Efficient Reliability Analysis via Active Learning: An Integrated Approach Using the RBF+E Algorithm and a Pseudo‐Design Point‐Based Samples Reduction Strategy

The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant computational costs that pose challenges for conventional surrogate model‐based methods. To address this issue, this study proposes a novel active...

Full description

Saved in:
Bibliographic Details
Published inQuality and reliability engineering international
Main Authors Wei, Yan‐Xu, Zhang, Shi‐Long, Wang, Bo‐Wei, Huang, Ying, Zhang, Yan‐Jie
Format Journal Article
LanguageEnglish
Published 28.07.2025
Online AccessGet full text
ISSN0748-8017
1099-1638
DOI10.1002/qre.70029

Cover

Abstract The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant computational costs that pose challenges for conventional surrogate model‐based methods. To address this issue, this study proposes a novel active learning surrogate model method for reliability analysis. The approach integrates the radial basis function (RBF) with a newly designed learning function E , forming the RBF+E algorithm to reduce the number of performance function evaluations. RBF+E is constructed to ensure effective sampling by concentrating design samples within high‐probability‐density regions, guided by the Euclidean norm of design samples. Furthermore, during modeling procedure, a pseudo‐design point‐based samples reduction (PDPSR) strategy is introduced to further reduce the computational cost by reducing the size of the candidate sample set required for evaluating new design samples and estimating failure probability. Two numerical examples and two complex practical engineering applications are utilized to demonstrate the advantages of the proposed method. Results confirm that the RBF+E algorithm, combined with the PDPSR strategy, significantly reduces computational cost while maintaining precision. The efforts made in this study provide an effective strategy for reliability analysis of large and complex structures.
AbstractList The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant computational costs that pose challenges for conventional surrogate model‐based methods. To address this issue, this study proposes a novel active learning surrogate model method for reliability analysis. The approach integrates the radial basis function (RBF) with a newly designed learning function E , forming the RBF+E algorithm to reduce the number of performance function evaluations. RBF+E is constructed to ensure effective sampling by concentrating design samples within high‐probability‐density regions, guided by the Euclidean norm of design samples. Furthermore, during modeling procedure, a pseudo‐design point‐based samples reduction (PDPSR) strategy is introduced to further reduce the computational cost by reducing the size of the candidate sample set required for evaluating new design samples and estimating failure probability. Two numerical examples and two complex practical engineering applications are utilized to demonstrate the advantages of the proposed method. Results confirm that the RBF+E algorithm, combined with the PDPSR strategy, significantly reduces computational cost while maintaining precision. The efforts made in this study provide an effective strategy for reliability analysis of large and complex structures.
Author Wei, Yan‐Xu
Huang, Ying
Zhang, Yan‐Jie
Zhang, Shi‐Long
Wang, Bo‐Wei
Author_xml – sequence: 1
  givenname: Yan‐Xu
  orcidid: 0000-0001-9293-3649
  surname: Wei
  fullname: Wei, Yan‐Xu
  organization: College of Mechanical Engineering Taiyuan University of Technology Taiyuan China, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment Ministry of Education Taiyuan University of Technology Taiyuan China, National Key Laboratory of Metal Forming Technology and Heavy Equipment Taiyuan University of Technology Taiyuan China
– sequence: 2
  givenname: Shi‐Long
  surname: Zhang
  fullname: Zhang, Shi‐Long
  organization: College of Mechanical Engineering Taiyuan University of Technology Taiyuan China, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment Ministry of Education Taiyuan University of Technology Taiyuan China, National Key Laboratory of Metal Forming Technology and Heavy Equipment Taiyuan University of Technology Taiyuan China
– sequence: 3
  givenname: Bo‐Wei
  surname: Wang
  fullname: Wang, Bo‐Wei
  organization: School of Computer Science and Engineering Beihang University Beijing China
– sequence: 4
  givenname: Ying
  surname: Huang
  fullname: Huang, Ying
  organization: School of Reliability and Systems Engineering Beihang University Beijing China
– sequence: 5
  givenname: Yan‐Jie
  surname: Zhang
  fullname: Zhang, Yan‐Jie
  organization: College of Mechanical Engineering Taiyuan University of Technology Taiyuan China, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment Ministry of Education Taiyuan University of Technology Taiyuan China, National Key Laboratory of Metal Forming Technology and Heavy Equipment Taiyuan University of Technology Taiyuan China
BookMark eNotkEFOwzAQRS1UJNrCghvMFqEUO2nihF1aWqhUiaql68ixndQodYptKmXHEbgDN-MkuMBqZvRH_8-8AerpVkuErgkeEYzDuzcjR9Q32RnqE5xlAUmitIf6mI7TIMWEXqCBta8Y--0s7aOvWVUprqR2sJaNYqVqlOsg16zprLJwVAxy7tRRwlIyo5Wu770KC-1kbZiTAvLDwbSM72BrvQpuJ2E9md_OIG_q1ii32wPTAhisrHwX7ffH54O0qtawapV2fpww6202bH9opPVniHcf2GrYuFNA3V2i84o1Vl791yHazmcv06dg-fy4mObLgBOcuCANY1r637Mq5piFY1aWAqdlyquEYS48iIwnPKPROKQxjaOyJIngjMSCU0GrKBqimz9fblprjayKg1F7ZrqC4OJEt_B0i1-60Q9G93NF
Cites_doi 10.1016/j.strusafe.2011.06.001
10.1016/j.strusafe.2011.01.002
10.1007/s00158-015-1347-4
10.1016/j.ress.2018.10.004
10.3390/ma13143239
10.1061/(ASCE)0733-9399(1991)117:12(2904)
10.1016/0167-4730(87)90002-6
10.1016/j.ress.2018.11.002
10.1016/j.ymssp.2017.09.039
10.1016/j.apm.2014.12.012
10.1002/qre.3747
10.1016/j.compgeo.2018.02.011
10.1016/j.ress.2016.09.003
10.1016/j.ress.2017.08.016
10.1007/s00158-014-1189-5
10.1016/j.compstruc.2008.02.008
10.1016/j.ress.2017.03.035
10.1016/j.ress.2014.06.023
10.1016/j.ijfatigue.2018.10.005
10.1016/j.strusafe.2018.01.002
10.1016/j.ress.2016.05.002
10.1016/j.apm.2019.09.045
10.1002/qre.3493
10.1007/s00158-023-03628-3
10.1016/j.strusafe.2017.03.006
10.1016/0167-4730(90)90012-E
10.1016/j.ress.2017.04.001
10.1016/j.strusafe.2011.02.001
10.1016/j.strusafe.2018.02.005
10.1016/0045-7949(89)90489-6
10.1016/j.ress.2014.12.011
10.1016/j.ress.2019.01.014
10.1016/j.apm.2014.10.015
10.1016/j.ress.2018.04.027
10.1016/j.camwa.2015.07.004
10.1016/j.finel.2012.12.004
10.1016/j.apm.2018.06.018
10.2514/1.34321
10.1016/j.ress.2019.03.005
10.1016/j.ress.2017.09.008
10.1016/j.ast.2019.06.026
10.1002/qre.3403
10.1002/qre.3384
10.1016/j.ress.2016.01.023
10.1002/nme.2750
10.1002/qre.3534
10.1155/2018/8794160
10.1016/j.ress.2020.106908
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1002/qre.70029
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-1638
ExternalDocumentID 10_1002_qre_70029
GroupedDBID .3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CITATION
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
ID FETCH-LOGICAL-c106t-8257b7009f5c0a24abbd08b8cf6a0cd1639c6c9734275753bb16dca15dc7d7f33
ISSN 0748-8017
IngestDate Wed Oct 01 05:44:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c106t-8257b7009f5c0a24abbd08b8cf6a0cd1639c6c9734275753bb16dca15dc7d7f33
ORCID 0000-0001-9293-3649
ParticipantIDs crossref_primary_10_1002_qre_70029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-28
PublicationDateYYYYMMDD 2025-07-28
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-28
  day: 28
PublicationDecade 2020
PublicationTitle Quality and reliability engineering international
PublicationYear 2025
References Tao T. (e_1_2_9_27_1) 2018; 177
Xiao N.‐C. (e_1_2_9_43_1) 2018; 169
Li X. (e_1_2_9_31_1) 2018; 73
Tian Z. R. (e_1_2_9_4_1) 2024; 40
Song L. K. (e_1_2_9_29_1) 2018; 104
Huang Y. (e_1_2_9_5_1) 2024; 40
Zemed N. (e_1_2_9_8_1) 2025; 41
Echard B. (e_1_2_9_23_1) 2011; 33
Wang Q. (e_1_2_9_32_1) 2018; 98
Zhang Z. (e_1_2_9_14_1) 2015; 137
Wei Y. X. (e_1_2_9_11_1) 2018; 2018
Song L. K. (e_1_2_9_30_1) 2019; 92
Hadidi A. (e_1_2_9_12_1) 2017; 68
Kiureghian A. (e_1_2_9_15_1) 1991; 117
Jiang C. (e_1_2_9_7_1) 2019; 183
Huang Y. (e_1_2_9_51_1) 2023; 66
Yang X. (e_1_2_9_38_1) 2015; 39
Bourinet J. M. (e_1_2_9_26_1) 2016; 150
Bichon B. J. (e_1_2_9_33_1) 2008; 46
Meng Z. (e_1_2_9_17_1) 2018; 62
Sun Z. (e_1_2_9_41_1) 2017; 157
Chen Z. Q. (e_1_2_9_54_1) 2022; 218
Zhao W. T. (e_1_2_9_21_1) 2013; 67
Sun Y. H. (e_1_2_9_50_1) 2023; 39
Basudhar A. (e_1_2_9_24_1) 2008; 86
Yang X. (e_1_2_9_34_1) 2014; 51
Alban A. (e_1_2_9_19_1) 2017; 165
Bucher C. G. (e_1_2_9_20_1) 1990; 7
Zhao H. (e_1_2_9_39_1) 2015; 39
Allaix D. L. (e_1_2_9_22_1) 2011; 33
Li G. S. (e_1_2_9_55_1) 2024; 241
Hohenbichler M. (e_1_2_9_13_1) 1987; 4
Meng D. B. (e_1_2_9_2_1) 2020; 173
Song L. K. (e_1_2_9_28_1) 2019; 119
Teixeira R. (e_1_2_9_53_1) 2020; 199
Leli`evre N. (e_1_2_9_49_1) 2018; 73
Hu Z. (e_1_2_9_36_1) 2015; 53
Cadini F. (e_1_2_9_35_1) 2014; 131
Gaspar B. (e_1_2_9_42_1) 2017; 165
Yang X. (e_1_2_9_44_1) 2018; 169
Wen Z. (e_1_2_9_40_1) 2016; 153
Zhu S. P. (e_1_2_9_9_1) 2020; 78
Lee I. (e_1_2_9_16_1) 2012; 134
Luo C. Q. (e_1_2_9_48_1) 2024; 423
Huang Y. (e_1_2_9_6_1) 2020; 13
Lv Z. (e_1_2_9_37_1) 2015; 70
Viana F. A. (e_1_2_9_57_1) 2009; 82
Wang K. (e_1_2_9_10_1) 2024; 40
Bourinet J. M. (e_1_2_9_25_1) 2011; 33
Li Y. (e_1_2_9_47_1) 2023; 15
Fei C. W. (e_1_2_9_52_1) 2020; 107
Wang Z. (e_1_2_9_45_1) 2019; 182
Zhang X. (e_1_2_9_46_1) 2019; 185
Zhao J. (e_1_2_9_56_1) 2019; 189
Tamimi S. (e_1_2_9_18_1) 1989; 33
Zhu S. P. (e_1_2_9_3_1) 2020; 366
References_xml – volume: 33
  start-page: 343
  issue: 6
  year: 2011
  ident: e_1_2_9_25_1
  article-title: Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2011.06.001
– volume: 33
  start-page: 145
  issue: 2
  year: 2011
  ident: e_1_2_9_23_1
  article-title: AK‐MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2011.01.002
– volume: 53
  start-page: 501
  issue: 3
  year: 2015
  ident: e_1_2_9_36_1
  article-title: Global Sensitivity Analysis‐Enhanced Surrogate (GSAS) Modeling for Reliability Analysis
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-015-1347-4
– volume: 182
  start-page: 33
  year: 2019
  ident: e_1_2_9_45_1
  article-title: REAK: Reliability Analysis Through Error Rate‐Based Adaptive Kriging
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2018.10.004
– volume: 13
  start-page: 1
  year: 2020
  ident: e_1_2_9_6_1
  article-title: Distributed Collaborative Modeling Approach for Probabilistic Fatigue Life Evaluation of Turbine Rotor
  publication-title: Materials
  doi: 10.3390/ma13143239
– volume: 117
  start-page: 2904
  issue: 12
  year: 1991
  ident: e_1_2_9_15_1
  article-title: Efficient Algorithm for Second‐Order Reliability Analysis
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)0733-9399(1991)117:12(2904)
– volume: 4
  start-page: 267
  issue: 4
  year: 1987
  ident: e_1_2_9_13_1
  article-title: New Light on First‐ and Second Order Reliability Methods
  publication-title: Structural Safety
  doi: 10.1016/0167-4730(87)90002-6
– volume: 183
  start-page: 47
  year: 2019
  ident: e_1_2_9_7_1
  article-title: A General Failure‐Pursuing Sampling Framework for Surrogate‐Based Reliability Analysis
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2018.11.002
– volume: 104
  start-page: 72
  year: 2018
  ident: e_1_2_9_29_1
  article-title: Distributed Collaborated Probabilistic Design of Multi‐Failure Structure With Fluid‐Structure Interaction Using Fuzzy Neural Network of Regression
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2017.09.039
– volume: 39
  start-page: 3954
  issue: 14
  year: 2015
  ident: e_1_2_9_38_1
  article-title: Probability and Convex Set Hybrid Reliability Analysis Based on Active Learning Kriging Model
  publication-title: Applied Mathematical Modeling
  doi: 10.1016/j.apm.2014.12.012
– volume: 41
  start-page: 1
  year: 2025
  ident: e_1_2_9_8_1
  article-title: Enhanced Active Learning for Structural Reliability Analysis: An Ensemble SVR Metamodel‐Monte Carlo Approach
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.3747
– volume: 98
  start-page: 144
  year: 2018
  ident: e_1_2_9_32_1
  article-title: Reliability Analysis of Tunnels Using an Adaptive RBF and a First‐Order Reliability Method
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2018.02.011
– volume: 157
  start-page: 152
  year: 2017
  ident: e_1_2_9_41_1
  article-title: LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2016.09.003
– volume: 169
  start-page: 235
  year: 2018
  ident: e_1_2_9_44_1
  article-title: System Reliability Analysis Through Active Learning Kriging Model With Truncated Candidate Region
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.08.016
– volume: 51
  start-page: 1003
  issue: 5
  year: 2014
  ident: e_1_2_9_34_1
  article-title: An Active Learning Kriging Model for Hybrid Reliability Analysis With Both Random and Interval Variables
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-014-1189-5
– volume: 86
  start-page: 1904
  issue: 19
  year: 2008
  ident: e_1_2_9_24_1
  article-title: Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2008.02.008
– volume: 15
  start-page: 1
  issue: 6
  year: 2023
  ident: e_1_2_9_47_1
  article-title: Optimization of Transmission Towers Under Multiple Load Cases and Constraint Conditions With the KSM‐GA Method
  publication-title: Advances in Mechanical Engineering
– volume: 423
  start-page: 1
  year: 2024
  ident: e_1_2_9_48_1
  article-title: Active Kriging‐Based Conjugate First‐Order Reliability Method for Highly Efficient Structural Reliability Analysis Using Resample Strategy
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 165
  start-page: 277
  year: 2017
  ident: e_1_2_9_42_1
  article-title: Adaptive Surrogate Model With Active Refinement Combining Kriging and a Trust Region Method
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.03.035
– volume: 131
  start-page: 109
  year: 2014
  ident: e_1_2_9_35_1
  article-title: An Improved Adaptive Kriging‐Based Importance Technique for Sampling Multiple Failure Regions of Low Probability
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2014.06.023
– volume: 119
  start-page: 204
  year: 2019
  ident: e_1_2_9_28_1
  article-title: Probabilistic LCF Life Assessment for Turbine Discs With DC Strategy‐Based Wavelet Neural Network Regression
  publication-title: International Journal of Fatigue
  doi: 10.1016/j.ijfatigue.2018.10.005
– volume: 73
  start-page: 1
  year: 2018
  ident: e_1_2_9_49_1
  article-title: AK‐MCSi: A Kriging‐Based Method to Deal With Small Failure Probabilities and Time‐Consuming Models
  publication-title: Structure Safety
  doi: 10.1016/j.strusafe.2018.01.002
– volume: 153
  start-page: 170
  year: 2016
  ident: e_1_2_9_40_1
  article-title: A Sequential Kriging Reliability Analysis Method With Characteristics of Adaptive Sampling Regions and Parallelizability
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2016.05.002
– volume: 78
  start-page: 383
  year: 2020
  ident: e_1_2_9_9_1
  article-title: Probabilistic Modeling and Simulation of Multiple Surface Crack Propagation and Coalescence
  publication-title: Applied Mathematical Modeling
  doi: 10.1016/j.apm.2019.09.045
– volume: 40
  start-page: 1502
  year: 2024
  ident: e_1_2_9_5_1
  article-title: AOK‐ES: Adaptive Optimized Kriging Combining Efficient Sampling for Structural Reliability Analysis
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.3493
– volume: 66
  start-page: 1
  year: 2023
  ident: e_1_2_9_51_1
  article-title: A Unified Reliability Evaluation Framework for Aircraft Turbine Rotor Considering Multi‑Site Failure Correlation
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-023-03628-3
– volume: 68
  start-page: 15
  year: 2017
  ident: e_1_2_9_12_1
  article-title: Efficient Response Surface Method for High‐Dimensional Structural Reliability Analysis
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2017.03.006
– volume: 7
  start-page: 57
  issue: 1
  year: 1990
  ident: e_1_2_9_20_1
  article-title: A Fast and Efficient Response Surface Approach for Structural Reliability Problems
  publication-title: Structural Safety
  doi: 10.1016/0167-4730(90)90012-E
– volume: 165
  start-page: 376
  year: 2017
  ident: e_1_2_9_19_1
  article-title: Efficient Monte Carlo Methods for Estimating Failure Probabilities
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.04.001
– volume: 33
  start-page: 165
  issue: 2
  year: 2011
  ident: e_1_2_9_22_1
  article-title: An Improvement of the Response Surface Method
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2011.02.001
– volume: 173
  start-page: 3
  issue: 1
  year: 2020
  ident: e_1_2_9_2_1
  article-title: Collaborative Maritime Design Using Sequential Optimization and Reliability Assessment
  publication-title: Proceedings of the Institution of Civil Engineers—Maritime Engineering
– volume: 73
  start-page: 42
  year: 2018
  ident: e_1_2_9_31_1
  article-title: A Sequential Surrogate Method for Reliability Analysis Based on Radial Basis Function
  publication-title: Structural Safety
  doi: 10.1016/j.strusafe.2018.02.005
– volume: 33
  start-page: 1495
  issue: 6
  year: 1989
  ident: e_1_2_9_18_1
  article-title: Monte Carlo Simulation of Rock Slope Reliability
  publication-title: Computers & Structures
  doi: 10.1016/0045-7949(89)90489-6
– volume: 137
  start-page: 40
  year: 2015
  ident: e_1_2_9_14_1
  article-title: First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2014.12.011
– volume: 185
  start-page: 440
  year: 2019
  ident: e_1_2_9_46_1
  article-title: REIF: A Novel Active‐Learning Function Toward Adaptive Kriging Surrogate Models for Structural Reliability Analysis
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2019.01.014
– volume: 39
  start-page: 1853
  issue: 7
  year: 2015
  ident: e_1_2_9_39_1
  article-title: An Efficient Reliability Method Combining Adaptive Importance Sampling and Kriging Metamodel
  publication-title: Applied Mathematical Modeling
  doi: 10.1016/j.apm.2014.10.015
– volume: 177
  start-page: 35
  year: 2018
  ident: e_1_2_9_27_1
  article-title: A Novel Support Vector Regression Method for Online Reliability Prediction Under Multi‐State Varying Operating Conditions
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2018.04.027
– volume: 70
  start-page: 1182
  issue: 5
  year: 2015
  ident: e_1_2_9_37_1
  article-title: A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering
  publication-title: Computers & Mathematics with Applications
  doi: 10.1016/j.camwa.2015.07.004
– volume: 107
  start-page: 1
  year: 2020
  ident: e_1_2_9_52_1
  article-title: Enhanced Network Learning Model With Intelligent Operator for the Motion Reliability Evaluation of Flexible Mechanism
  publication-title: Aerospace Science and Technology
– volume: 67
  start-page: 34
  year: 2013
  ident: e_1_2_9_21_1
  article-title: An Efficient Response Surface Method and Its Application to Structural Reliability and Reliability‐Based Optimization
  publication-title: Finite Elements in Analysis and Design
  doi: 10.1016/j.finel.2012.12.004
– volume: 241
  start-page: 1
  year: 2024
  ident: e_1_2_9_55_1
  article-title: An Efficient Sequential Anisotropic RBF Reliability Analysis Method With Fast Cross‐Validation and Parallelizability
  publication-title: Reliability Engineering & System Safety
– volume: 62
  start-page: 562
  year: 2018
  ident: e_1_2_9_17_1
  article-title: Enhanced Sequential Approximate Programming Using Second Order Reliability Method for Accurate and Efficient Structural Reliability‐Based Design Optimization
  publication-title: Applied Mathematical Modeling
  doi: 10.1016/j.apm.2018.06.018
– volume: 46
  start-page: 2459
  issue: 10
  year: 2008
  ident: e_1_2_9_33_1
  article-title: Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions
  publication-title: AIAA Journal
  doi: 10.2514/1.34321
– volume: 218
  start-page: 1
  year: 2022
  ident: e_1_2_9_54_1
  article-title: A New Parallel Adaptive Structural Reliability Analysis Method Based on Importance Sampling and K‐Medoids Clustering
  publication-title: Reliability Engineering & System Safety
– volume: 189
  start-page: 42
  year: 2019
  ident: e_1_2_9_56_1
  article-title: RBF‐GA: An Adaptive Radial Basis Function Metamodeling With Genetic Algorithm for Structural Reliability Analysis
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2019.03.005
– volume: 366
  start-page: 1
  year: 2020
  ident: e_1_2_9_3_1
  article-title: Novel Probabilistic Model for Searching Most Probable Point in Structural Reliability Analysis
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 169
  start-page: 330
  year: 2018
  ident: e_1_2_9_43_1
  article-title: A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2017.09.008
– volume: 92
  start-page: 464
  year: 2019
  ident: e_1_2_9_30_1
  article-title: Multi‐Failure Probabilistic Design for Turbine Bladed Disks Using Neural Network Regression With Distributed Collaborated Strategy
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2019.06.026
– volume: 40
  start-page: 524
  year: 2024
  ident: e_1_2_9_4_1
  article-title: An Active Learning Kriging‐Based Multipoint Sampling Strategy for Structural Reliability Analysis
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.3403
– volume: 39
  start-page: 2765
  year: 2023
  ident: e_1_2_9_50_1
  article-title: An Active Learning Reliability Algorithm Using DMSSA‐optimized Kriging Model and Parallel Infilling Strategy
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.3384
– volume: 150
  start-page: 210
  year: 2016
  ident: e_1_2_9_26_1
  article-title: Rare‐Event Probability Estimation With Adaptive Support Vector Regression Surrogates
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2016.01.023
– volume: 82
  start-page: 135
  issue: 2
  year: 2009
  ident: e_1_2_9_57_1
  article-title: An Algorithm for Fast Optimal Latin Hypercube Design of Experiments
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.2750
– volume: 40
  start-page: 2292
  year: 2024
  ident: e_1_2_9_10_1
  article-title: Dynamic Modeling and Reliability Analysis of Satellite Antenna Deployment Mechanism Based on Parameter Uncertainty
  publication-title: Quality and Reliability Engineering International
  doi: 10.1002/qre.3534
– volume: 2018
  start-page: 1
  year: 2018
  ident: e_1_2_9_11_1
  article-title: Reliability Analysis on Structures Based on a Modified Iterative Response Surface Method
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2018/8794160
– volume: 134
  start-page: 1
  issue: 10
  year: 2012
  ident: e_1_2_9_16_1
  article-title: A Novel Second‐Order Reliability Method (SORM) Using Noncentral or Generalized Chi‐Squared Distributions
  publication-title: Journal of Mechanical Design
– volume: 199
  start-page: 1
  year: 2020
  ident: e_1_2_9_53_1
  article-title: Reliability Assessment With Density Scanned Adaptive Kriging
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2020.106908
SSID ssj0010098
Score 2.3904948
Snippet The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant...
SourceID crossref
SourceType Index Database
Title Efficient Reliability Analysis via Active Learning: An Integrated Approach Using the RBF+E Algorithm and a Pseudo‐Design Point‐Based Samples Reduction Strategy
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0748-8017
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1638
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010098
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMetMm7gYuJTbHzoCMFVlJE6H065a1mnCQFC0yZ1V5W_slVCCVQpElzxCLwDb8Nj8CQc27ET2C4GN1FrN06T85PPsX38DyHPNE1xkEHTGK1bxRmfsFiwqoqpZAmTrNTUTui_fVccnmSvF_liNPo5yFratGJPfr10X8n_WBXL0K5ml-w_WDY0igX4Ge2LR7QwHq9k47nVfzCr-Saz2Cluf-l1Rj6veDS1_ZmXUT0bzANakQhlwlC3qcolD5g49Gh28JzO5tH0w1mzXrXn7i0aHDtLvVFNSI_Yt8kf0ftmVbehcIZeEUNYbkSHzRYU5dRpo04F949FZKff4QSg1oMb0L1GopWzCDOW_TKSzUE45XW47mJzcQr8fBWq3zSdh7ZrB65-1t8KNtjz3VWfeqfezYnQ3Ey20kE3jnFRaXyvc-Xade1Gi9REn5c6DidE-2mt95hZqOy9o88I-MtphlRGJ_tMl3jq0p56jVyn6GHMa0T2j4KU2dgItzpJWPfPvMpVQl-Eqw5io0GQc3yLbHejE5g61G6Tka7vkJsDzcq75EeADgbQgYcOEDpw0IGH7iXWQo8ceOTAIgeIHCBy0RwCcIBIAAcH3K9v3x1qYFHDrxYy6CCDABl4yO6Rk4P58avDuHvTRyzHSdHGJToOgY9gUuUy4TTjQqikFKWsCp5IhVabyEJOWJpRhuOLVIhxoSQf50oyxao0vU-26qbWDwgwnuUql9gGDv5VgS1lWaqSnCpdZKKSO-Spf8bLj07QZXnBhrtX-dFDcqNn7xHZatcb_Rgj1FY8sab_DSGBk8g
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Reliability+Analysis+via+Active+Learning%3A+An+Integrated+Approach+Using+the+RBF%2BE+Algorithm+and+a+Pseudo%E2%80%90Design+Point%E2%80%90Based+Samples+Reduction+Strategy&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Wei%2C+Yan%E2%80%90Xu&rft.au=Zhang%2C+Shi%E2%80%90Long&rft.au=Wang%2C+Bo%E2%80%90Wei&rft.au=Huang%2C+Ying&rft.date=2025-07-28&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002%2Fqre.70029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qre_70029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon