Test Score Algorithms for Budgeted Stochastic Utility Maximization

Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximizati...

Full description

Saved in:
Bibliographic Details
Published inINFORMS journal on optimization Vol. 5; no. 1; pp. 27 - 67
Main Authors Lee, Dabeen, Vojnovic, Milan, Yun, Se-Young
Format Journal Article
LanguageEnglish
Published 01.01.2023
Online AccessGet full text
ISSN2575-1484
2575-1492
2575-1492
DOI10.1287/ijoo.2022.0075

Cover

Abstract Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximization problem. We extend an existing scoring mechanism, namely, the replication test scores, to incorporate heterogeneous item costs as well as item values. We show that a natural greedy algorithm that selects items solely based on their replication test scores outputs solutions within a constant factor of the optimum for the class of functions satisfying an extended diminishing returns property. Our algorithms and approximation guarantees assume that test scores are noisy estimates of certain expected values with respect to marginal distributions of individual item values, thus making our algorithms practical and extending previous work that assumes noiseless estimates. Moreover, we show how our algorithm can be adapted to the setting in which items arrive in a streaming fashion while maintaining the same approximation guarantee. We present numerical results, using synthetic data and data sets from the Academia.StackExchange Q&A forum, which show that our test score algorithm can achieve competitiveness and in some cases better performance than a benchmark algorithm that requires access to a value oracle to evaluate function values. Funding: This research was supported, in part, by the Institute for Basic Science [Grants IBS-R029-C1, IBS-R029-Y2].
AbstractList Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximization problem. We extend an existing scoring mechanism, namely, the replication test scores, to incorporate heterogeneous item costs as well as item values. We show that a natural greedy algorithm that selects items solely based on their replication test scores outputs solutions within a constant factor of the optimum for the class of functions satisfying an extended diminishing returns property. Our algorithms and approximation guarantees assume that test scores are noisy estimates of certain expected values with respect to marginal distributions of individual item values, thus making our algorithms practical and extending previous work that assumes noiseless estimates. Moreover, we show how our algorithm can be adapted to the setting in which items arrive in a streaming fashion while maintaining the same approximation guarantee. We present numerical results, using synthetic data and data sets from the Academia.StackExchange Q&A forum, which show that our test score algorithm can achieve competitiveness and in some cases better performance than a benchmark algorithm that requires access to a value oracle to evaluate function values. Funding: This research was supported, in part, by the Institute for Basic Science [Grants IBS-R029-C1, IBS-R029-Y2].
Author Vojnovic, Milan
Yun, Se-Young
Lee, Dabeen
Author_xml – sequence: 1
  givenname: Dabeen
  orcidid: 0000-0002-3802-1371
  surname: Lee
  fullname: Lee, Dabeen
  organization: Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea;, Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
– sequence: 2
  givenname: Milan
  surname: Vojnovic
  fullname: Vojnovic, Milan
  organization: Department of Statistics, London School of Economics, London WC2A 2AE, United Kingdom
– sequence: 3
  givenname: Se-Young
  surname: Yun
  fullname: Yun, Se-Young
  organization: Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
BookMark eNqFkD1vwjAURa2KSqWUtbP_QMKzHeNkBNQviaoDMFuWY4NRiJFt1Ka_vomounZ6V7r3vOHco1HrW4PQI4Gc0FLM3NH7nAKlOYDgN2hMueAZKSo6-stlcYemMR4B-h1hhMAYLbcmJrzRPhi8aPY-uHQ4RWx9wMtLvTfJ1HiTvD6omJzGu-Qalzr8rr7cyX2r5Hz7gG6taqKZ_t4J2j0_bVev2frj5W21WGeaQMEzDZVQggo7F2BpwWzJKSFKl0xpImrG57xvyVBWqmJG1BSAQa2Z1f2kYhM0u_69tGfVfaqmkefgTip0koAcLMjBghwsyMFCT-RXQgcfYzD2P-AHC8pgsA
Cites_doi 10.1007/978-3-030-24766-9_32
10.1287/mnsc.2018.3230
10.1287/opre.2016.1570
10.1016/0020-0190(92)90143-J
10.1287/mnsc.2015.2254
10.1007/s10107-015-0900-7
10.1016/S0167-6377(03)00062-2
10.1287/opre.38.5.820
10.1016/0167-6377(90)90067-F
10.1145/3274644
10.1007/978-3-031-02141-1
10.1007/s10107-009-0298-1
10.1287/mnsc.2014.2137
10.1287/mnsc.2020.3585
10.1137/16M1107644
10.1016/j.ejor.2005.10.075
10.1145/3284177
10.1287/opre.26.2.305
10.1016/0166-218X(84)90003-9
10.1007/BF01588971
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1287/ijoo.2022.0075
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2575-1492
EndPage 67
ExternalDocumentID 10.1287/ijoo.2022.0075
10_1287_ijoo_2022_0075
GroupedDBID AADHG
AAYXX
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
EBA
EBE
EBO
EBR
EBS
EBU
EJD
RPU
XHW
ADTOC
UNPAY
ID FETCH-LOGICAL-c1045-c097a727f670f243f85211ac83ac17d3565727170f29a93e7d20030dc3fc3ac93
IEDL.DBID UNPAY
ISSN 2575-1484
2575-1492
IngestDate Sun Sep 07 11:21:57 EDT 2025
Wed Oct 01 01:50:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1045-c097a727f670f243f85211ac83ac17d3565727170f29a93e7d20030dc3fc3ac93
ORCID 0000-0002-3802-1371
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1287/ijoo.2022.0075
PageCount 41
ParticipantIDs unpaywall_primary_10_1287_ijoo_2022_0075
crossref_primary_10_1287_ijoo_2022_0075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-00
PublicationDecade 2020
PublicationTitle INFORMS journal on optimization
PublicationYear 2023
References Ahmed S (B2) 2011; 128
B20
Conforti M (B13) 1984; 7
B28
Yoshida Y (B65) 2019; 33
Niazadeh R (B51) 2020; 21
Feldman M (B18) 2020; 33
Chakrabarti A (B11) 2015; 154
Qian C (B54) 2017; 30
Sviridenko M (B59) 2004; 32
Nemhauser GL (B50) 1978; 14
Golovin D (B21) 2011; 42
Li H (B43) 2011
B14
Klastorin TD (B38) 1990; 9
Huang C-C (B31) 2019
Soma T (B58) 2015; 28
Mirzasoleiman B (B48) 2016; 17
B3
Devanur NR (B15) 2019; 66
B4
Kleinberg J (B40) 2018; 6
Sarkar UK (B55) 1992; 42
Sekar S (B56) 2020; 67
B60
Aboolian R (B1) 2007; 181
Mehta A (B46) 2020; 33
References_xml – volume: 30
  volume-title: Advances in Neural Information Processing Systems
  year: 2017
  ident: B54
– start-page: 438
  volume-title: Algorithms and Data Structures
  year: 2019
  ident: B31
  doi: 10.1007/978-3-030-24766-9_32
– volume: 33
  start-page: 15800
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: B46
– volume: 28
  volume-title: Advances in Neural Information Processing Systems
  year: 2015
  ident: B58
– volume: 42
  start-page: 427
  issue: 1
  year: 2011
  ident: B21
  publication-title: J. Artificial Intelligence Res.
– ident: B14
  doi: 10.1287/mnsc.2018.3230
– ident: B4
  doi: 10.1287/opre.2016.1570
– volume: 42
  start-page: 173
  issue: 3
  year: 1992
  ident: B55
  publication-title: Inform. Processing Lett.
  doi: 10.1016/0020-0190(92)90143-J
– ident: B3
  doi: 10.1287/mnsc.2015.2254
– volume: 154
  start-page: 225
  year: 2015
  ident: B11
  publication-title: Math. Programming
  doi: 10.1007/s10107-015-0900-7
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: B59
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– ident: B28
  doi: 10.1287/opre.38.5.820
– volume: 33
  start-page: 1404
  volume-title: Advances in Neural Information Processing Systems
  year: 2020
  ident: B18
– volume: 9
  start-page: 233
  issue: 4
  year: 1990
  ident: B38
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(90)90067-F
– volume: 6
  start-page: 1
  issue: 3
  year: 2018
  ident: B40
  publication-title: ACM Trans. Econ. Comput.
  doi: 10.1145/3274644
– volume-title: Learning to Rank for Information Retrieval and Natural Language Processing
  year: 2011
  ident: B43
  doi: 10.1007/978-3-031-02141-1
– volume: 128
  start-page: 149
  year: 2011
  ident: B2
  publication-title: Math. Programming
  doi: 10.1007/s10107-009-0298-1
– ident: B20
  doi: 10.1287/mnsc.2014.2137
– volume: 67
  start-page: 1075
  issue: 2
  year: 2020
  ident: B56
  publication-title: Management Sci.
  doi: 10.1287/mnsc.2020.3585
– volume: 33
  start-page: 1452
  issue: 3
  year: 2019
  ident: B65
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/16M1107644
– volume: 181
  start-page: 598
  issue: 2
  year: 2007
  ident: B1
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.10.075
– volume: 21
  start-page: 1
  issue: 125
  year: 2020
  ident: B51
  publication-title: J. Machine Learn. Res.
– volume: 66
  start-page: 1
  issue: 1
  year: 2019
  ident: B15
  publication-title: J. ACM
  doi: 10.1145/3284177
– ident: B60
  doi: 10.1287/opre.26.2.305
– volume: 7
  start-page: 251
  issue: 3
  year: 1984
  ident: B13
  publication-title: Discrete Appl. Math.
  doi: 10.1016/0166-218X(84)90003-9
– volume: 17
  start-page: 1
  issue: 1
  year: 2016
  ident: B48
  publication-title: J. Machine Learn. Res.
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: B50
  publication-title: Math. Programming
  doi: 10.1007/BF01588971
SSID ssj0002213110
Score 2.2082512
Snippet Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of...
SourceID unpaywall
crossref
SourceType Open Access Repository
Index Database
StartPage 27
Title Test Score Algorithms for Budgeted Stochastic Utility Maximization
URI https://doi.org/10.1287/ijoo.2022.0075
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 2575-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002213110
  issn: 2575-1492
  databaseCode: AMVHM
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NS8NAEIYXbQ_iwW-xomUPgl5S02ySTY6pWIvQIrSRegr7FVttk1ITtP56Z22qVQ_1FsgQlpcl8ww78y5CZ1S5PGZubCgSKyhQBDOYVHWDWrYknlLC558Nsh23Fdq3fadfNMjqWZjl83uA-cvhU6pH9Cxtq0mddVR2HWDuEiqHnbvgQd8cB7xhANPb38--Vbgz_v3Aj-yzkScTNntlo9FSSmluo5vFYuadJM-1POM18f7Lp3H1anfQVkGVOJhvg120ppI9tLnkNbiPGj34_-Oudq3EwegxnQ6zwfgFA7PiRi4fgZ0l7mapGDDt3IzDTDfNznCbvQ3HxazmAQqb172rllFcoGAIqLIcQ5g-ZQAosUvN2LJJ7EGyrjPhESbqVBJ95GlBPQcvfeYTRaVuVTOlILGAEJ8colKSJuoIYcckFlPSYzZ1bK5cximnLrcsIE6bE1lB5wtho8ncJyPS9QWoEmlVIq1KpFWpoIsv3VeEHv8_9ASVsmmuToEQMl5F5aB932pXi23yATWcuW4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NS8NAEIYXbQ_iwW-xorIHQS-p6W6STY6tWItgEdpAPYX9Slttk1ITtP56Z22qVQ_1FsgQlpcl8ww78y5C50x7IuZebGkaayhQJLe40jWLEUdRX2sZiM8G2bbXCp27ntsrGmTNLMzy-T3A_NXwKTUjesTYajJ3HZU9F5i7hMph-6H-aG6OA96wgOmd7-eAFO6Mfz_wI_ts5MmEz175aLSUUprb6HaxmHknyXM1z0RVvv_yaVy92h20VVAlrs-3wS5a08ke2lzyGtxHjS78_3HHuFbi-qifTofZYPyCgVlxI1d9YGeFO1kqB9w4N-MwM02zM3zP34bjYlbzAIXNm-51yyouULAkVFmuJe2AcQCU2GN2TBwa-5Csa1z6lMsaU9QceRKo5-BlwAOqmTKtaraSNJYQEtBDVErSRB8h7NqUcK187jDXEdrjggnmCUKAOB1BVQVdLISNJnOfjMjUF6BKZFSJjCqRUaWCLr90XxF6_P_QE1TKprk-BULIxFmxPT4Acey30g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test+Score+Algorithms+for+Budgeted+Stochastic+Utility+Maximization&rft.jtitle=INFORMS+journal+on+optimization&rft.au=Lee%2C+Dabeen&rft.au=Vojnovic%2C+Milan&rft.au=Yun%2C+Se-Young&rft.date=2023-01-01&rft.issn=2575-1484&rft.eissn=2575-1492&rft.volume=5&rft.issue=1&rft.spage=27&rft.epage=67&rft_id=info:doi/10.1287%2Fijoo.2022.0075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_ijoo_2022_0075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-1484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-1484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-1484&client=summon