Spatial Focusing and Progressive Decoupling Detector for High-Aspect-Ratio Rotated Objects

In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and vision transformer (ViT) architectures. However, detecting rotated objects with high aspect ratios remains challenging. Current detection fram...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in applied earth observations and remote sensing pp. 1 - 17
Main Authors Liu, Zhe, He, Guiqing, Liu, Letian, Dong, Liheng, Jiang, Xiaoyue
Format Journal Article
LanguageEnglish
Published IEEE 15.10.2025
Subjects
Online AccessGet full text
ISSN1939-1404
2151-1535
2151-1535
DOI10.1109/JSTARS.2025.3622338

Cover

Abstract In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and vision transformer (ViT) architectures. However, detecting rotated objects with high aspect ratios remains challenging. Current detection frameworks inadequately address the anisotropic feature distribution caused by such objects: feature information is highly concentrated in one spatial dimension while being sparse in another; and there are significant feature differences in the parameters representing the bounding box. To address this issue, we propose a Spatial Focusing and Progressive Decoupling Detector (SFPD-Det), which consists of three components: the Spatially Crosswise Convolution Module (SCCM), Hierarchical Decoupling Network (HDN), and Dynamic Progressive Activation Masks (DPMs). The SCCM captures diverse spatial features with long-range dependencies by combining square convolutions with multi-branch orthogonal large strip convolutions, enhancing the model adaptability to objects with varying aspect ratios. The HDN is composed of stacked ViT blocks and uses separate network branches to predict the position, angle, and size of bounding boxes in a cascaded manner. Furthermore, by combining the predicted parameters, we propose DPMs that embed the mask information of potential object boundary regions into the HDN, which progressively guide the self-attention to enhance cirtical features within the region of interest, thereby achieving precise bounding box regression. Extensive experiments on four benchmark remote sensing datasets (DOTA, DIOR-R, HRSC2016, and UCAS-AOD) demonstrate that our SFPD-Det achieves superior performance when compared with state-of-the-art detectors.
AbstractList In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and vision transformer (ViT) architectures. However, detecting rotated objects with high aspect ratios remains challenging. Current detection frameworks inadequately address the anisotropic feature distribution caused by such objects: feature information is highly concentrated in one spatial dimension while being sparse in another; and there are significant feature differences in the parameters representing the bounding box. To address this issue, we propose a Spatial Focusing and Progressive Decoupling Detector (SFPD-Det), which consists of three components: the Spatially Crosswise Convolution Module (SCCM), Hierarchical Decoupling Network (HDN), and Dynamic Progressive Activation Masks (DPMs). The SCCM captures diverse spatial features with long-range dependencies by combining square convolutions with multi-branch orthogonal large strip convolutions, enhancing the model adaptability to objects with varying aspect ratios. The HDN is composed of stacked ViT blocks and uses separate network branches to predict the position, angle, and size of bounding boxes in a cascaded manner. Furthermore, by combining the predicted parameters, we propose DPMs that embed the mask information of potential object boundary regions into the HDN, which progressively guide the self-attention to enhance cirtical features within the region of interest, thereby achieving precise bounding box regression. Extensive experiments on four benchmark remote sensing datasets (DOTA, DIOR-R, HRSC2016, and UCAS-AOD) demonstrate that our SFPD-Det achieves superior performance when compared with state-of-the-art detectors.
Author Liu, Zhe
He, Guiqing
Liu, Letian
Jiang, Xiaoyue
Dong, Liheng
Author_xml – sequence: 1
  givenname: Zhe
  surname: Liu
  fullname: Liu, Zhe
  email: liu_zhe@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 2
  givenname: Guiqing
  surname: He
  fullname: He, Guiqing
  email: guiqing_he@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 3
  givenname: Letian
  surname: Liu
  fullname: Liu, Letian
  email: liuletian@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 4
  givenname: Liheng
  surname: Dong
  fullname: Dong, Liheng
  email: dlh@mail.nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
– sequence: 5
  givenname: Xiaoyue
  surname: Jiang
  fullname: Jiang, Xiaoyue
  email: xjiang@nwpu.edu.cn
  organization: School of Electronics and Information, Northwestern Polytechnical University, Xi'an, China
BookMark eNplkF1rwjAUhsNwMHX7BdtF_kBdTj5scyk654bgUHezm5Kmiat0TUmqw3-_SoXBdnE48B6el8MzQL3KVQaheyAjACIfXzfbyXozooSKERtTylhyhfoUBEQgmOihPkgmI-CE36BBCHtCxjSWrI8-NrVqClXiudOHUFQ7rKocv3m38yaE4mjwzGh3qMvzaWYaoxvnsW1nUew-o0mo2yRatx0Or12jGpPjVbZvw3CLrq0qg7m77CF6nz9tp4touXp-mU6WkW5_TyJFLBjLNNGgc6BMWh4nEjIdc245s3ZM8pgSmSQZF7GEhFubEQ6S5FImUrAh4l3voarV6VuVZVr74kv5UwokPftJ96FRPqRnP-nFT4uxDtPeheCN_Ud1Vv9SDx1VGGN-CaBEMCbYDyIbdJ0
CODEN IJSTHZ
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1109/JSTARS.2025.3622338
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 2151-1535
EndPage 17
ExternalDocumentID 10.1109/jstars.2025.3622338
10_1109_JSTARS_2025_3622338
11205335
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACIWK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
DU5
EBS
ESBDL
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
CITATION
EJD
M43
ADTOC
UNPAY
ID FETCH-LOGICAL-c1108-a0f1ef3c0c1cd1239f47891bc744f43ff60d720988b4579184ffb04190d998953
IEDL.DBID UNPAY
ISSN 1939-1404
2151-1535
IngestDate Sun Oct 19 05:41:35 EDT 2025
Sat Oct 25 05:48:44 EDT 2025
Sat Oct 25 03:12:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1108-a0f1ef3c0c1cd1239f47891bc744f43ff60d720988b4579184ffb04190d998953
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/jstars.2025.3622338
PageCount 17
ParticipantIDs crossref_primary_10_1109_JSTARS_2025_3622338
unpaywall_primary_10_1109_jstars_2025_3622338
ieee_primary_11205335
PublicationCentury 2000
PublicationDate 20251015
PublicationDateYYYYMMDD 2025-10-15
PublicationDate_xml – month: 10
  year: 2025
  text: 20251015
  day: 15
PublicationDecade 2020
PublicationTitle IEEE journal of selected topics in applied earth observations and remote sensing
PublicationTitleAbbrev JSTARS
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0062793
Score 2.4023347
SecondaryResourceType online_first
Snippet In recent years, remote sensing object detection has witnessed significant advancements through deep explorations of convolutional neural networks (CNNs) and...
SourceID unpaywall
crossref
ieee
SourceType Open Access Repository
Index Database
Publisher
StartPage 1
SubjectTerms Computer architecture
Computer vision
Convolution
Detectors
Feature extraction
hierarchical decoupling network
Kernel
Object detection
Oriented object detection
Remote sensing
Robustness
Transformers
vision transformer
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9RAEJ8ACVEewA-Mh2D2wUf32LbbbvfxohyERDSnJMSXZj9JlPQIXDH41zuz7QlqSHzrw3ay2Zns_GZ2fjMAbwK9DmEowaUXkctM4T1oc6oiNAifnYqZJTbyh5Pq6FQen5VnA1k9cWFCCKn4LIzpM73l-7nrKFW2j9iAqKPlKqyquurJWstrt8pV6rCLgERz6hkztBjKhN5HG5_MPmMwmJdjvLDzgtgo99xQmquyAY-69tLc_jAXF_dczHQLTpab6ytLvo-7hR27n3_1bfzv3T-BzQFssklvHU9hJbTPYP0wDfO9fQ5faR4x2h-b4s-UM2Cm9ewTVWxRcexNYO8xOO2Is3uOn4uU4GeIchlVh_BJYmnyGemWzeaEWj37aCmxc70Np9ODL--O-DBrgTsiAnAjYhZi4YTLnEdvpqNUtc6sU1JGWcRYCa9yoevaylJpjAtjtEIinPAYsOmyeAFr7bwNL4HlKMnr0tjcVdIIbwtdi0IbapamShNH8HZ59M1l31KjSaGI0E2vqYY01QyaGsE2neXd0uEYR8B_6-sfOd8QWl9d_yFn5wE5r-AxLSN_lJW7sLa46sIeAo2FfZ0M7BcmL8y2
  priority: 102
  providerName: IEEE
Title Spatial Focusing and Progressive Decoupling Detector for High-Aspect-Ratio Rotated Objects
URI https://ieeexplore.ieee.org/document/11205335
https://doi.org/10.1109/jstars.2025.3622338
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2151-1535
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0062793
  issn: 2151-1535
  databaseCode: RIE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BEVo48NgFUR6VDxxx10nspj5WQEFIsKhQCfYS2U6MBChFfYDg1zOTZHkKabklkjWKxo7nG3u-bwC2M7odwlSCy1R4LoMY90EbUhWhQfjsYh9YYiMfn7QO-_LoQl1UOtvEhXl7fx8I_fsaMdKQZLVD1cS9NsSMahpmWgqBdw1m-ienncvy3lhzEoqhVnIYwzj-x6rSGPrCyrs4VDRWmYcfk_zOPD6Y29s3Maa7WJK3R4U0IZWW3DQnY9t0Tx-EG__z85dgocKarFMujmWYyvKfMHtQ9PJ9_AV_qR0xLj_WHTgqf79iJk_ZKRVsUW3sfcb2MDedEGX3Ch_Hxfk-Q5DLqDiEdwqSJu_R1LLegEBryv5YOtcZrUC_u3--e8irVgvcEQ-AG-GDzEdOuMClGMy0l3FbB9bFUnoZed8SaRwK3W5bqWKNaaH3VkhEEynma1pFq1DLB3m2BixES6lWxoauJY1IbaTbItKGtNJiZXwddv45PrkrFTWSIhMROsHNqNM7S8hdSeWuOqzQ5LwODUKiD6s68JfZ-mSndPs7O-vfHL8Bc_RKYSpQm1AbDyfZFuKPsW0UeXujoAo2qjX4DCtr0hY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dTxQxEJ8gxgAPfmI4Fe2Dj_bo7ra318eLepwKpzkhIb5s-kkiZI_ALQT_eme6e4oSE9_6sDtpOpPOb6bzmwF4Heh1CEMJLr2IXGYl3oM2pypCg_DZlTGzxEbenw4mh_LjkTrqyOqJCxNCSMVnoU_L9Jbv566hVNkOYgOijqo7cFdJKVVL11pevIO8TD12EZJoTl1juiZDmdA7aOWj2VcMB3PVxys7L4iPcsMRpckqG7DW1Gfm-sqcnt5wMuMHMF1ur60tOek3C9t3P_7q3Pjf-38I9zu4yUatfTyClVA_hnu7aZzv9RP4RhOJ0QLZGH-mrAEztWdfqGaLymMvA3uH4WlDrN1jXC5Sip8hzmVUH8JHiafJZ6RdNpsTbvXss6XUzsUmHI7fH7yd8G7aAndEBeBGxCzEwgmXOY_-TEdZDnVmXSlllEWMA-HLXOjh0EpVaowMY7RCIqDwGLJpVTyF1Xpehy1gOUryWhmbu4E0wttCD0WhDbVLK5WJPXizPPrqrG2qUaVgROiq1VRFmqo6TfVgk87y96fdMfaA_9LXLTnfEVyfX_wh59k_5LyCtcnB_l6192H66Tms0y_knTL1AlYX503YRtixsC-Tsf0EC2DQAw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED66lLHtodu6lGXtih72WGWyLcXRY2ibhkLTkDWQ9cVIslVogxNSZ6P79buz3TXZGGxvNojDnGTdd9J93wF8yuh2CFMJLlPhuQxi3AdtSFWEBuGzi31giY18MewMJvJ8qqa1zjZxYdbv7wOhP98iRlqSrHao2rjXhphRPYPtjkLg3YDtyXDU-1rdG2tOQjHUSg5jGMf_WNUaQ3-xshGHysYqr-DFKl-Yh-9mNluLMf3XFXn7vpQmpNKSu_aqsG334zfhxn_8_DewU2NN1qsWx1vYyvJdeH5W9vJ9eAfX1I4Ylx_rzx2Vv98wk6dsRAVbVBv7LWMnmJuuiLJ7g49Feb7PEOQyKg7hvZKkycc0tWw8J9CasktL5zr3TZj0T6-OB7xutcAd8QC4ET7IfOSEC1yKwUx7GXd1YF0spZeR9x2RxqHQ3a6VKtaYFnpvhUQ0kWK-plW0B418nmfvgYVoKdXK2NB1pBGpjXRXRNqQVlqsjG_B0aPjk0WlqJGUmYjQCW5GvfGXhNyV1O5qQZMm52loEBJ9WLWA_5qtP-xUbt-w8-E_x-_DS3qlMBWoA2gUy1X2EfFHYQ_rdfcTYy_QIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+Focusing+and+Progressive+Decoupling+Detector+for+High-Aspect-Ratio+Rotated+Objects&rft.jtitle=IEEE+journal+of+selected+topics+in+applied+earth+observations+and+remote+sensing&rft.au=Liu%2C+Zhe&rft.au=He%2C+Guiqing&rft.au=Liu%2C+Letian&rft.au=Dong%2C+Liheng&rft.date=2025-10-15&rft.issn=1939-1404&rft.eissn=2151-1535&rft.spage=1&rft.epage=17&rft_id=info:doi/10.1109%2FJSTARS.2025.3622338&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_JSTARS_2025_3622338
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-1404&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-1404&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-1404&client=summon