Efficient Reliability Analysis via Active Learning: An Integrated Approach Using the RBF+E Algorithm and a Pseudo‐Design Point‐Based Samples Reduction Strategy
The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant computational costs that pose challenges for conventional surrogate model‐based methods. To address this issue, this study proposes a novel active...
Saved in:
| Published in | Quality and reliability engineering international |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
28.07.2025
|
| Online Access | Get full text |
| ISSN | 0748-8017 1099-1638 |
| DOI | 10.1002/qre.70029 |
Cover
| Abstract | The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant computational costs that pose challenges for conventional surrogate model‐based methods. To address this issue, this study proposes a novel active learning surrogate model method for reliability analysis. The approach integrates the radial basis function (RBF) with a newly designed learning function E , forming the RBF+E algorithm to reduce the number of performance function evaluations. RBF+E is constructed to ensure effective sampling by concentrating design samples within high‐probability‐density regions, guided by the Euclidean norm of design samples. Furthermore, during modeling procedure, a pseudo‐design point‐based samples reduction (PDPSR) strategy is introduced to further reduce the computational cost by reducing the size of the candidate sample set required for evaluating new design samples and estimating failure probability. Two numerical examples and two complex practical engineering applications are utilized to demonstrate the advantages of the proposed method. Results confirm that the RBF+E algorithm, combined with the PDPSR strategy, significantly reduces computational cost while maintaining precision. The efforts made in this study provide an effective strategy for reliability analysis of large and complex structures. |
|---|---|
| AbstractList | The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant computational costs that pose challenges for conventional surrogate model‐based methods. To address this issue, this study proposes a novel active learning surrogate model method for reliability analysis. The approach integrates the radial basis function (RBF) with a newly designed learning function E , forming the RBF+E algorithm to reduce the number of performance function evaluations. RBF+E is constructed to ensure effective sampling by concentrating design samples within high‐probability‐density regions, guided by the Euclidean norm of design samples. Furthermore, during modeling procedure, a pseudo‐design point‐based samples reduction (PDPSR) strategy is introduced to further reduce the computational cost by reducing the size of the candidate sample set required for evaluating new design samples and estimating failure probability. Two numerical examples and two complex practical engineering applications are utilized to demonstrate the advantages of the proposed method. Results confirm that the RBF+E algorithm, combined with the PDPSR strategy, significantly reduces computational cost while maintaining precision. The efforts made in this study provide an effective strategy for reliability analysis of large and complex structures. |
| Author | Wei, Yan‐Xu Huang, Ying Zhang, Yan‐Jie Zhang, Shi‐Long Wang, Bo‐Wei |
| Author_xml | – sequence: 1 givenname: Yan‐Xu orcidid: 0000-0001-9293-3649 surname: Wei fullname: Wei, Yan‐Xu organization: College of Mechanical Engineering Taiyuan University of Technology Taiyuan China, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment Ministry of Education Taiyuan University of Technology Taiyuan China, National Key Laboratory of Metal Forming Technology and Heavy Equipment Taiyuan University of Technology Taiyuan China – sequence: 2 givenname: Shi‐Long surname: Zhang fullname: Zhang, Shi‐Long organization: College of Mechanical Engineering Taiyuan University of Technology Taiyuan China, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment Ministry of Education Taiyuan University of Technology Taiyuan China, National Key Laboratory of Metal Forming Technology and Heavy Equipment Taiyuan University of Technology Taiyuan China – sequence: 3 givenname: Bo‐Wei surname: Wang fullname: Wang, Bo‐Wei organization: School of Computer Science and Engineering Beihang University Beijing China – sequence: 4 givenname: Ying surname: Huang fullname: Huang, Ying organization: School of Reliability and Systems Engineering Beihang University Beijing China – sequence: 5 givenname: Yan‐Jie surname: Zhang fullname: Zhang, Yan‐Jie organization: College of Mechanical Engineering Taiyuan University of Technology Taiyuan China, Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment Ministry of Education Taiyuan University of Technology Taiyuan China, National Key Laboratory of Metal Forming Technology and Heavy Equipment Taiyuan University of Technology Taiyuan China |
| BookMark | eNotkEFOwzAQRS1UJNrCghvMFqEUO2nihF1aWqhUiaql68ixndQodYptKmXHEbgDN-MkuMBqZvRH_8-8AerpVkuErgkeEYzDuzcjR9Q32RnqE5xlAUmitIf6mI7TIMWEXqCBta8Y--0s7aOvWVUprqR2sJaNYqVqlOsg16zprLJwVAxy7tRRwlIyo5Wu770KC-1kbZiTAvLDwbSM72BrvQpuJ2E9md_OIG_q1ii32wPTAhisrHwX7ffH54O0qtawapV2fpww6202bH9opPVniHcf2GrYuFNA3V2i84o1Vl791yHazmcv06dg-fy4mObLgBOcuCANY1r637Mq5piFY1aWAqdlyquEYS48iIwnPKPROKQxjaOyJIngjMSCU0GrKBqimz9fblprjayKg1F7ZrqC4OJEt_B0i1-60Q9G93NF |
| Cites_doi | 10.1016/j.strusafe.2011.06.001 10.1016/j.strusafe.2011.01.002 10.1007/s00158-015-1347-4 10.1016/j.ress.2018.10.004 10.3390/ma13143239 10.1061/(ASCE)0733-9399(1991)117:12(2904) 10.1016/0167-4730(87)90002-6 10.1016/j.ress.2018.11.002 10.1016/j.ymssp.2017.09.039 10.1016/j.apm.2014.12.012 10.1002/qre.3747 10.1016/j.compgeo.2018.02.011 10.1016/j.ress.2016.09.003 10.1016/j.ress.2017.08.016 10.1007/s00158-014-1189-5 10.1016/j.compstruc.2008.02.008 10.1016/j.ress.2017.03.035 10.1016/j.ress.2014.06.023 10.1016/j.ijfatigue.2018.10.005 10.1016/j.strusafe.2018.01.002 10.1016/j.ress.2016.05.002 10.1016/j.apm.2019.09.045 10.1002/qre.3493 10.1007/s00158-023-03628-3 10.1016/j.strusafe.2017.03.006 10.1016/0167-4730(90)90012-E 10.1016/j.ress.2017.04.001 10.1016/j.strusafe.2011.02.001 10.1016/j.strusafe.2018.02.005 10.1016/0045-7949(89)90489-6 10.1016/j.ress.2014.12.011 10.1016/j.ress.2019.01.014 10.1016/j.apm.2014.10.015 10.1016/j.ress.2018.04.027 10.1016/j.camwa.2015.07.004 10.1016/j.finel.2012.12.004 10.1016/j.apm.2018.06.018 10.2514/1.34321 10.1016/j.ress.2019.03.005 10.1016/j.ress.2017.09.008 10.1016/j.ast.2019.06.026 10.1002/qre.3403 10.1002/qre.3384 10.1016/j.ress.2016.01.023 10.1002/nme.2750 10.1002/qre.3534 10.1155/2018/8794160 10.1016/j.ress.2020.106908 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1002/qre.70029 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-1638 |
| ExternalDocumentID | 10_1002_qre_70029 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADMGS ADOZA ADXAS AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WH7 WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT |
| ID | FETCH-LOGICAL-c106t-8257b7009f5c0a24abbd08b8cf6a0cd1639c6c9734275753bb16dca15dc7d7f33 |
| ISSN | 0748-8017 |
| IngestDate | Wed Oct 01 05:44:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c106t-8257b7009f5c0a24abbd08b8cf6a0cd1639c6c9734275753bb16dca15dc7d7f33 |
| ORCID | 0000-0001-9293-3649 |
| ParticipantIDs | crossref_primary_10_1002_qre_70029 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-28 |
| PublicationDateYYYYMMDD | 2025-07-28 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Quality and reliability engineering international |
| PublicationYear | 2025 |
| References | Tao T. (e_1_2_9_27_1) 2018; 177 Xiao N.‐C. (e_1_2_9_43_1) 2018; 169 Li X. (e_1_2_9_31_1) 2018; 73 Tian Z. R. (e_1_2_9_4_1) 2024; 40 Song L. K. (e_1_2_9_29_1) 2018; 104 Huang Y. (e_1_2_9_5_1) 2024; 40 Zemed N. (e_1_2_9_8_1) 2025; 41 Echard B. (e_1_2_9_23_1) 2011; 33 Wang Q. (e_1_2_9_32_1) 2018; 98 Zhang Z. (e_1_2_9_14_1) 2015; 137 Wei Y. X. (e_1_2_9_11_1) 2018; 2018 Song L. K. (e_1_2_9_30_1) 2019; 92 Hadidi A. (e_1_2_9_12_1) 2017; 68 Kiureghian A. (e_1_2_9_15_1) 1991; 117 Jiang C. (e_1_2_9_7_1) 2019; 183 Huang Y. (e_1_2_9_51_1) 2023; 66 Yang X. (e_1_2_9_38_1) 2015; 39 Bourinet J. M. (e_1_2_9_26_1) 2016; 150 Bichon B. J. (e_1_2_9_33_1) 2008; 46 Meng Z. (e_1_2_9_17_1) 2018; 62 Sun Z. (e_1_2_9_41_1) 2017; 157 Chen Z. Q. (e_1_2_9_54_1) 2022; 218 Zhao W. T. (e_1_2_9_21_1) 2013; 67 Sun Y. H. (e_1_2_9_50_1) 2023; 39 Basudhar A. (e_1_2_9_24_1) 2008; 86 Yang X. (e_1_2_9_34_1) 2014; 51 Alban A. (e_1_2_9_19_1) 2017; 165 Bucher C. G. (e_1_2_9_20_1) 1990; 7 Zhao H. (e_1_2_9_39_1) 2015; 39 Allaix D. L. (e_1_2_9_22_1) 2011; 33 Li G. S. (e_1_2_9_55_1) 2024; 241 Hohenbichler M. (e_1_2_9_13_1) 1987; 4 Meng D. B. (e_1_2_9_2_1) 2020; 173 Song L. K. (e_1_2_9_28_1) 2019; 119 Teixeira R. (e_1_2_9_53_1) 2020; 199 Leli`evre N. (e_1_2_9_49_1) 2018; 73 Hu Z. (e_1_2_9_36_1) 2015; 53 Cadini F. (e_1_2_9_35_1) 2014; 131 Gaspar B. (e_1_2_9_42_1) 2017; 165 Yang X. (e_1_2_9_44_1) 2018; 169 Wen Z. (e_1_2_9_40_1) 2016; 153 Zhu S. P. (e_1_2_9_9_1) 2020; 78 Lee I. (e_1_2_9_16_1) 2012; 134 Luo C. Q. (e_1_2_9_48_1) 2024; 423 Huang Y. (e_1_2_9_6_1) 2020; 13 Lv Z. (e_1_2_9_37_1) 2015; 70 Viana F. A. (e_1_2_9_57_1) 2009; 82 Wang K. (e_1_2_9_10_1) 2024; 40 Bourinet J. M. (e_1_2_9_25_1) 2011; 33 Li Y. (e_1_2_9_47_1) 2023; 15 Fei C. W. (e_1_2_9_52_1) 2020; 107 Wang Z. (e_1_2_9_45_1) 2019; 182 Zhang X. (e_1_2_9_46_1) 2019; 185 Zhao J. (e_1_2_9_56_1) 2019; 189 Tamimi S. (e_1_2_9_18_1) 1989; 33 Zhu S. P. (e_1_2_9_3_1) 2020; 366 |
| References_xml | – volume: 33 start-page: 343 issue: 6 year: 2011 ident: e_1_2_9_25_1 article-title: Assessing Small Failure Probabilities by Combined Subset Simulation and Support Vector Machines publication-title: Structural Safety doi: 10.1016/j.strusafe.2011.06.001 – volume: 33 start-page: 145 issue: 2 year: 2011 ident: e_1_2_9_23_1 article-title: AK‐MCS: An Active Learning Reliability Method Combining Kriging and Monte Carlo Simulation publication-title: Structural Safety doi: 10.1016/j.strusafe.2011.01.002 – volume: 53 start-page: 501 issue: 3 year: 2015 ident: e_1_2_9_36_1 article-title: Global Sensitivity Analysis‐Enhanced Surrogate (GSAS) Modeling for Reliability Analysis publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-015-1347-4 – volume: 182 start-page: 33 year: 2019 ident: e_1_2_9_45_1 article-title: REAK: Reliability Analysis Through Error Rate‐Based Adaptive Kriging publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2018.10.004 – volume: 13 start-page: 1 year: 2020 ident: e_1_2_9_6_1 article-title: Distributed Collaborative Modeling Approach for Probabilistic Fatigue Life Evaluation of Turbine Rotor publication-title: Materials doi: 10.3390/ma13143239 – volume: 117 start-page: 2904 issue: 12 year: 1991 ident: e_1_2_9_15_1 article-title: Efficient Algorithm for Second‐Order Reliability Analysis publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)0733-9399(1991)117:12(2904) – volume: 4 start-page: 267 issue: 4 year: 1987 ident: e_1_2_9_13_1 article-title: New Light on First‐ and Second Order Reliability Methods publication-title: Structural Safety doi: 10.1016/0167-4730(87)90002-6 – volume: 183 start-page: 47 year: 2019 ident: e_1_2_9_7_1 article-title: A General Failure‐Pursuing Sampling Framework for Surrogate‐Based Reliability Analysis publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2018.11.002 – volume: 104 start-page: 72 year: 2018 ident: e_1_2_9_29_1 article-title: Distributed Collaborated Probabilistic Design of Multi‐Failure Structure With Fluid‐Structure Interaction Using Fuzzy Neural Network of Regression publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2017.09.039 – volume: 39 start-page: 3954 issue: 14 year: 2015 ident: e_1_2_9_38_1 article-title: Probability and Convex Set Hybrid Reliability Analysis Based on Active Learning Kriging Model publication-title: Applied Mathematical Modeling doi: 10.1016/j.apm.2014.12.012 – volume: 41 start-page: 1 year: 2025 ident: e_1_2_9_8_1 article-title: Enhanced Active Learning for Structural Reliability Analysis: An Ensemble SVR Metamodel‐Monte Carlo Approach publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.3747 – volume: 98 start-page: 144 year: 2018 ident: e_1_2_9_32_1 article-title: Reliability Analysis of Tunnels Using an Adaptive RBF and a First‐Order Reliability Method publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2018.02.011 – volume: 157 start-page: 152 year: 2017 ident: e_1_2_9_41_1 article-title: LIF: A New Kriging Based Learning Function and Its Application to Structural Reliability Analysis publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2016.09.003 – volume: 169 start-page: 235 year: 2018 ident: e_1_2_9_44_1 article-title: System Reliability Analysis Through Active Learning Kriging Model With Truncated Candidate Region publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.08.016 – volume: 51 start-page: 1003 issue: 5 year: 2014 ident: e_1_2_9_34_1 article-title: An Active Learning Kriging Model for Hybrid Reliability Analysis With Both Random and Interval Variables publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-014-1189-5 – volume: 86 start-page: 1904 issue: 19 year: 2008 ident: e_1_2_9_24_1 article-title: Adaptive Explicit Decision Functions for Probabilistic Design and Optimization Using Support Vector Machines publication-title: Computers & Structures doi: 10.1016/j.compstruc.2008.02.008 – volume: 15 start-page: 1 issue: 6 year: 2023 ident: e_1_2_9_47_1 article-title: Optimization of Transmission Towers Under Multiple Load Cases and Constraint Conditions With the KSM‐GA Method publication-title: Advances in Mechanical Engineering – volume: 423 start-page: 1 year: 2024 ident: e_1_2_9_48_1 article-title: Active Kriging‐Based Conjugate First‐Order Reliability Method for Highly Efficient Structural Reliability Analysis Using Resample Strategy publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 165 start-page: 277 year: 2017 ident: e_1_2_9_42_1 article-title: Adaptive Surrogate Model With Active Refinement Combining Kriging and a Trust Region Method publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.03.035 – volume: 131 start-page: 109 year: 2014 ident: e_1_2_9_35_1 article-title: An Improved Adaptive Kriging‐Based Importance Technique for Sampling Multiple Failure Regions of Low Probability publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2014.06.023 – volume: 119 start-page: 204 year: 2019 ident: e_1_2_9_28_1 article-title: Probabilistic LCF Life Assessment for Turbine Discs With DC Strategy‐Based Wavelet Neural Network Regression publication-title: International Journal of Fatigue doi: 10.1016/j.ijfatigue.2018.10.005 – volume: 73 start-page: 1 year: 2018 ident: e_1_2_9_49_1 article-title: AK‐MCSi: A Kriging‐Based Method to Deal With Small Failure Probabilities and Time‐Consuming Models publication-title: Structure Safety doi: 10.1016/j.strusafe.2018.01.002 – volume: 153 start-page: 170 year: 2016 ident: e_1_2_9_40_1 article-title: A Sequential Kriging Reliability Analysis Method With Characteristics of Adaptive Sampling Regions and Parallelizability publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2016.05.002 – volume: 78 start-page: 383 year: 2020 ident: e_1_2_9_9_1 article-title: Probabilistic Modeling and Simulation of Multiple Surface Crack Propagation and Coalescence publication-title: Applied Mathematical Modeling doi: 10.1016/j.apm.2019.09.045 – volume: 40 start-page: 1502 year: 2024 ident: e_1_2_9_5_1 article-title: AOK‐ES: Adaptive Optimized Kriging Combining Efficient Sampling for Structural Reliability Analysis publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.3493 – volume: 66 start-page: 1 year: 2023 ident: e_1_2_9_51_1 article-title: A Unified Reliability Evaluation Framework for Aircraft Turbine Rotor Considering Multi‑Site Failure Correlation publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-023-03628-3 – volume: 68 start-page: 15 year: 2017 ident: e_1_2_9_12_1 article-title: Efficient Response Surface Method for High‐Dimensional Structural Reliability Analysis publication-title: Structural Safety doi: 10.1016/j.strusafe.2017.03.006 – volume: 7 start-page: 57 issue: 1 year: 1990 ident: e_1_2_9_20_1 article-title: A Fast and Efficient Response Surface Approach for Structural Reliability Problems publication-title: Structural Safety doi: 10.1016/0167-4730(90)90012-E – volume: 165 start-page: 376 year: 2017 ident: e_1_2_9_19_1 article-title: Efficient Monte Carlo Methods for Estimating Failure Probabilities publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.04.001 – volume: 33 start-page: 165 issue: 2 year: 2011 ident: e_1_2_9_22_1 article-title: An Improvement of the Response Surface Method publication-title: Structural Safety doi: 10.1016/j.strusafe.2011.02.001 – volume: 173 start-page: 3 issue: 1 year: 2020 ident: e_1_2_9_2_1 article-title: Collaborative Maritime Design Using Sequential Optimization and Reliability Assessment publication-title: Proceedings of the Institution of Civil Engineers—Maritime Engineering – volume: 73 start-page: 42 year: 2018 ident: e_1_2_9_31_1 article-title: A Sequential Surrogate Method for Reliability Analysis Based on Radial Basis Function publication-title: Structural Safety doi: 10.1016/j.strusafe.2018.02.005 – volume: 33 start-page: 1495 issue: 6 year: 1989 ident: e_1_2_9_18_1 article-title: Monte Carlo Simulation of Rock Slope Reliability publication-title: Computers & Structures doi: 10.1016/0045-7949(89)90489-6 – volume: 137 start-page: 40 year: 2015 ident: e_1_2_9_14_1 article-title: First and Second Order Approximate Reliability Analysis Methods Using Evidence Theory publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2014.12.011 – volume: 185 start-page: 440 year: 2019 ident: e_1_2_9_46_1 article-title: REIF: A Novel Active‐Learning Function Toward Adaptive Kriging Surrogate Models for Structural Reliability Analysis publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2019.01.014 – volume: 39 start-page: 1853 issue: 7 year: 2015 ident: e_1_2_9_39_1 article-title: An Efficient Reliability Method Combining Adaptive Importance Sampling and Kriging Metamodel publication-title: Applied Mathematical Modeling doi: 10.1016/j.apm.2014.10.015 – volume: 177 start-page: 35 year: 2018 ident: e_1_2_9_27_1 article-title: A Novel Support Vector Regression Method for Online Reliability Prediction Under Multi‐State Varying Operating Conditions publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2018.04.027 – volume: 70 start-page: 1182 issue: 5 year: 2015 ident: e_1_2_9_37_1 article-title: A New Learning Function for Kriging and Its Applications to Solve Reliability Problems in Engineering publication-title: Computers & Mathematics with Applications doi: 10.1016/j.camwa.2015.07.004 – volume: 107 start-page: 1 year: 2020 ident: e_1_2_9_52_1 article-title: Enhanced Network Learning Model With Intelligent Operator for the Motion Reliability Evaluation of Flexible Mechanism publication-title: Aerospace Science and Technology – volume: 67 start-page: 34 year: 2013 ident: e_1_2_9_21_1 article-title: An Efficient Response Surface Method and Its Application to Structural Reliability and Reliability‐Based Optimization publication-title: Finite Elements in Analysis and Design doi: 10.1016/j.finel.2012.12.004 – volume: 241 start-page: 1 year: 2024 ident: e_1_2_9_55_1 article-title: An Efficient Sequential Anisotropic RBF Reliability Analysis Method With Fast Cross‐Validation and Parallelizability publication-title: Reliability Engineering & System Safety – volume: 62 start-page: 562 year: 2018 ident: e_1_2_9_17_1 article-title: Enhanced Sequential Approximate Programming Using Second Order Reliability Method for Accurate and Efficient Structural Reliability‐Based Design Optimization publication-title: Applied Mathematical Modeling doi: 10.1016/j.apm.2018.06.018 – volume: 46 start-page: 2459 issue: 10 year: 2008 ident: e_1_2_9_33_1 article-title: Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions publication-title: AIAA Journal doi: 10.2514/1.34321 – volume: 218 start-page: 1 year: 2022 ident: e_1_2_9_54_1 article-title: A New Parallel Adaptive Structural Reliability Analysis Method Based on Importance Sampling and K‐Medoids Clustering publication-title: Reliability Engineering & System Safety – volume: 189 start-page: 42 year: 2019 ident: e_1_2_9_56_1 article-title: RBF‐GA: An Adaptive Radial Basis Function Metamodeling With Genetic Algorithm for Structural Reliability Analysis publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2019.03.005 – volume: 366 start-page: 1 year: 2020 ident: e_1_2_9_3_1 article-title: Novel Probabilistic Model for Searching Most Probable Point in Structural Reliability Analysis publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 169 start-page: 330 year: 2018 ident: e_1_2_9_43_1 article-title: A New Adaptive Sequential Sampling Method to Construct Surrogate Models for Efficient Reliability Analysis publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2017.09.008 – volume: 92 start-page: 464 year: 2019 ident: e_1_2_9_30_1 article-title: Multi‐Failure Probabilistic Design for Turbine Bladed Disks Using Neural Network Regression With Distributed Collaborated Strategy publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2019.06.026 – volume: 40 start-page: 524 year: 2024 ident: e_1_2_9_4_1 article-title: An Active Learning Kriging‐Based Multipoint Sampling Strategy for Structural Reliability Analysis publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.3403 – volume: 39 start-page: 2765 year: 2023 ident: e_1_2_9_50_1 article-title: An Active Learning Reliability Algorithm Using DMSSA‐optimized Kriging Model and Parallel Infilling Strategy publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.3384 – volume: 150 start-page: 210 year: 2016 ident: e_1_2_9_26_1 article-title: Rare‐Event Probability Estimation With Adaptive Support Vector Regression Surrogates publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2016.01.023 – volume: 82 start-page: 135 issue: 2 year: 2009 ident: e_1_2_9_57_1 article-title: An Algorithm for Fast Optimal Latin Hypercube Design of Experiments publication-title: International Journal for Numerical Methods in Engineering doi: 10.1002/nme.2750 – volume: 40 start-page: 2292 year: 2024 ident: e_1_2_9_10_1 article-title: Dynamic Modeling and Reliability Analysis of Satellite Antenna Deployment Mechanism Based on Parameter Uncertainty publication-title: Quality and Reliability Engineering International doi: 10.1002/qre.3534 – volume: 2018 start-page: 1 year: 2018 ident: e_1_2_9_11_1 article-title: Reliability Analysis on Structures Based on a Modified Iterative Response Surface Method publication-title: Mathematical Problems in Engineering doi: 10.1155/2018/8794160 – volume: 134 start-page: 1 issue: 10 year: 2012 ident: e_1_2_9_16_1 article-title: A Novel Second‐Order Reliability Method (SORM) Using Noncentral or Generalized Chi‐Squared Distributions publication-title: Journal of Mechanical Design – volume: 199 start-page: 1 year: 2020 ident: e_1_2_9_53_1 article-title: Reliability Assessment With Density Scanned Adaptive Kriging publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2020.106908 |
| SSID | ssj0010098 |
| Score | 2.3904948 |
| Snippet | The reliability analysis of large and complex structures generally involves high nonlinearity and multiple influencing factors, resulting in significant... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Efficient Reliability Analysis via Active Learning: An Integrated Approach Using the RBF+E Algorithm and a Pseudo‐Design Point‐Based Samples Reduction Strategy |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0748-8017 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-1638 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010098 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dbtMwFMetMm7gYuJTbHzoCMFVlJE6H065a1mnCQFC0yZ1V5W_slVCCVQpElzxCLwDb8Nj8CQc27ET2C4GN1FrN06T85PPsX38DyHPNE1xkEHTGK1bxRmfsFiwqoqpZAmTrNTUTui_fVccnmSvF_liNPo5yFratGJPfr10X8n_WBXL0K5ml-w_WDY0igX4Ge2LR7QwHq9k47nVfzCr-Saz2Cluf-l1Rj6veDS1_ZmXUT0bzANakQhlwlC3qcolD5g49Gh28JzO5tH0w1mzXrXn7i0aHDtLvVFNSI_Yt8kf0ftmVbehcIZeEUNYbkSHzRYU5dRpo04F949FZKff4QSg1oMb0L1GopWzCDOW_TKSzUE45XW47mJzcQr8fBWq3zSdh7ZrB65-1t8KNtjz3VWfeqfezYnQ3Ey20kE3jnFRaXyvc-Xade1Gi9REn5c6DidE-2mt95hZqOy9o88I-MtphlRGJ_tMl3jq0p56jVyn6GHMa0T2j4KU2dgItzpJWPfPvMpVQl-Eqw5io0GQc3yLbHejE5g61G6Tka7vkJsDzcq75EeADgbQgYcOEDpw0IGH7iXWQo8ceOTAIgeIHCBy0RwCcIBIAAcH3K9v3x1qYFHDrxYy6CCDABl4yO6Rk4P58avDuHvTRyzHSdHGJToOgY9gUuUy4TTjQqikFKWsCp5IhVabyEJOWJpRhuOLVIhxoSQf50oyxao0vU-26qbWDwgwnuUql9gGDv5VgS1lWaqSnCpdZKKSO-Spf8bLj07QZXnBhrtX-dFDcqNn7xHZatcb_Rgj1FY8sab_DSGBk8g |
| linkProvider | Wiley-Blackwell |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Reliability+Analysis+via+Active+Learning%3A+An+Integrated+Approach+Using+the+RBF%2BE+Algorithm+and+a+Pseudo%E2%80%90Design+Point%E2%80%90Based+Samples+Reduction+Strategy&rft.jtitle=Quality+and+reliability+engineering+international&rft.au=Wei%2C+Yan%E2%80%90Xu&rft.au=Zhang%2C+Shi%E2%80%90Long&rft.au=Wang%2C+Bo%E2%80%90Wei&rft.au=Huang%2C+Ying&rft.date=2025-07-28&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002%2Fqre.70029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_qre_70029 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0748-8017&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0748-8017&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0748-8017&client=summon |