Supervised machine learning method tailored for five brain MRI events is predictive of cognitive status

Background Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular feature/even that can precisely delineate a cognitively normal subject from cognitively impaired and Alzheimer’s disease (AD). Increasing lifespan o...

Full description

Saved in:
Bibliographic Details
Published inAlzheimer's & dementia Vol. 17; no. S4
Main Authors Thakar, Darshit, Patel, Raj, Ravindranath, Vijayalakshmi, Tiwari, Vivek
Format Journal Article
LanguageEnglish
Published 01.12.2021
Online AccessGet full text
ISSN1552-5260
1552-5279
1552-5279
DOI10.1002/alz.055375

Cover

Abstract Background Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular feature/even that can precisely delineate a cognitively normal subject from cognitively impaired and Alzheimer’s disease (AD). Increasing lifespan of population accompanied with increased prevalence of cardiovascular risks across globe demands for precise early detection of AD and cognitive status (impaired or normal) in the aging individuals. Here, we have employed machine learning (ML) method on neuroanatomic volume and white matter hyperintensity (WMH) volume obtained from MRI analyses of data from National Alzheimer’s Coordinating Center (NACC) to identify participants as cognitively normal (CN), cognitively impaired with etiological diagnosis as AD and cognitively impaired (CI) subjects. Method Brain segmentation outputs for neuroanatomic‐volume and White matter hyperintensity (WMH) was obtained from NACC for 1290 unique subjects with total of 3684 longitudinal‐MRI. Supervised ML was performed using the MRI parameters for identifying the subjects as AD, CI, and CN. 50% of the MRI were used as training set while another 50% was used as test. Various combinations of neuroanatomic volume with WMH quantity were tested for accuracy of delineating the AD, CI and CN groups using random forest method. Furthermore, various ML methods such as XGB classifiers, classification tree, bagging classifier and simple classification were tested for accuracy using the optimized neuroanatomic volume and WMH. Result Random forest method converged with a combination of 5‐MRI features, intracranial, gray‐matter, cerebral CSF, hippocampus, and White‐matter hyperintensity volume with highest accuracy (83.3%) in identifying AD, CI, and CN subjects (Fig. 1). Inclusion of normal appearing white‐matter volume during the ML optimization of MRI features led to significant reduction in the accuracy. Simple random forest ML method showed highest accuracy using the optimized MRI features (Fig. 2). Conclusion All the neuroanatomic events obtained from brain MRI may not be specific in providing diagnostic features for evaluating brain health. Here we show that a combination of 5 MRI features that includes microvascular pathology and neuroanatomic volume may provide a specific and efficient non‐invasive imaging biomarker to evaluate brain health in aging population.
AbstractList Background Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular feature/even that can precisely delineate a cognitively normal subject from cognitively impaired and Alzheimer’s disease (AD). Increasing lifespan of population accompanied with increased prevalence of cardiovascular risks across globe demands for precise early detection of AD and cognitive status (impaired or normal) in the aging individuals. Here, we have employed machine learning (ML) method on neuroanatomic volume and white matter hyperintensity (WMH) volume obtained from MRI analyses of data from National Alzheimer’s Coordinating Center (NACC) to identify participants as cognitively normal (CN), cognitively impaired with etiological diagnosis as AD and cognitively impaired (CI) subjects. Method Brain segmentation outputs for neuroanatomic‐volume and White matter hyperintensity (WMH) was obtained from NACC for 1290 unique subjects with total of 3684 longitudinal‐MRI. Supervised ML was performed using the MRI parameters for identifying the subjects as AD, CI, and CN. 50% of the MRI were used as training set while another 50% was used as test. Various combinations of neuroanatomic volume with WMH quantity were tested for accuracy of delineating the AD, CI and CN groups using random forest method. Furthermore, various ML methods such as XGB classifiers, classification tree, bagging classifier and simple classification were tested for accuracy using the optimized neuroanatomic volume and WMH. Result Random forest method converged with a combination of 5‐MRI features, intracranial, gray‐matter, cerebral CSF, hippocampus, and White‐matter hyperintensity volume with highest accuracy (83.3%) in identifying AD, CI, and CN subjects (Fig. 1). Inclusion of normal appearing white‐matter volume during the ML optimization of MRI features led to significant reduction in the accuracy. Simple random forest ML method showed highest accuracy using the optimized MRI features (Fig. 2). Conclusion All the neuroanatomic events obtained from brain MRI may not be specific in providing diagnostic features for evaluating brain health. Here we show that a combination of 5 MRI features that includes microvascular pathology and neuroanatomic volume may provide a specific and efficient non‐invasive imaging biomarker to evaluate brain health in aging population.
Author Tiwari, Vivek
Patel, Raj
Thakar, Darshit
Ravindranath, Vijayalakshmi
Author_xml – sequence: 1
  givenname: Darshit
  surname: Thakar
  fullname: Thakar, Darshit
  email: darshitt@iisc.ac.in
  organization: Indian Institute of Science
– sequence: 2
  givenname: Raj
  surname: Patel
  fullname: Patel, Raj
  organization: University of Adelaide
– sequence: 3
  givenname: Vijayalakshmi
  surname: Ravindranath
  fullname: Ravindranath, Vijayalakshmi
  organization: Indian Institute of Science
– sequence: 4
  givenname: Vivek
  surname: Tiwari
  fullname: Tiwari, Vivek
  organization: Indian Institute of Science
BookMark eNp90E1PAjEQBuDGYCKgF39Bz5rFTku3cCTEDxKMiR8XL5tut4Wa0m7aBYK_3sU1HjnNTOaZObwD1PPBa4SugYyAEHon3feIcM4EP0N94JxmnIpp77_PyQUapPRFyJhMgPfR6m1b67izSVd4I9Xaeo2dltFbv8Ib3axDhRtpXYgtMCFiY3cal1Faj59fF1jvtG8StgnXrbCqOa6DwSqsvP0dUiObbbpE50a6pK_-6hB9PNy_z5-y5cvjYj5bZgqA8YyOSw6GskoQCSafjKckl0wpowQ3DJhWpWCcq1JXoAgxpRKUAeQTUVFBgLIhuu3-bn0tD3vpXFFHu5HxUAApjhkVbUZFl1GrbzqtYkgpanMaQ4f31unDCVnMlp9_Nz-yq3ol
ContentType Journal Article
Copyright 2021 the Alzheimer's Association
Copyright_xml – notice: 2021 the Alzheimer's Association
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1002/alz.055375
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1552-5279
EndPage n/a
ExternalDocumentID 10.1002/alz.055375
10_1002_alz_055375
ALZ055375
Genre article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1OC
1~.
1~5
24P
33P
4.4
457
4G.
53G
5VS
7-5
71M
7RV
7X7
8FI
8FJ
8P~
AACTN
AAEDT
AAHHS
AAIKJ
AAKOC
AALRI
AANLZ
AAOAW
AAXLA
AAXUO
AAYCA
ABBQC
ABCQJ
ABCUV
ABIVO
ABJNI
ABMAC
ABMZM
ABUWG
ABWVN
ACCFJ
ACCMX
ACCZN
ACGFS
ACGOF
ACPOU
ACRPL
ACXQS
ADBBV
ADBTR
ADEZE
ADHUB
ADKYN
ADMUD
ADNMO
ADPDF
ADVLN
ADZMN
ADZOD
AEEZP
AEIGN
AEKER
AENEX
AEQDE
AEUYR
AEVXI
AFKRA
AFTJW
AFWVQ
AGHFR
AGUBO
AGWIK
AGYEJ
AITUG
AIURR
AIWBW
AJBDE
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMFUW
AMRAJ
AMYDB
ANZVX
AZQEC
BENPR
BFHJK
BLXMC
C45
CCPQU
DCZOG
EBS
EJD
EMOBN
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYUFA
G-Q
GBLVA
HMCUK
HVGLF
HX~
HZ~
IHE
J1W
K9-
LATKE
LEEKS
M0R
M41
MO0
MOBAO
N9A
NAPCQ
O-L
O9-
OAUVE
OVD
OVEED
OZT
P-8
P-9
P2P
PC.
PGMZT
PIMPY
PSYQQ
Q38
QTD
RIG
ROL
RPM
RPZ
SDF
SDG
SEL
SES
SSZ
SUPJJ
T5K
TEORI
UKHRP
~G-
AAMMB
AAYWO
AAYXX
ACVFH
ADCNI
AEFGJ
AEUPX
AFPUW
AGHNM
AGXDD
AIDQK
AIDYY
AIGII
AKBMS
AKYEP
CITATION
EFLBG
PHGZM
PHGZT
PJZUB
PPXIY
~HD
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c1135-24b51f23d70a1f684906a3ccfc75f313ecb7355cbed1c00fbc72311687d270123
IEDL.DBID UNPAY
ISSN 1552-5260
1552-5279
IngestDate Wed Oct 01 16:50:16 EDT 2025
Thu Oct 16 04:26:42 EDT 2025
Wed Jan 22 16:25:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue S4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1135-24b51f23d70a1f684906a3ccfc75f313ecb7355cbed1c00fbc72311687d270123
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.055375
PageCount 1
ParticipantIDs unpaywall_primary_10_1002_alz_055375
crossref_primary_10_1002_alz_055375
wiley_primary_10_1002_alz_055375_ALZ055375
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle Alzheimer's & dementia
PublicationYear 2021
SSID ssj0040815
Score 2.314027
Snippet Background Despite the large neuroanatomic measurements obtained from brain MRI segmentation, we do not have yet a definitive neuroanatomic or vascular...
SourceID unpaywall
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
Title Supervised machine learning method tailored for five brain MRI events is predictive of cognitive status
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Falz.055375
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/alz.055375
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: .~1
  dateStart: 20050701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: AKRWK
  dateStart: 20170701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1552-5279
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040815
  issn: 1552-5279
  databaseCode: OVEED
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT8IwFG4UDp78ETVqlDSRk8mwXdcVjkQhaASNikEvS9u1xIiwAIuRv952HQQ8EBNvPXTN9tp-71v73vcAKIea4ABr5HGF7NGN8D0eE-nF1VBzqpDQzOYOtzthqxvc9mhvKYvf6UMsDtzszsjw2m7wJNYO5_Pbff-SD2YVRClhdBMUQ2rYeAEUu52H-msmk0rtf5ZLFHZtVlsolC4_vOKTttJhwr-_-GCwylczh9PcAXz-qi7O5KOSTkVFzn6pOP7nW3bBds5GYd0tnz2woYb7oP-UJhZBJiqGn1mspYJ5cYk-dBWnoY07HY1NB8N5oTaICYWtNQHbjzcw04SawPcJTMb2GsgCKhxpuIhUgjaLKZ0cgG6z8XzV8vJ6DJ7EmFDPDwTF2icxQxzrsBrUUMiJlFoyaqacKCmYoS9SqBhLhLSQzLBHHFZZ7DPL3Q5BYTgaqiMAMTdY4se4pjUJOGE1RASyntIPRdUg7jE4n89IlDjZjcgJLPuRMVTkDHUMyovJWtvtIjP-mi5R_e7NtU7-NuYpKEzHqTozjGQqSqB4_9JoXJfyxfcD74PjFQ
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66HTz5AxUnKgF3EjqTpmm64xDHFDdEHUwvJUmTIc6tbCvi_nqTpiubhyF4yyEN7Uvyva_Je98DoB5qggOskccVskc3wvd4QqSXRKHmVCGhmc0d7vbCTj-4H9DBSha_04coD9zszsjx2m7wNNEO54vbff-ajxYNRClhdBtUQ2rYeAVU-73H1msuk0rtf5ZLFHZt1iwVSlcfXvNJO9k45d9ffDRa56u5w2nvAb58VRdn8tHI5qIhF79UHP_zLftgt2CjsOWWzwHYUuNDMHzOUosgM5XAzzzWUsGiuMQQuorT0MadTqamg-G8UBvEhMLWmoDdpzuYa0LN4PsMplN7DWQBFU40LCOVoM1iymZHoN--fbnpeEU9Bk9iTKjnB4Ji7ZOEIY51GAVNFHIipZaMmiknSgpm6IsUKsESIS0kM-wRhxFLfGa52zGojCdjdQIg5gZL_AQ3tSYBJ6yJiEDWU_qhiAzi1sDlckbi1MluxE5g2Y-NoWJnqBqol5O1sdtVbvwNXeLWw5trnf5tzDNQmU8zdW4YyVxcFIvuB95k4X8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+machine+learning+method+tailored+for+five+brain+MRI+events+is+predictive+of+cognitive+status&rft.jtitle=Alzheimer%27s+%26+dementia&rft.au=Thakar%2C+Darshit&rft.au=Patel%2C+Raj&rft.au=Ravindranath%2C+Vijayalakshmi&rft.au=Tiwari%2C+Vivek&rft.date=2021-12-01&rft.issn=1552-5260&rft.eissn=1552-5279&rft.volume=17&rft.issue=S4&rft_id=info:doi/10.1002%2Falz.055375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_alz_055375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5260&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5260&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5260&client=summon