Efficient Direct Air Capture in Industrial Cooling Towers Mediated by Electrochemical CO 2 Release
Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the dilute atmospheric CO 2 , limited size of air contactors, and heat‐driven CO 2 release. Here, we propose combining DAC with widely used indus...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 64; no. 5; p. e202412697 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
27.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 |
DOI | 10.1002/anie.202412697 |
Cover
Abstract | Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the dilute atmospheric CO 2 , limited size of air contactors, and heat‐driven CO 2 release. Here, we propose combining DAC with widely used industrial cooling towers to extract CO 2 from the air and using electrolysis to release the captured CO 2 at room temperature. We first prepare a buffered absorbent solution consisting of sodium glycinate, glycine, and sodium chloride for effective CO 2 capture from the air, solving the incompatibility problem of the cooling towers with conventional absorbents. Next, we employ a three‐chamber electrolyzer for efficient release (≥95 %) of the captured CO 2 with high purity (≥98 %) by constant current electrolysis at room temperature, bypassing the conventional energy‐intensive heating process. The entire DAC system can operate stably for multiple cycles, and the mechanism for consecutive CO 2 capture and release is uncovered. This work reveals the great potential of running DAC in industrial cooling towers coupled with electrochemically‐driven CO 2 release, opening up new avenues for curbing the increasingly severe climate change. |
---|---|
AbstractList | Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the dilute atmospheric CO 2 , limited size of air contactors, and heat‐driven CO 2 release. Here, we propose combining DAC with widely used industrial cooling towers to extract CO 2 from the air and using electrolysis to release the captured CO 2 at room temperature. We first prepare a buffered absorbent solution consisting of sodium glycinate, glycine, and sodium chloride for effective CO 2 capture from the air, solving the incompatibility problem of the cooling towers with conventional absorbents. Next, we employ a three‐chamber electrolyzer for efficient release (≥95 %) of the captured CO 2 with high purity (≥98 %) by constant current electrolysis at room temperature, bypassing the conventional energy‐intensive heating process. The entire DAC system can operate stably for multiple cycles, and the mechanism for consecutive CO 2 capture and release is uncovered. This work reveals the great potential of running DAC in industrial cooling towers coupled with electrochemically‐driven CO 2 release, opening up new avenues for curbing the increasingly severe climate change. Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the dilute atmospheric CO , limited size of air contactors, and heat-driven CO release. Here, we propose combining DAC with widely used industrial cooling towers to extract CO from the air and using electrolysis to release the captured CO at room temperature. We first prepare a buffered absorbent solution consisting of sodium glycinate, glycine, and sodium chloride for effective CO capture from the air, solving the incompatibility problem of the cooling towers with conventional absorbents. Next, we employ a three-chamber electrolyzer for efficient release (≥95 %) of the captured CO with high purity (≥98 %) by constant current electrolysis at room temperature, bypassing the conventional energy-intensive heating process. The entire DAC system can operate stably for multiple cycles, and the mechanism for consecutive CO capture and release is uncovered. This work reveals the great potential of running DAC in industrial cooling towers coupled with electrochemically-driven CO release, opening up new avenues for curbing the increasingly severe climate change. |
Author | Zheng, Ao‐Chuan Daasbjerg, Kim Hu, Xin‐Ming Zou, Ye‐Bin Du, Lin Zhang, Qiang |
Author_xml | – sequence: 1 givenname: Ao‐Chuan surname: Zheng fullname: Zheng, Ao‐Chuan organization: Environment Research Institute Shandong University 266237 Qingdao China – sequence: 2 givenname: Ye‐Bin surname: Zou fullname: Zou, Ye‐Bin organization: Environment Research Institute Shandong University 266237 Qingdao China – sequence: 3 givenname: Lin surname: Du fullname: Du, Lin organization: Environment Research Institute Shandong University 266237 Qingdao China – sequence: 4 givenname: Qiang surname: Zhang fullname: Zhang, Qiang organization: Shandong Lanxiang Environmental Technology Co. Ltd. 262100 Weifang China – sequence: 5 givenname: Kim surname: Daasbjerg fullname: Daasbjerg, Kim organization: Novo Nordisk Foundation (NNF) CO2 Research Center Interdisciplinary Nanoscience Center Department of Chemistry Aarhus University Gustav Wieds Vej 10C 8000 Aarhus C Denmark – sequence: 6 givenname: Xin‐Ming orcidid: 0000-0003-2219-8786 surname: Hu fullname: Hu, Xin‐Ming organization: Environment Research Institute Shandong University 266237 Qingdao China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39714767$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kEtLw0AUhQep2IduXcr8gdR5ZW6yLLVqoVKQug6TyY2OpJMymSL996ZUuxBc3bv4vgPnjMnAtx4JueVsyhkT98Y7nAomFBc6hwsy4qngiQSQg_5XUiaQpXxIxl332fNZxvQVGcocuAINI1Iu6tpZhz7SBxfQRjpzgc7NLu4DUufp0lf7LgZnGjpv28b5d7ppvzB09AUrZyJWtDzQRdOrobUfuHX2iK6poK_YoOnwmlzWpunw5udOyNvjYjN_Tlbrp-V8tkosZwBJbVQNAJhryJRg0pYyBZFqnishgDOVMmF1JaoszVFk2kih-86i5mBKnlZyQu5Oubt9ucWq2AW3NeFQ_JbtgekJsKHtuoD1GeGsOK5ZHNcszmv2gvojWBdNdK2PwbjmP-0btb92pg |
CitedBy_id | crossref_primary_10_1002_smll_202410719 |
Cites_doi | 10.1021/ie061270e 10.1016/j.joule.2022.06.025 10.1038/s41558-021-01001-0 10.1038/s41561-019-0463-y 10.1021/acs.iecr.2c03533 10.1007/978-3-319-92237-9_15 10.1126/science.1176731 10.1039/D3EE03024E 10.1016/j.ijhydene.2021.04.050 10.1021/acs.est.0c01977 10.1021/ja01076a018 10.1021/acs.est.9b07388 10.1021/acs.est.0c05774 10.1016/j.cej.2021.133912 10.1021/acs.iecr.3c00357 10.1038/s41558-021-01058-x 10.1038/s41586-024-07449-2 10.1038/s41929-018-0051-3 10.1016/j.ijggc.2009.02.003 10.1038/s43017-023-00406-z 10.1039/D1EE03523A 10.1016/j.cej.2023.147934 10.1021/acs.est.0c00161 10.1002/ghg.1446 10.1021/acs.est.0c04946 10.1038/s41929-021-00699-7 10.1038/s41467-022-31146-1 10.1016/j.isci.2022.103990 10.1002/anie.202302887 10.1016/j.rser.2022.112902 10.1016/j.joule.2018.05.006 10.1021/acs.iecr.9b00954 10.1016/j.fuel.2017.05.066 10.1038/s41560-018-0150-z 10.1002/anie.202304957 10.1073/pnas.2123496119 10.1021/ef100595e 10.1073/pnas.1821673116 10.1021/acs.est.0c07261 10.1088/2516-1083/abf1ce 10.1021/es702607w 10.1002/anie.202107550 10.1016/j.apenergy.2017.05.135 |
ContentType | Journal Article |
Copyright | 2024 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2024 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM |
DOI | 10.1002/anie.202412697 |
DatabaseName | CrossRef PubMed |
DatabaseTitle | CrossRef PubMed |
DatabaseTitleList | CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
ExternalDocumentID | 39714767 10_1002_anie_202412697 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Taishan Scholars program from Shandong Province grantid: tsqn202103021 – fundername: National Natural Science Foundation of China grantid: 22376120, 22109089 – fundername: Shandong Provincial Natural Science Foundation grantid: ZR2021QB100 – fundername: Shandong Lanxiang Environmental Technology Co. Ltd. – fundername: Novo Nordisk Foundation CO2 Research Center (CORC) grantid: NNF21SA007270 – fundername: Shandong Provincial Science Foundation for Excellent Young Scholars Overseas grantid: 2022HWYQ-002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE NPM RWI VQA WRC YIN |
ID | FETCH-LOGICAL-c1077-fa4f777e96784203cb357256194227104502c6d2d859e286a3262692f17ab15d3 |
ISSN | 1433-7851 |
IngestDate | Wed Feb 19 02:02:17 EST 2025 Thu Sep 18 00:05:43 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Direct air capture Scalability Industrial cooling tower Electrochemical CO2 release Buffered absorbent solution |
Language | English |
License | 2024 Wiley-VCH GmbH. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1077-fa4f777e96784203cb357256194227104502c6d2d859e286a3262692f17ab15d3 |
ORCID | 0000-0003-2219-8786 |
PMID | 39714767 |
ParticipantIDs | pubmed_primary_39714767 crossref_primary_10_1002_anie_202412697 crossref_citationtrail_10_1002_anie_202412697 |
PublicationCentury | 2000 |
PublicationDate | 2025-01-27 2025-Jan-27 |
PublicationDateYYYYMMDD | 2025-01-27 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2025 |
References | Dou X. (e_1_2_8_12_1) 2022; 3 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 Holmes G. (e_1_2_8_17_1) 2012; 370 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 Zhang X. (e_1_2_8_31_1) 2024 e_1_2_8_33_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_45_1 – ident: e_1_2_8_36_1 doi: 10.1021/ie061270e – ident: e_1_2_8_19_1 doi: 10.1016/j.joule.2022.06.025 – ident: e_1_2_8_2_1 doi: 10.1038/s41558-021-01001-0 – ident: e_1_2_8_14_1 – year: 2024 ident: e_1_2_8_31_1 publication-title: Nat. Energy – ident: e_1_2_8_1_1 doi: 10.1038/s41561-019-0463-y – ident: e_1_2_8_34_1 doi: 10.1021/acs.iecr.2c03533 – ident: e_1_2_8_42_1 doi: 10.1007/978-3-319-92237-9_15 – ident: e_1_2_8_44_1 – ident: e_1_2_8_3_1 doi: 10.1126/science.1176731 – ident: e_1_2_8_30_1 doi: 10.1039/D3EE03024E – ident: e_1_2_8_40_1 doi: 10.1016/j.ijhydene.2021.04.050 – ident: e_1_2_8_29_1 doi: 10.1021/acs.est.0c01977 – ident: e_1_2_8_35_1 doi: 10.1021/ja01076a018 – ident: e_1_2_8_4_1 doi: 10.1021/acs.est.9b07388 – volume: 370 start-page: 4380 year: 2012 ident: e_1_2_8_17_1 publication-title: Philos. Trans. R. Soc. London – ident: e_1_2_8_7_1 doi: 10.1021/acs.est.0c05774 – volume: 3 year: 2022 ident: e_1_2_8_12_1 publication-title: Innovation – ident: e_1_2_8_39_1 doi: 10.1016/j.cej.2021.133912 – ident: e_1_2_8_48_1 – ident: e_1_2_8_22_1 doi: 10.1021/acs.iecr.3c00357 – ident: e_1_2_8_8_1 doi: 10.1038/s41558-021-01058-x – ident: e_1_2_8_15_1 doi: 10.1038/s41586-024-07449-2 – ident: e_1_2_8_49_1 doi: 10.1038/s41929-018-0051-3 – ident: e_1_2_8_21_1 doi: 10.1016/j.ijggc.2009.02.003 – ident: e_1_2_8_46_1 doi: 10.1038/s43017-023-00406-z – ident: e_1_2_8_10_1 doi: 10.1039/D1EE03523A – ident: e_1_2_8_28_1 doi: 10.1016/j.cej.2023.147934 – ident: e_1_2_8_13_1 doi: 10.1021/acs.est.0c00161 – ident: e_1_2_8_23_1 doi: 10.1002/ghg.1446 – ident: e_1_2_8_38_1 doi: 10.1021/acs.est.0c04946 – ident: e_1_2_8_51_1 doi: 10.1038/s41929-021-00699-7 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-022-31146-1 – ident: e_1_2_8_18_1 doi: 10.1016/j.isci.2022.103990 – ident: e_1_2_8_43_1 – ident: e_1_2_8_24_1 doi: 10.1002/anie.202302887 – ident: e_1_2_8_5_1 doi: 10.1016/j.rser.2022.112902 – ident: e_1_2_8_16_1 doi: 10.1016/j.joule.2018.05.006 – ident: e_1_2_8_26_1 doi: 10.1021/acs.iecr.9b00954 – ident: e_1_2_8_37_1 doi: 10.1016/j.fuel.2017.05.066 – ident: e_1_2_8_27_1 doi: 10.1038/s41560-018-0150-z – ident: e_1_2_8_11_1 doi: 10.1002/anie.202304957 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.2123496119 – ident: e_1_2_8_25_1 doi: 10.1021/ef100595e – ident: e_1_2_8_41_1 doi: 10.1073/pnas.1821673116 – ident: e_1_2_8_32_1 doi: 10.1021/acs.est.0c07261 – ident: e_1_2_8_47_1 doi: 10.1088/2516-1083/abf1ce – ident: e_1_2_8_20_1 doi: 10.1021/es702607w – ident: e_1_2_8_50_1 doi: 10.1002/anie.202107550 – ident: e_1_2_8_6_1 doi: 10.1016/j.apenergy.2017.05.135 |
SSID | ssj0028806 |
Score | 2.4747665 |
Snippet | Direct air capture (DAC) is a promising technology for mitigating global climate change but suffers from low efficiency, small scale, and high cost due to the... |
SourceID | pubmed crossref |
SourceType | Index Database Enrichment Source |
StartPage | e202412697 |
Title | Efficient Direct Air Capture in Industrial Cooling Towers Mediated by Electrochemical CO 2 Release |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39714767 |
Volume | 64 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB1tfxq5dd0MPgz0EZbaiS_yYeRllsJWNFEpfgiTLrWGLQ0kY7a_fkWTJSS-w7cUEWXZA5-P40zk630HoXSYtkzUbEVlRTZhT1lYyk6SqC8E5r4zgrt756zdxcMS-HPPjPl3gq0tWemgub6wr-R-rwhjY1VXJ_oNl00thAH6DfeEKFobrX9l46vUfXDY_eK7BpDkflGrpswKNC_elvhxl2_rC85nviubzM2oV2Oc0dMIxUTqgPBxQd0guJW6S1vKp_a3c8f-BlxmwV8KJ06rZzOqfnNngRyYtKc_WPQpP2rV3_JZ8bNLgp3UXIbgWyf4OAD7dDE5Qdw6QhFr_oe0cKs3BiYV2JdHjBt3yDll8w31aeAfLqQhHdq9596AW60rvhzdOBOssf3lbA8vKmRSy_8qls4fx1l10j0rgW45I_0iSYxT8mYjinhn9sP1nu-h-fHyLx2ztSDwzmT1CD7stBZ4EfDxGd-ziCXpQxk5-T5FOOMEBJxhwgjuc4GaBe5zgDic44ARHnGB9ga_gBJeHmOIOJ8_Q0efprDwgXW8NYmDDL0mtWC2ltAWQFUazkdEjLoH-5gWjFFgn4xk1oqLVmBeWjoUCmg8rQOtcKp3zavQc7SzahX2BsMgNrY1LsSrFCqmVsdW40Lkyuc3EuNhHJK7U3HTC867_yc95kMymc7fI87TI--h9mr8Mkiu3ztwLC5_mReu8vPXOK7TbA_U12lmdr-0b4JUr_dYD4Q8KRXR3 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Direct+Air+Capture+in+Industrial+Cooling+Towers+Mediated+by+Electrochemical+CO+2+Release&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zheng%2C+Ao-Chuan&rft.au=Zou%2C+Ye-Bin&rft.au=Du%2C+Lin&rft.au=Zhang%2C+Qiang&rft.date=2025-01-27&rft.eissn=1521-3773&rft.volume=64&rft.issue=5&rft.spage=e202412697&rft_id=info:doi/10.1002%2Fanie.202412697&rft_id=info%3Apmid%2F39714767&rft.externalDocID=39714767 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |