Spatial Focusing and Progressive Decoupling Detector for High-Aspect-Ratio Rotated Objects
In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and vision transformer (ViT) architectures. However, detecting rotated objects with high aspect ratios remains challenging. Current detection fram...
Saved in:
| Published in | IEEE journal of selected topics in applied earth observations and remote sensing pp. 1 - 17 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
15.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-1404 2151-1535 2151-1535 |
| DOI | 10.1109/JSTARS.2025.3622338 |
Cover
| Abstract | In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and vision transformer (ViT) architectures. However, detecting rotated objects with high aspect ratios remains challenging. Current detection frameworks inadequately address the anisotropic feature distribution caused by such objects: feature information is highly concentrated in one spatial dimension while being sparse in another; and there are significant feature differences in the parameters representing the bounding box. To address this issue, we propose a Spatial Focusing and Progressive Decoupling Detector (SFPD-Det), which consists of three components: the Spatially Crosswise Convolution Module (SCCM), Hierarchical Decoupling Network (HDN), and Dynamic Progressive Activation Masks (DPMs). The SCCM captures diverse spatial features with long-range dependencies by combining square convolutions with multi-branch orthogonal large strip convolutions, enhancing the model adaptability to objects with varying aspect ratios. The HDN is composed of stacked ViT blocks and uses separate network branches to predict the position, angle, and size of bounding boxes in a cascaded manner. Furthermore, by combining the predicted parameters, we propose DPMs that embed the mask information of potential object boundary regions into the HDN, which progressively guide the self-attention to enhance cirtical features within the region of interest, thereby achieving precise bounding box regression. Extensive experiments on four benchmark remote sensing datasets (DOTA, DIOR-R, HRSC2016, and UCAS-AOD) demonstrate that our SFPD-Det achieves superior performance when compared with state-of-the-art detectors. |
|---|---|
| AbstractList | In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and vision transformer (ViT) architectures. However, detecting rotated objects with high aspect ratios remains challenging. Current detection frameworks inadequately address the anisotropic feature distribution caused by such objects: feature information is highly concentrated in one spatial dimension while being sparse in another; and there are significant feature differences in the parameters representing the bounding box. To address this issue, we propose a Spatial Focusing and Progressive Decoupling Detector (SFPD-Det), which consists of three components: the Spatially Crosswise Convolution Module (SCCM), Hierarchical Decoupling Network (HDN), and Dynamic Progressive Activation Masks (DPMs). The SCCM captures diverse spatial features with long-range dependencies by combining square convolutions with multi-branch orthogonal large strip convolutions, enhancing the model adaptability to objects with varying aspect ratios. The HDN is composed of stacked ViT blocks and uses separate network branches to predict the position, angle, and size of bounding boxes in a cascaded manner. Furthermore, by combining the predicted parameters, we propose DPMs that embed the mask information of potential object boundary regions into the HDN, which progressively guide the self-attention to enhance cirtical features within the region of interest, thereby achieving precise bounding box regression. Extensive experiments on four benchmark remote sensing datasets (DOTA, DIOR-R, HRSC2016, and UCAS-AOD) demonstrate that our SFPD-Det achieves superior performance when compared with state-of-the-art detectors. |
| Author | Liu, Zhe He, Guiqing Liu, Letian Jiang, Xiaoyue Dong, Liheng |
| Author_xml | – sequence: 1 givenname: Zhe surname: Liu fullname: Liu, Zhe email: liu_zhe@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 2 givenname: Guiqing surname: He fullname: He, Guiqing email: guiqing_he@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 3 givenname: Letian surname: Liu fullname: Liu, Letian email: liuletian@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 4 givenname: Liheng surname: Dong fullname: Dong, Liheng email: dlh@mail.nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China – sequence: 5 givenname: Xiaoyue surname: Jiang fullname: Jiang, Xiaoyue email: xjiang@nwpu.edu.cn organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China |
| BookMark | eNplkF1rwjAUhsNwMHX7BdtF_kBdTj5scyk654bgUHezm5Kmiat0TUmqw3-_SoXBdnE48B6el8MzQL3KVQaheyAjACIfXzfbyXozooSKERtTylhyhfoUBEQgmOihPkgmI-CE36BBCHtCxjSWrI8-NrVqClXiudOHUFQ7rKocv3m38yaE4mjwzGh3qMvzaWYaoxvnsW1nUew-o0mo2yRatx0Or12jGpPjVbZvw3CLrq0qg7m77CF6nz9tp4touXp-mU6WkW5_TyJFLBjLNNGgc6BMWh4nEjIdc245s3ZM8pgSmSQZF7GEhFubEQ6S5FImUrAh4l3voarV6VuVZVr74kv5UwokPftJ96FRPqRnP-nFT4uxDtPeheCN_Ud1Vv9SDx1VGGN-CaBEMCbYDyIbdJ0 |
| CODEN | IJSTHZ |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1109/JSTARS.2025.3622338 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 2151-1535 |
| EndPage | 17 |
| ExternalDocumentID | 10.1109/jstars.2025.3622338 10_1109_JSTARS_2025_3622338 11205335 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAFWJ AAJGR AASAJ AAWTH ABAZT ABVLG ACIWK AENEX AFPKN AFRAH ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ DU5 EBS ESBDL GROUPED_DOAJ HZ~ IFIPE IPLJI JAVBF O9- OCL OK1 RIA RIE RNS AAYXX AETIX AGSQL CITATION EJD M43 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1108-a0f1ef3c0c1cd1239f47891bc744f43ff60d720988b4579184ffb04190d998953 |
| IEDL.DBID | UNPAY |
| ISSN | 1939-1404 2151-1535 |
| IngestDate | Sun Oct 19 05:41:35 EDT 2025 Sat Oct 25 05:48:44 EDT 2025 Sat Oct 25 03:12:10 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1108-a0f1ef3c0c1cd1239f47891bc744f43ff60d720988b4579184ffb04190d998953 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/jstars.2025.3622338 |
| PageCount | 17 |
| ParticipantIDs | crossref_primary_10_1109_JSTARS_2025_3622338 unpaywall_primary_10_1109_jstars_2025_3622338 ieee_primary_11205335 |
| PublicationCentury | 2000 |
| PublicationDate | 20251015 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 20251015 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | IEEE journal of selected topics in applied earth observations and remote sensing |
| PublicationTitleAbbrev | JSTARS |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| SSID | ssj0062793 |
| Score | 2.4023347 |
| SecondaryResourceType | online_first |
| Snippet | In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and... |
| SourceID | unpaywall crossref ieee |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Computer architecture Computer vision Convolution Detectors Feature extraction hierarchical decoupling network Kernel Object detection Oriented object detection Remote sensing Robustness Transformers vision transformer |
| SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8ACVEewA-Mh2D2wUf32LbbbvfxohyERDSnJMSXZj9JlPQIXDH41zuz7QlqSHzrw3ay2Zns_GZ2fjMAbwK9DmEowaUXkctM4T1oc6oiNAifnYqZJTbyh5Pq6FQen5VnA1k9cWFCCKn4LIzpM73l-7nrKFW2j9iAqKPlKqyquurJWstrt8pV6rCLgERz6hkztBjKhN5HG5_MPmMwmJdjvLDzgtgo99xQmquyAY-69tLc_jAXF_dczHQLTpab6ytLvo-7hR27n3_1bfzv3T-BzQFssklvHU9hJbTPYP0wDfO9fQ5faR4x2h-b4s-UM2Cm9ewTVWxRcexNYO8xOO2Is3uOn4uU4GeIchlVh_BJYmnyGemWzeaEWj37aCmxc70Np9ODL--O-DBrgTsiAnAjYhZi4YTLnEdvpqNUtc6sU1JGWcRYCa9yoevaylJpjAtjtEIinPAYsOmyeAFr7bwNL4HlKMnr0tjcVdIIbwtdi0IbapamShNH8HZ59M1l31KjSaGI0E2vqYY01QyaGsE2neXd0uEYR8B_6-sfOd8QWl9d_yFn5wE5r-AxLSN_lJW7sLa46sIeAo2FfZ0M7BcmL8y2 priority: 102 providerName: IEEE |
| Title | Spatial Focusing and Progressive Decoupling Detector for High-Aspect-Ratio Rotated Objects |
| URI | https://ieeexplore.ieee.org/document/11205335 https://doi.org/10.1109/jstars.2025.3622338 |
| UnpaywallVersion | publishedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2151-1535 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0062793 issn: 2151-1535 databaseCode: RIE dateStart: 20080101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BEVo48NgFUR6VDxxx10nspj5WQEFIsKhQCfYS2U6MBChFfYDg1zOTZHkKabklkjWKxo7nG3u-bwC2M7odwlSCy1R4LoMY90EbUhWhQfjsYh9YYiMfn7QO-_LoQl1UOtvEhXl7fx8I_fsaMdKQZLVD1cS9NsSMahpmWgqBdw1m-ienncvy3lhzEoqhVnIYwzj-x6rSGPrCyrs4VDRWmYcfk_zOPD6Y29s3Maa7WJK3R4U0IZWW3DQnY9t0Tx-EG__z85dgocKarFMujmWYyvKfMHtQ9PJ9_AV_qR0xLj_WHTgqf79iJk_ZKRVsUW3sfcb2MDedEGX3Ch_Hxfk-Q5DLqDiEdwqSJu_R1LLegEBryv5YOtcZrUC_u3--e8irVgvcEQ-AG-GDzEdOuMClGMy0l3FbB9bFUnoZed8SaRwK3W5bqWKNaaH3VkhEEynma1pFq1DLB3m2BixES6lWxoauJY1IbaTbItKGtNJiZXwddv45PrkrFTWSIhMROsHNqNM7S8hdSeWuOqzQ5LwODUKiD6s68JfZ-mSndPs7O-vfHL8Bc_RKYSpQm1AbDyfZFuKPsW0UeXujoAo2qjX4DCtr0hY |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEJ8gxgAPfmI4Fe2Dj_bo7ra318eLepwKpzkhIb5s-kkiZI_ALQT_eme6e4oSE9_6sDtpOpPOb6bzmwF4Heh1CEMJLr2IXGYl3oM2pypCg_DZlTGzxEbenw4mh_LjkTrqyOqJCxNCSMVnoU_L9Jbv566hVNkOYgOijqo7cFdJKVVL11pevIO8TD12EZJoTl1juiZDmdA7aOWj2VcMB3PVxys7L4iPcsMRpckqG7DW1Gfm-sqcnt5wMuMHMF1ur60tOek3C9t3P_7q3Pjf-38I9zu4yUatfTyClVA_hnu7aZzv9RP4RhOJ0QLZGH-mrAEztWdfqGaLymMvA3uH4WlDrN1jXC5Sip8hzmVUH8JHiafJZ6RdNpsTbvXss6XUzsUmHI7fH7yd8G7aAndEBeBGxCzEwgmXOY_-TEdZDnVmXSlllEWMA-HLXOjh0EpVaowMY7RCIqDwGLJpVTyF1Xpehy1gOUryWhmbu4E0wttCD0WhDbVLK5WJPXizPPrqrG2qUaVgROiq1VRFmqo6TfVgk87y96fdMfaA_9LXLTnfEVyfX_wh59k_5LyCtcnB_l6192H66Tms0y_knTL1AlYX503YRtixsC-Tsf0EC2DQAw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED66lLHtodu6lGXtih72WGWyLcXRY2ibhkLTkDWQ9cVIslVogxNSZ6P79buz3TXZGGxvNojDnGTdd9J93wF8yuh2CFMJLlPhuQxi3AdtSFWEBuGzi31giY18MewMJvJ8qqa1zjZxYdbv7wOhP98iRlqSrHao2rjXhphRPYPtjkLg3YDtyXDU-1rdG2tOQjHUSg5jGMf_WNUaQ3-xshGHysYqr-DFKl-Yh-9mNluLMf3XFXn7vpQmpNKSu_aqsG334zfhxn_8_DewU2NN1qsWx1vYyvJdeH5W9vJ9eAfX1I4Ylx_rzx2Vv98wk6dsRAVbVBv7LWMnmJuuiLJ7g49Feb7PEOQyKg7hvZKkycc0tWw8J9CasktL5zr3TZj0T6-OB7xutcAd8QC4ET7IfOSEC1yKwUx7GXd1YF0spZeR9x2RxqHQ3a6VKtaYFnpvhUQ0kWK-plW0B418nmfvgYVoKdXK2NB1pBGpjXRXRNqQVlqsjG_B0aPjk0WlqJGUmYjQCW5GvfGXhNyV1O5qQZMm52loEBJ9WLWA_5qtP-xUbt-w8-E_x-_DS3qlMBWoA2gUy1X2EfFHYQ_rdfcTYy_QIA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Focusing+and+Progressive+Decoupling+Detector+for+High-Aspect-Ratio+Rotated+Objects&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liu%2C+Zhe&rft.au=He%2C+Guiqing&rft.au=Liu%2C+Letian&rft.au=Dong%2C+Liheng&rft.date=2025-10-15&rft.issn=1939-1404&rft.eissn=2151-1535&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FJSTARS.2025.3622338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3622338 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon |