Learning individual autonomic representations of sleep stages to improve photoplethysmography based sleep monitoring

Objective: Wrist-worn photoplethysmography (PPG) enables scalable, long-term unobtrusive sleep monitoring through the expression of sympathetic and parasympathetic activity in heart rate variability. However, interindividual differences in the sympatho-vagal balance may inherently limited general PP...

Full description

Saved in:
Bibliographic Details
Published inPhysiological measurement
Main Authors van der Aar, Jaap, van Gilst, Merel Marietje, van den Ende, Daan, Overeem, Sebastiaan, Peri, Elisabetta, Fonseca, Pedro
Format Journal Article
LanguageEnglish
Published England 29.08.2025
Subjects
Online AccessGet full text
ISSN0967-3334
1361-6579
DOI10.1088/1361-6579/ae0119

Cover

More Information
Summary:Objective: Wrist-worn photoplethysmography (PPG) enables scalable, long-term unobtrusive sleep monitoring through the expression of sympathetic and parasympathetic activity in heart rate variability. However, interindividual differences in the sympatho-vagal balance may inherently limited general PPG-based sleep staging models. This study investigates whether learning individual autonomic representations through model personalization can improve PPG based automated sleep staging performance.- Approach: Concurrent wrist-worn PPG and wearable electroencephalography (EEG) were collected during home monitoring for up to seven nights in a heterogeneous sleep-disordered population (n=59). Personalization was performed through finetuning (i.e., partial retraining) a general PPG-based model by coupling the subject-specific PPG data with the wearable EEG stage classifications. Performance of the general and personalized models were compared on PPG acquired during a gold-standard clinical polysomnography, testing their agreement on 4-stage classification (W/N1+N2/N3/REM) with the manual scoring. Main Result: Overall performance increased in 82.5% of the subjects, with significantly improved performance reached when personalizing the model on three or more training nights. Performance increased with personalization on additional training nights for each stage: wake (β=.005, p<.001), N1+N2 (β=.003, p<.001), N3 (β=.004, p<.001), and REM (β=.005, p<.001). Effects were strongest for younger individuals (β=.009, p<.001) and patients with insomnia (β=.011, p<.001). Personalization greatly impacted the derived sleep macrostructural sleep parameters, with considerable improvement in N3 sleep classification, and in capturing REM fragmentation. Significance: Personalization can overcome one-size-fits-all limitations of a general model and should be considered for PPG-based sleep staging when an altered autonomic modulation is expected that deviates from the general model's global representation.
ISSN:0967-3334
1361-6579
DOI:10.1088/1361-6579/ae0119