Test Score Algorithms for Budgeted Stochastic Utility Maximization
Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximizati...
Saved in:
| Published in | INFORMS journal on optimization Vol. 5; no. 1; pp. 27 - 67 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
01.01.2023
|
| Online Access | Get full text |
| ISSN | 2575-1484 2575-1492 2575-1492 |
| DOI | 10.1287/ijoo.2022.0075 |
Cover
| Abstract | Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximization problem. We extend an existing scoring mechanism, namely, the replication test scores, to incorporate heterogeneous item costs as well as item values. We show that a natural greedy algorithm that selects items solely based on their replication test scores outputs solutions within a constant factor of the optimum for the class of functions satisfying an extended diminishing returns property. Our algorithms and approximation guarantees assume that test scores are noisy estimates of certain expected values with respect to marginal distributions of individual item values, thus making our algorithms practical and extending previous work that assumes noiseless estimates. Moreover, we show how our algorithm can be adapted to the setting in which items arrive in a streaming fashion while maintaining the same approximation guarantee. We present numerical results, using synthetic data and data sets from the Academia.StackExchange Q&A forum, which show that our test score algorithm can achieve competitiveness and in some cases better performance than a benchmark algorithm that requires access to a value oracle to evaluate function values.
Funding: This research was supported, in part, by the Institute for Basic Science [Grants IBS-R029-C1, IBS-R029-Y2]. |
|---|---|
| AbstractList | Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of using test scores, defined as a statistic of observed individual item performance data, for solving the budgeted stochastic utility maximization problem. We extend an existing scoring mechanism, namely, the replication test scores, to incorporate heterogeneous item costs as well as item values. We show that a natural greedy algorithm that selects items solely based on their replication test scores outputs solutions within a constant factor of the optimum for the class of functions satisfying an extended diminishing returns property. Our algorithms and approximation guarantees assume that test scores are noisy estimates of certain expected values with respect to marginal distributions of individual item values, thus making our algorithms practical and extending previous work that assumes noiseless estimates. Moreover, we show how our algorithm can be adapted to the setting in which items arrive in a streaming fashion while maintaining the same approximation guarantee. We present numerical results, using synthetic data and data sets from the Academia.StackExchange Q&A forum, which show that our test score algorithm can achieve competitiveness and in some cases better performance than a benchmark algorithm that requires access to a value oracle to evaluate function values.
Funding: This research was supported, in part, by the Institute for Basic Science [Grants IBS-R029-C1, IBS-R029-Y2]. |
| Author | Vojnovic, Milan Yun, Se-Young Lee, Dabeen |
| Author_xml | – sequence: 1 givenname: Dabeen orcidid: 0000-0002-3802-1371 surname: Lee fullname: Lee, Dabeen organization: Discrete Mathematics Group, Institute for Basic Science, Daejeon, South Korea;, Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea – sequence: 2 givenname: Milan surname: Vojnovic fullname: Vojnovic, Milan organization: Department of Statistics, London School of Economics, London WC2A 2AE, United Kingdom – sequence: 3 givenname: Se-Young surname: Yun fullname: Yun, Se-Young organization: Graduate School of Artificial Intelligence, Korea Advanced Institute of Science and Technology, Daejeon, South Korea |
| BookMark | eNqFkD1vwjAURa2KSqWUtbP_QMKzHeNkBNQviaoDMFuWY4NRiJFt1Ka_vomounZ6V7r3vOHco1HrW4PQI4Gc0FLM3NH7nAKlOYDgN2hMueAZKSo6-stlcYemMR4B-h1hhMAYLbcmJrzRPhi8aPY-uHQ4RWx9wMtLvTfJ1HiTvD6omJzGu-Qalzr8rr7cyX2r5Hz7gG6taqKZ_t4J2j0_bVev2frj5W21WGeaQMEzDZVQggo7F2BpwWzJKSFKl0xpImrG57xvyVBWqmJG1BSAQa2Z1f2kYhM0u_69tGfVfaqmkefgTip0koAcLMjBghwsyMFCT-RXQgcfYzD2P-AHC8pgsA |
| Cites_doi | 10.1007/978-3-030-24766-9_32 10.1287/mnsc.2018.3230 10.1287/opre.2016.1570 10.1016/0020-0190(92)90143-J 10.1287/mnsc.2015.2254 10.1007/s10107-015-0900-7 10.1016/S0167-6377(03)00062-2 10.1287/opre.38.5.820 10.1016/0167-6377(90)90067-F 10.1145/3274644 10.1007/978-3-031-02141-1 10.1007/s10107-009-0298-1 10.1287/mnsc.2014.2137 10.1287/mnsc.2020.3585 10.1137/16M1107644 10.1016/j.ejor.2005.10.075 10.1145/3284177 10.1287/opre.26.2.305 10.1016/0166-218X(84)90003-9 10.1007/BF01588971 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1287/ijoo.2022.0075 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2575-1492 |
| EndPage | 67 |
| ExternalDocumentID | 10.1287/ijoo.2022.0075 10_1287_ijoo_2022_0075 |
| GroupedDBID | AADHG AAYXX AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION EBA EBE EBO EBR EBS EBU EJD RPU XHW ADTOC UNPAY |
| ID | FETCH-LOGICAL-c1045-c097a727f670f243f85211ac83ac17d3565727170f29a93e7d20030dc3fc3ac93 |
| IEDL.DBID | UNPAY |
| ISSN | 2575-1484 2575-1492 |
| IngestDate | Sun Sep 07 11:21:57 EDT 2025 Wed Oct 01 01:50:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c1045-c097a727f670f243f85211ac83ac17d3565727170f29a93e7d20030dc3fc3ac93 |
| ORCID | 0000-0002-3802-1371 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1287/ijoo.2022.0075 |
| PageCount | 41 |
| ParticipantIDs | unpaywall_primary_10_1287_ijoo_2022_0075 crossref_primary_10_1287_ijoo_2022_0075 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-00 |
| PublicationDecade | 2020 |
| PublicationTitle | INFORMS journal on optimization |
| PublicationYear | 2023 |
| References | Ahmed S (B2) 2011; 128 B20 Conforti M (B13) 1984; 7 B28 Yoshida Y (B65) 2019; 33 Niazadeh R (B51) 2020; 21 Feldman M (B18) 2020; 33 Chakrabarti A (B11) 2015; 154 Qian C (B54) 2017; 30 Sviridenko M (B59) 2004; 32 Nemhauser GL (B50) 1978; 14 Golovin D (B21) 2011; 42 Li H (B43) 2011 B14 Klastorin TD (B38) 1990; 9 Huang C-C (B31) 2019 Soma T (B58) 2015; 28 Mirzasoleiman B (B48) 2016; 17 B3 Devanur NR (B15) 2019; 66 B4 Kleinberg J (B40) 2018; 6 Sarkar UK (B55) 1992; 42 Sekar S (B56) 2020; 67 B60 Aboolian R (B1) 2007; 181 Mehta A (B46) 2020; 33 |
| References_xml | – volume: 30 volume-title: Advances in Neural Information Processing Systems year: 2017 ident: B54 – start-page: 438 volume-title: Algorithms and Data Structures year: 2019 ident: B31 doi: 10.1007/978-3-030-24766-9_32 – volume: 33 start-page: 15800 volume-title: Advances in Neural Information Processing Systems year: 2020 ident: B46 – volume: 28 volume-title: Advances in Neural Information Processing Systems year: 2015 ident: B58 – volume: 42 start-page: 427 issue: 1 year: 2011 ident: B21 publication-title: J. Artificial Intelligence Res. – ident: B14 doi: 10.1287/mnsc.2018.3230 – ident: B4 doi: 10.1287/opre.2016.1570 – volume: 42 start-page: 173 issue: 3 year: 1992 ident: B55 publication-title: Inform. Processing Lett. doi: 10.1016/0020-0190(92)90143-J – ident: B3 doi: 10.1287/mnsc.2015.2254 – volume: 154 start-page: 225 year: 2015 ident: B11 publication-title: Math. Programming doi: 10.1007/s10107-015-0900-7 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: B59 publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – ident: B28 doi: 10.1287/opre.38.5.820 – volume: 33 start-page: 1404 volume-title: Advances in Neural Information Processing Systems year: 2020 ident: B18 – volume: 9 start-page: 233 issue: 4 year: 1990 ident: B38 publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(90)90067-F – volume: 6 start-page: 1 issue: 3 year: 2018 ident: B40 publication-title: ACM Trans. Econ. Comput. doi: 10.1145/3274644 – volume-title: Learning to Rank for Information Retrieval and Natural Language Processing year: 2011 ident: B43 doi: 10.1007/978-3-031-02141-1 – volume: 128 start-page: 149 year: 2011 ident: B2 publication-title: Math. Programming doi: 10.1007/s10107-009-0298-1 – ident: B20 doi: 10.1287/mnsc.2014.2137 – volume: 67 start-page: 1075 issue: 2 year: 2020 ident: B56 publication-title: Management Sci. doi: 10.1287/mnsc.2020.3585 – volume: 33 start-page: 1452 issue: 3 year: 2019 ident: B65 publication-title: SIAM J. Discrete Math. doi: 10.1137/16M1107644 – volume: 181 start-page: 598 issue: 2 year: 2007 ident: B1 publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.10.075 – volume: 21 start-page: 1 issue: 125 year: 2020 ident: B51 publication-title: J. Machine Learn. Res. – volume: 66 start-page: 1 issue: 1 year: 2019 ident: B15 publication-title: J. ACM doi: 10.1145/3284177 – ident: B60 doi: 10.1287/opre.26.2.305 – volume: 7 start-page: 251 issue: 3 year: 1984 ident: B13 publication-title: Discrete Appl. Math. doi: 10.1016/0166-218X(84)90003-9 – volume: 17 start-page: 1 issue: 1 year: 2016 ident: B48 publication-title: J. Machine Learn. Res. – volume: 14 start-page: 265 issue: 1 year: 1978 ident: B50 publication-title: Math. Programming doi: 10.1007/BF01588971 |
| SSID | ssj0002213110 |
| Score | 2.2082512 |
| Snippet | Motivated by recent developments in designing algorithms based on individual item scores for solving utility maximization problems, we study the framework of... |
| SourceID | unpaywall crossref |
| SourceType | Open Access Repository Index Database |
| StartPage | 27 |
| Title | Test Score Algorithms for Budgeted Stochastic Utility Maximization |
| URI | https://doi.org/10.1287/ijoo.2022.0075 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 2575-1492 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002213110 issn: 2575-1492 databaseCode: AMVHM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NS8NAEIYXbQ_iwW-xomUPgl5S02ySTY6pWIvQIrSRegr7FVttk1ITtP56Z22qVQ_1FsgQlpcl8ww78y5CZ1S5PGZubCgSKyhQBDOYVHWDWrYknlLC558Nsh23Fdq3fadfNMjqWZjl83uA-cvhU6pH9Cxtq0mddVR2HWDuEiqHnbvgQd8cB7xhANPb38--Vbgz_v3Aj-yzkScTNntlo9FSSmluo5vFYuadJM-1POM18f7Lp3H1anfQVkGVOJhvg120ppI9tLnkNbiPGj34_-Oudq3EwegxnQ6zwfgFA7PiRi4fgZ0l7mapGDDt3IzDTDfNznCbvQ3HxazmAQqb172rllFcoGAIqLIcQ5g-ZQAosUvN2LJJ7EGyrjPhESbqVBJ95GlBPQcvfeYTRaVuVTOlILGAEJ8colKSJuoIYcckFlPSYzZ1bK5cximnLrcsIE6bE1lB5wtho8ncJyPS9QWoEmlVIq1KpFWpoIsv3VeEHv8_9ASVsmmuToEQMl5F5aB932pXi23yATWcuW4 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ1NS8NAEIYXbQ_iwW-xorIHQS-p6W6STY6tWItgEdpAPYX9Slttk1ITtP56Z22qVQ_1FsgQlpcl8ww78y5C50x7IuZebGkaayhQJLe40jWLEUdRX2sZiM8G2bbXCp27ntsrGmTNLMzy-T3A_NXwKTUjesTYajJ3HZU9F5i7hMph-6H-aG6OA96wgOmd7-eAFO6Mfz_wI_ts5MmEz175aLSUUprb6HaxmHknyXM1z0RVvv_yaVy92h20VVAlrs-3wS5a08ke2lzyGtxHjS78_3HHuFbi-qifTofZYPyCgVlxI1d9YGeFO1kqB9w4N-MwM02zM3zP34bjYlbzAIXNm-51yyouULAkVFmuJe2AcQCU2GN2TBwa-5Csa1z6lMsaU9QceRKo5-BlwAOqmTKtaraSNJYQEtBDVErSRB8h7NqUcK187jDXEdrjggnmCUKAOB1BVQVdLISNJnOfjMjUF6BKZFSJjCqRUaWCLr90XxF6_P_QE1TKprk-BULIxFmxPT4Acey30g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Test+Score+Algorithms+for+Budgeted+Stochastic+Utility+Maximization&rft.jtitle=INFORMS+journal+on+optimization&rft.au=Lee%2C+Dabeen&rft.au=Vojnovic%2C+Milan&rft.au=Yun%2C+Se-Young&rft.date=2023-01-01&rft.issn=2575-1484&rft.eissn=2575-1492&rft.volume=5&rft.issue=1&rft.spage=27&rft.epage=67&rft_id=info:doi/10.1287%2Fijoo.2022.0075&rft.externalDBID=n%2Fa&rft.externalDocID=10_1287_ijoo_2022_0075 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2575-1484&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2575-1484&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2575-1484&client=summon |