were tested for accuracy using the optimized neuroanatomic volume and WMH.
Result
Random forest method converged with a combination of 5‐MRI features, intracranial, gray‐matter, cerebral CSF, hippocampus, and White‐matter hyperintensity volume with highest accuracy (83.3%) in identifying AD, CI, and CN subjects (Fig. 1). Inclusion of normal appearing white‐matter volume during the ML optimization of MRI features led to significant reduction in the accuracy. Simple random forest ML method showed highest accuracy using the optimized MRI features (Fig. 2).
Conclusion
All the neuroanatomic events obtained from brain MRI may not be specific in providing diagnostic features for evaluating brain health. Here we show that a combination of 5 MRI features that includes microvascular pathology and neuroanatomic volume may provide a specific and efficient non‐invasive imaging biomarker to evaluate brain health in aging population. |
|---|---|
| AbstractList | Background
Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular feature/even that can precisely delineate a cognitively normal subject from cognitively impaired and Alzheimer’s disease (AD). Increasing lifespan of population accompanied with increased prevalence of cardiovascular risks across globe demands for precise early detection of AD and cognitive status (impaired or normal) in the aging individuals. Here, we have employed machine learning (ML) method on neuroanatomic volume and white matter hyperintensity (WMH) volume obtained from MRI analyses of data from National Alzheimer’s Coordinating Center (NACC) to identify participants as cognitively normal (CN), cognitively impaired with etiological diagnosis as AD and cognitively impaired (CI) subjects.
Method
Brain segmentation outputs for neuroanatomic‐volume and White matter hyperintensity (WMH) was obtained from NACC for 1290 unique subjects with total of 3684 longitudinal‐MRI. Supervised ML was performed using the MRI parameters for identifying the subjects as AD, CI, and CN. 50% of the MRI were used as training set while another 50% was used as test. Various combinations of neuroanatomic volume with WMH quantity were tested for accuracy of delineating the AD, CI and CN groups using random forest method. Furthermore, various ML methods such as XGB classifiers, classification tree, bagging classifier and simple classification were tested for accuracy using the optimized neuroanatomic volume and WMH.
Result
Random forest method converged with a combination of 5‐MRI features, intracranial, gray‐matter, cerebral CSF, hippocampus, and White‐matter hyperintensity volume with highest accuracy (83.3%) in identifying AD, CI, and CN subjects (Fig. 1). Inclusion of normal appearing white‐matter volume during the ML optimization of MRI features led to significant reduction in the accuracy. Simple random forest ML method showed highest accuracy using the optimized MRI features (Fig. 2).
Conclusion
All the neuroanatomic events obtained from brain MRI may not be specific in providing diagnostic features for evaluating brain health. Here we show that a combination of 5 MRI features that includes microvascular pathology and neuroanatomic volume may provide a specific and efficient non‐invasive imaging biomarker to evaluate brain health in aging population. |
| Author | Tiwari, Vivek Patel, Raj Thakar, Darshit Ravindranath, Vijayalakshmi |
| Author_xml | – sequence: 1 givenname: Darshit surname: Thakar fullname: Thakar, Darshit email: darshitt@iisc.ac.in organization: Indian Institute of Science – sequence: 2 givenname: Raj surname: Patel fullname: Patel, Raj organization: University of Adelaide – sequence: 3 givenname: Vijayalakshmi surname: Ravindranath fullname: Ravindranath, Vijayalakshmi organization: Indian Institute of Science – sequence: 4 givenname: Vivek surname: Tiwari fullname: Tiwari, Vivek organization: Indian Institute of Science |
| BookMark | eNp90E1PAjEQBuDGYCKgF39Bz5rFTku3cCTEDxKMiR8XL5tut4Wa0m7aBYK_3sU1HjnNTOaZObwD1PPBa4SugYyAEHon3feIcM4EP0N94JxmnIpp77_PyQUapPRFyJhMgPfR6m1b67izSVd4I9Xaeo2dltFbv8Ib3axDhRtpXYgtMCFiY3cal1Faj59fF1jvtG8StgnXrbCqOa6DwSqsvP0dUiObbbpE50a6pK_-6hB9PNy_z5-y5cvjYj5bZgqA8YyOSw6GskoQCSafjKckl0wpowQ3DJhWpWCcq1JXoAgxpRKUAeQTUVFBgLIhuu3-bn0tD3vpXFFHu5HxUAApjhkVbUZFl1GrbzqtYkgpanMaQ4f31unDCVnMlp9_Nz-yq3ol |
| ContentType | Journal Article |
| Copyright | 2021 the Alzheimer's Association |
| Copyright_xml | – notice: 2021 the Alzheimer's Association |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1002/alz.055375 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1552-5279 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/alz.055375 10_1002_alz_055375 ALZ055375 |
| Genre | article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1OC 1~. 1~5 24P 33P 4.4 457 4G. 53G 5VS 7-5 71M 7RV 7X7 8FI 8FJ 8P~ AACTN AAEDT AAHHS AAIKJ AAKOC AALRI AANLZ AAOAW AAXLA AAXUO AAYCA ABBQC ABCQJ ABCUV ABIVO ABJNI ABMAC ABMZM ABUWG ABWVN ACCFJ ACCMX ACCZN ACGFS ACGOF ACPOU ACRPL ACXQS ADBBV ADBTR ADEZE ADHUB ADKYN ADMUD ADNMO ADPDF ADVLN ADZMN ADZOD AEEZP AEIGN AEKER AENEX AEQDE AEUYR AEVXI AFKRA AFTJW AFWVQ AGHFR AGUBO AGWIK AGYEJ AITUG AIURR AIWBW AJBDE AJOXV AJRQY AKRWK ALMA_UNASSIGNED_HOLDINGS ALUQN AMFUW AMRAJ AMYDB ANZVX AZQEC BENPR BFHJK BLXMC C45 CCPQU DCZOG EBS EJD EMOBN EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYUFA G-Q GBLVA HMCUK HVGLF HX~ HZ~ IHE J1W K9- LATKE LEEKS M0R M41 MO0 MOBAO N9A NAPCQ O-L O9- OAUVE OVD OVEED OZT P-8 P-9 P2P PC. PGMZT PIMPY PSYQQ Q38 QTD RIG ROL RPM RPZ SDF SDG SEL SES SSZ SUPJJ T5K TEORI UKHRP ~G- AAMMB AAYWO AAYXX ACVFH ADCNI AEFGJ AEUPX AFPUW AGHNM AGXDD AIDQK AIDYY AIGII AKBMS AKYEP CITATION EFLBG PHGZM PHGZT PJZUB PPXIY ~HD ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c1135-24b51f23d70a1f684906a3ccfc75f313ecb7355cbed1c00fbc72311687d270123 |
| IEDL.DBID | UNPAY |
| ISSN | 1552-5260 1552-5279 |
| IngestDate | Wed Oct 01 16:50:16 EDT 2025 Thu Oct 16 04:26:42 EDT 2025 Wed Jan 22 16:25:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | S4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1135-24b51f23d70a1f684906a3ccfc75f313ecb7355cbed1c00fbc72311687d270123 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.055375 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1002_alz_055375 crossref_primary_10_1002_alz_055375 wiley_primary_10_1002_alz_055375_ALZ055375 |
| PublicationCentury | 2000 |
| PublicationDate | December 2021 2021-12-00 |
| PublicationDateYYYYMMDD | 2021-12-01 |
| PublicationDate_xml | – month: 12 year: 2021 text: December 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Alzheimer's & dementia |
| PublicationYear | 2021 |
| SSID | ssj0040815 |
| Score | 2.314027 |
| Snippet | Background
Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular... |
| SourceID | unpaywall crossref wiley |
| SourceType | Open Access Repository Index Database Publisher |
| Title | Supervised machine learning method tailored for five brain MRI events is predictive of cognitive status |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.055375 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.055375 |
| UnpaywallVersion | publishedVersion |
| Volume | 17 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: .~1 dateStart: 20050701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: AKRWK dateStart: 20170701 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1552-5279 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040815 issn: 1552-5279 databaseCode: OVEED dateStart: 20150101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UDp78ETVqlDSRk8mwXdcVjkQhaASNikEvS9u1xIiwAIuRv952HQQ8EBNvPXTN9tp-71v73vcAKIea4ABr5HGF7NGN8D0eE-nF1VBzqpDQzOYOtzthqxvc9mhvKYvf6UMsDtzszsjw2m7wJNYO5_Pbff-SD2YVRClhdBMUQ2rYeAEUu52H-msmk0rtf5ZLFHZtVlsolC4_vOKTttJhwr-_-GCwylczh9PcAXz-qi7O5KOSTkVFzn6pOP7nW3bBds5GYd0tnz2woYb7oP-UJhZBJiqGn1mspYJ5cYk-dBWnoY07HY1NB8N5oTaICYWtNQHbjzcw04SawPcJTMb2GsgCKhxpuIhUgjaLKZ0cgG6z8XzV8vJ6DJ7EmFDPDwTF2icxQxzrsBrUUMiJlFoyaqacKCmYoS9SqBhLhLSQzLBHHFZZ7DPL3Q5BYTgaqiMAMTdY4se4pjUJOGE1RASyntIPRdUg7jE4n89IlDjZjcgJLPuRMVTkDHUMyovJWtvtIjP-mi5R_e7NtU7-NuYpKEzHqTozjGQqSqB4_9JoXJfyxfcD74PjFQ |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66HTz5AxUnKgF3EjqTpmm64xDHFDdEHUwvJUmTIc6tbCvi_nqTpiubhyF4yyEN7Uvyva_Je98DoB5qggOskccVskc3wvd4QqSXRKHmVCGhmc0d7vbCTj-4H9DBSha_04coD9zszsjx2m7wNNEO54vbff-ajxYNRClhdBtUQ2rYeAVU-73H1msuk0rtf5ZLFHZt1iwVSlcfXvNJO9k45d9ffDRa56u5w2nvAb58VRdn8tHI5qIhF79UHP_zLftgt2CjsOWWzwHYUuNDMHzOUosgM5XAzzzWUsGiuMQQuorT0MadTqamg-G8UBvEhMLWmoDdpzuYa0LN4PsMplN7DWQBFU40LCOVoM1iymZHoN--fbnpeEU9Bk9iTKjnB4Ji7ZOEIY51GAVNFHIipZaMmiknSgpm6IsUKsESIS0kM-wRhxFLfGa52zGojCdjdQIg5gZL_AQ3tSYBJ6yJiEDWU_qhiAzi1sDlckbi1MluxE5g2Y-NoWJnqBqol5O1sdtVbvwNXeLWw5trnf5tzDNQmU8zdW4YyVxcFIvuB95k4X8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+machine+learning+method+tailored+for+five+brain+MRI+events+is+predictive+of+cognitive+status&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Thakar%2C+Darshit&rft.au=Patel%2C+Raj&rft.au=Ravindranath%2C+Vijayalakshmi&rft.au=Tiwari%2C+Vivek&rft.date=2021-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=17&rft.issue=S4&rft_id=info:doi/10.1002%2Falz.055375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_alz_055375 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon |