Comparison of Monte Carlo Algorithm, genetic algorithms and artificial neural networks for calibration of water supply networks using the epanet2toolkit
A comparison of three water network calibration algorithms was performed using the R epanet2toolkit library. This coupling makes it possible to explore EPANET's hydraulic simulation and evaluation potentials and data analysis in R, with the main result of the work being the comparison of three...
Saved in:
| Published in | Revista Ibero-Americana de Ciências Ambientais Vol. 13; no. 9; pp. 72 - 84 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
08.01.2023
|
| Online Access | Get full text |
| ISSN | 2179-6858 2179-6858 |
| DOI | 10.6008/CBPC2179-6858.2022.009.0006 |
Cover
| Abstract | A comparison of three water network calibration algorithms was performed using the R epanet2toolkit library. This coupling makes it possible to explore EPANET's hydraulic simulation and evaluation potentials and data analysis in R, with the main result of the work being the comparison of three calibration methods. In the calibration process by the Monte Carlo Algorithm, 100,000 roughness values were randomly generated for each pipe section within the range of 0.008 to 0.09 and new pressure values were generated with these roughnesses, while the calibration by the Genetic Algorithms method was used the rpy2 package that allows the use of R in Python, having 10,000 generations per simulation with 5% chance of mutation and 50% chance of crossover, admitting a deviation of ± 2 m.c.a for each pressure and the reduction of the average error. Finally, the Neural Network calibration also used the rpy2 package, with the network demand defined as the input layer and the output layer as the roughness of the pipes and for the hidden layer the input layer plus four neurons was defined. The results showed that in the smallest network the best performance was obtained by the Genetic Algorithms, followed by Monte Carlo, while the Neural Network had the worst result, and in the most complex network the Neural Network results obtained the best result, followed by the Genetic Algorithms and Monte Carlo. Thus, the potential of using Neural Networks for the calibration of more complex networks is observed, as well as its use combined with optimization techniques for the operation of water distribution networks, taking care to avoid situations of overfitting or underfitting.
Uma comparação de três algoritmos de calibração de rede de água foi realizada usando a biblioteca R epanet2toolkit. Este acoplamento permite explorar os potenciais de simulação e avaliação hidráulica do EPANET e análise de dados em R, tendo como principal resultado do trabalho a comparação de três métodos de calibração. No processo de calibração pelo Algoritmo de Monte Carlo, foram gerados aleatoriamente 100.000 valores de rugosidade para cada seção de tubo na faixa de 0,008 a 0,09 e novos valores de pressão foram gerados com essas rugosidades, enquanto a calibração pelo método de Algoritmos Genéticos foi utilizado o pacote rpy2 que permite o uso de R em Python, tendo 10.000 gerações por simulação com 5% de chance de mutação e 50% de chance de crossover, admitindo um desvio de ± 2 m.c.a para cada pressão e a redução do erro médio. Por fim, a calibração da Rede Neural também utilizou o pacote rpy2, com a demanda da rede definida como a camada de entrada e a camada de saída como a rugosidade dos tubos e para a camada oculta foi definida a camada de entrada mais quatro neurônios. Os resultados mostraram que na rede menor o melhor desempenho foi obtido pelos Algoritmos Genéticos, seguido de Monte Carlo, enquanto a Rede Neural teve o pior resultado, e na rede mais complexa os resultados da Rede Neural obtiveram o melhor resultado, seguido da Rede Neural. Algoritmos Genéticos e Monte Carlo. Assim, observa-se o potencial de utilização de Redes Neurais para calibração de redes mais complexas, bem como sua utilização aliada a técnicas de otimização para operação de redes de distribuição de água, tomando-se o cuidado de evitar situações de overfitting ou underfitting. |
|---|---|
| AbstractList | A comparison of three water network calibration algorithms was performed using the R epanet2toolkit library. This coupling makes it possible to explore EPANET's hydraulic simulation and evaluation potentials and data analysis in R, with the main result of the work being the comparison of three calibration methods. In the calibration process by the Monte Carlo Algorithm, 100,000 roughness values were randomly generated for each pipe section within the range of 0.008 to 0.09 and new pressure values were generated with these roughnesses, while the calibration by the Genetic Algorithms method was used the rpy2 package that allows the use of R in Python, having 10,000 generations per simulation with 5% chance of mutation and 50% chance of crossover, admitting a deviation of ± 2 m.c.a for each pressure and the reduction of the average error. Finally, the Neural Network calibration also used the rpy2 package, with the network demand defined as the input layer and the output layer as the roughness of the pipes and for the hidden layer the input layer plus four neurons was defined. The results showed that in the smallest network the best performance was obtained by the Genetic Algorithms, followed by Monte Carlo, while the Neural Network had the worst result, and in the most complex network the Neural Network results obtained the best result, followed by the Genetic Algorithms and Monte Carlo. Thus, the potential of using Neural Networks for the calibration of more complex networks is observed, as well as its use combined with optimization techniques for the operation of water distribution networks, taking care to avoid situations of overfitting or underfitting.
Uma comparação de três algoritmos de calibração de rede de água foi realizada usando a biblioteca R epanet2toolkit. Este acoplamento permite explorar os potenciais de simulação e avaliação hidráulica do EPANET e análise de dados em R, tendo como principal resultado do trabalho a comparação de três métodos de calibração. No processo de calibração pelo Algoritmo de Monte Carlo, foram gerados aleatoriamente 100.000 valores de rugosidade para cada seção de tubo na faixa de 0,008 a 0,09 e novos valores de pressão foram gerados com essas rugosidades, enquanto a calibração pelo método de Algoritmos Genéticos foi utilizado o pacote rpy2 que permite o uso de R em Python, tendo 10.000 gerações por simulação com 5% de chance de mutação e 50% de chance de crossover, admitindo um desvio de ± 2 m.c.a para cada pressão e a redução do erro médio. Por fim, a calibração da Rede Neural também utilizou o pacote rpy2, com a demanda da rede definida como a camada de entrada e a camada de saída como a rugosidade dos tubos e para a camada oculta foi definida a camada de entrada mais quatro neurônios. Os resultados mostraram que na rede menor o melhor desempenho foi obtido pelos Algoritmos Genéticos, seguido de Monte Carlo, enquanto a Rede Neural teve o pior resultado, e na rede mais complexa os resultados da Rede Neural obtiveram o melhor resultado, seguido da Rede Neural. Algoritmos Genéticos e Monte Carlo. Assim, observa-se o potencial de utilização de Redes Neurais para calibração de redes mais complexas, bem como sua utilização aliada a técnicas de otimização para operação de redes de distribuição de água, tomando-se o cuidado de evitar situações de overfitting ou underfitting. |
| Author | Silva, Fernando das Graças Braga da Marques, Sara Maria Marcondes, Mateus Cortez Silva, Alex Takeo Yasumura Lima Valério, Victor Eduardo de Mello Barbedo, Matheus David Guimarães |
| Author_xml | – sequence: 1 givenname: Matheus David Guimarães orcidid: 0000-0001-9261-3696 surname: Barbedo fullname: Barbedo, Matheus David Guimarães – sequence: 2 givenname: Fernando das Graças Braga da orcidid: 0000-0002-3803-2257 surname: Silva fullname: Silva, Fernando das Graças Braga da – sequence: 3 givenname: Alex Takeo Yasumura Lima orcidid: 0000-0003-1883-2414 surname: Silva fullname: Silva, Alex Takeo Yasumura Lima – sequence: 4 givenname: Sara Maria orcidid: 0000-0003-3713-9607 surname: Marques fullname: Marques, Sara Maria – sequence: 5 givenname: Victor Eduardo de Mello orcidid: 0000-0003-4127-5951 surname: Valério fullname: Valério, Victor Eduardo de Mello – sequence: 6 givenname: Mateus Cortez orcidid: 0000-0003-2812-784X surname: Marcondes fullname: Marcondes, Mateus Cortez |
| BookMark | eNptkdtOwzAMhiMEEmPsHSJxS0fSQ9oKbkbFSRqCC7iu3DTdwrKkSlJNexMel5YxQIILy5bt_5f8-QQdaqMFQmeUTBkh2UVx_VyENM0DliXZNCRhOCUk74OwAzT6nhz-qo_RxLm3foNkhMQ5GaH3wqxbsNIZjU2DH432AhdglcEztTBW-uX6HC-EFl5yDPuWw6BrDNbLRnIJCmvR2c_kN8auHG6MxRyUrCx4ufPegBcWu65t1fZnsXNSL7BfCixa6LuhN0atpD9FRw0oJyZfeYxeb29eivtg_nT3UMzmAackYQFreJWynCVxxOOE1nEaiRrqijcVa-I6rHnN0owmgmY8ohxiHkNWs4r110d5QqMxutr5drqF7QaUKlsr12C3JSXlALrkVcsHhOWAsBxAlz3ocgDdyy93cm6Nc1Y0f9T7N_2n_gDziYpK |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.6008/CBPC2179-6858.2022.009.0006 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2179-6858 |
| EndPage | 84 |
| ExternalDocumentID | 10.6008/cbpc2179-6858.2022.009.0006 10_6008_CBPC2179_6858_2022_009_0006 |
| GroupedDBID | 91A AAYXX ABDHV ALMA_UNASSIGNED_HOLDINGS CITATION ML. M~E OK1 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1056-6fcb7696543c451d473edadbcfb6f4d2dcd67815e18c31ca4c4a8d6b649039513 |
| IEDL.DBID | UNPAY |
| ISSN | 2179-6858 |
| IngestDate | Tue Aug 19 23:35:12 EDT 2025 Wed Oct 01 06:01:37 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | http://creativecommons.org/licenses/by-nc-nd/4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1056-6fcb7696543c451d473edadbcfb6f4d2dcd67815e18c31ca4c4a8d6b649039513 |
| ORCID | 0000-0003-2812-784X 0000-0003-1883-2414 0000-0001-9261-3696 0000-0003-3713-9607 0000-0002-3803-2257 0000-0003-4127-5951 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://sustenere.inf.br/index.php/rica/article/download/7633/4580 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_6008_cbpc2179_6858_2022_009_0006 crossref_primary_10_6008_CBPC2179_6858_2022_009_0006 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-08 |
| PublicationDateYYYYMMDD | 2023-01-08 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-08 day: 08 |
| PublicationDecade | 2020 |
| PublicationTitle | Revista Ibero-Americana de Ciências Ambientais |
| PublicationYear | 2023 |
| SSID | ssj0000800490 |
| Score | 2.2088661 |
| Snippet | A comparison of three water network calibration algorithms was performed using the R epanet2toolkit library. This coupling makes it possible to explore... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 72 |
| Title | Comparison of Monte Carlo Algorithm, genetic algorithms and artificial neural networks for calibration of water supply networks using the epanet2toolkit |
| URI | https://sustenere.inf.br/index.php/rica/article/download/7633/4580 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2179-6858 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000800490 issn: 2179-6858 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZYkbbTNrahgUZliR2XZnFs1zmWqBVCKuKwSuwU-VcYIkuqJBViB_4O_lzea9NSbTvBKZJjR07y2e97tt_3CPkaCWV4EutgqJkLeB7zIBkyHhgLvoDKzVA63NGdnsvTGT-7FJdbsTANePiot-yRdw5MHS5FA1EpIsR5Iey-Z-hQSr7SLoTxEYdcKHDbd6UAPt4ju7Pzi9FPzCoHaAtQYP01OYbZAWy7Cq2Z2005-IcMBTtRsxJzHm2ZpjeLcq7vbnVRbNmbyTti1z1dHTO5GSxaM7B__hJxfNmrvCdvOzpKR6tKe2THlx_I_vgp-g1udsO_-Uge0k3WQlrldIrKVjTVdVHRUXFV1dftr9_fKEASIyOpXhc1VJeOYkdWchUURTSXl-UR9IYCcaaAFfTcESf47FvgwDVtMOfo3VNFPKV_RYGzUrCiUMraqipurttPZDYZ_0hPgy61Q2CB0MlA5hZgkGBgq-UicnwYe6edsbmROXfMWQdWNBI-UjaOrOaWa-WkkTz5HgMpjPdJr6xK_5lQJXNcyEUqK7hOokSJ3DDvPTOMKZ8cEL7-q9l8peCRgeeDYMjSk4sUwZAhGDIEQwZgwA15eUDEBgH_tFuD6D_tDp_Z7gvptfXCHwHFaU2fvJrej_sdkh8B3rL_qA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT-MwELVQK7EnYD8QRbvI0u5x0xDHdp1jNypCK4E4bCX2FPkrgAhJlaRC8Ev4uTvTpqUCTuwpkmNHTvLseWN73hDyIxLK8CTWwUgzF_A85kEyYjwwFnwBlZuRdLije3YuT6f896W43IiFacDDR71lj7xzaOpwIRqIShEhzgth9z1Dh1LylXYhjI845EKB296XAvh4j_Sn5xfjv5hVDtAWoMD6NvkOswPYdhVaM7PrcvAPGQp2omYl5jzaME0f5uVMP9zrotiwNye7xK56ujxmcjuct2ZoH1-IOP7fq-yRnY6O0vGy0key5ctPZH_yHP0GN7vh33wmT-k6ayGtcnqGylY01XVR0XFxVdU37fXdTwqQxMhIqldFDdWlo9iRpVwFRRHNxWVxBL2hQJwpYAU9d8QJPvseOHBNG8w5-vBcEU_pX1HgrBSsKJSytqqK25v2C5meTP6kp0GX2iGwQOhkIHMLMEgwsNVyETk-ir3TztjcyJw75qwDKxoJHykbR1Zzy7Vy0kieHMdACuN90iur0h8QqmSOC7lIZQXXSZQokRvmvWeGMeWTAeGrv5rNlgoeGXg-CIYs_XWRIhgyBEOGYMgADLghLwdErBHwqt0KRG-0O3xnu6-k19Zz_w0oTmuOOgz_A-U-_nc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Monte+Carlo+Algorithm%2C+genetic+algorithms+and+artificial+neural+networks+for+calibration+of+water+supply+networks+using+the+epanet2toolkit&rft.jtitle=Revista+Ibero-Americana+de+Ci%C3%AAncias+Ambientais&rft.au=Barbedo%2C+Matheus+David+Guimar%C3%A3es&rft.au=Silva%2C+Fernando+das+Gra%C3%A7as+Braga+da&rft.au=Silva%2C+Alex+Takeo+Yasumura+Lima&rft.au=Marques%2C+Sara+Maria&rft.date=2023-01-08&rft.issn=2179-6858&rft.eissn=2179-6858&rft.volume=13&rft.issue=9&rft.spage=72&rft.epage=84&rft_id=info:doi/10.6008%2FCBPC2179-6858.2022.009.0006&rft.externalDBID=n%2Fa&rft.externalDocID=10_6008_CBPC2179_6858_2022_009_0006 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2179-6858&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2179-6858&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2179-6858&client=summon |