Systematic STAT3 Mutation Testing Identifies Patients with Unsuspected T-Cell Large Granular Lymphocytic Leukemia

▪ The initial clinical presentation of T-cell large granular lymphocytic leukemia (T-LGL) and myelodysplastic syndromes (MDS) can be similar, each characterized by unexplained peripheral cytopenias. However, these diseases are pathobiologically distinct and associated with stark differences in progn...

Full description

Saved in:
Bibliographic Details
Published inBlood Vol. 128; no. 22; p. 919
Main Authors Morgan, Elizabeth A., Lee, Mark N., DeAngelo, Daniel J., Steensma, David P., Stone, Richard M., Kuo, Frank C., Aster, Jon C., Gibson, Christopher J., Lindsley, R. Coleman
Format Journal Article
LanguageEnglish
Published Elsevier Inc 02.12.2016
Online AccessGet full text
ISSN0006-4971
1528-0020
DOI10.1182/blood.V128.22.919.919

Cover

Abstract ▪ The initial clinical presentation of T-cell large granular lymphocytic leukemia (T-LGL) and myelodysplastic syndromes (MDS) can be similar, each characterized by unexplained peripheral cytopenias. However, these diseases are pathobiologically distinct and associated with stark differences in prognosis and therapy. T-LGL is a clonal lymphoid disorder defined by phenotypically abnormal cytotoxic T cells and an indolent clinical course, while MDS is a clonal disorder of hematopoietic stem cells defined by ineffective hematopoiesis, morphologic dysplasia, and an elevated risk of acute leukemia. Despite these differences, distinction between T-LGL and MDS can be challenging and misdiagnosis can significantly delay initiation of appropriate therapy. The recent identification of STAT3 mutations in LGL may facilitate this distinction: activating STAT3 mutations occur in 40-70% of T-LGL cases, primarily within the SH2 domain, but have not been reported in patients with MDS without concomitant T-LGL. STAT3 is included within our clinical next generation sequencing (NGS) panel, which is used to evaluate patients with known or suspected hematologic malignancies, primarily acute myeloid leukemia, MDS and myeloproliferative neoplasms, as well as various lymphocytic leukemias. We report the frequency and type of STAT3 mutations within our patient population and assess the impact of this information on diagnosis. Between 1/1/2015 and 6/30/2016, 3414 samples (primarily peripheral blood (PB) or bone marrow (BM)) from 2530 unique patients evaluated at Brigham and Women's Hospital and/or Dana-Farber Cancer Institute underwent clinical NGS with a custom, 95-gene, amplicon-based panel (PMID: 27339098). Exons 2-17 and 21-23 of the STAT3 gene were analyzed in each sample using reference transcript 1 (NM_139276). We identified 40 patients with 40 candidate STAT3 mutations (Figure 1). Based on domain localization, variant allele fraction, and population allele frequency, we classified these sequence variants as somatic SH2 domain mutations (n = 21), somatic non-SH2 domain mutations of unknown significance (n = 5) or germline variants (n = 14). Of the 21 patients with somatic SH2 domain mutations, 9 carried a prior diagnosis of T-LGL and 8 were concurrently diagnosed with T-LGL by conventional diagnostic criteria (clonal aberrant T cells in the setting of neutropenia, anemia, or lymphocytosis). The final 4 patients with STAT3 SH2 domain mutations were unexpected diagnoses of T-LGL. These 4 patients were initially referred from outside institutions for MDS based on the reported presence of unilineage erythroid dysplasia (n=2), unquantified ring sideroblasts (n=1), or pancytopenia with unspecified marrow findings (n=1). In 3 of these cases, the STAT3 mutation discovery prompted T-cell flow cytometric analysis of peripheral blood, which revealed an aberrant immunophenotype, and T-cell receptor gamma gene rearrangement studies, which were clonal; these tests are pending in the 4th case. BM evaluation was performed in 12 of 21 patients, including the 4 with suspected MDS; in all cases, the findings did not meet diagnostic criteria for MDS by expert hematopathology review and all showed a normal karyotype. Five additional cases demonstrated somatic non-SH2 domain STAT3 mutations of unknown pathobiologic significance: 3 myeloid neoplasms, 1 chronic lymphocytic leukemia, and 1 autoimmune hemolytic anemia. Additional non-STAT3 mutations were also frequently identified in tumors other than T-LGL. Our experience demonstrates that STAT3 sequencing is a critical component of the evaluation of unexplained cytopenias, and identification of a mutation can clarify ambiguous phenotypes thus averting the consequences of misdiagnosis or diagnostic delay. Notably, several series have reported that MDS and T-LGL can infrequently occur concurrently and thus identification of a STAT3 mutation and a clonal T-LGL population does not exclude the possibility of concomitant MDS. In our cohort, however, no T-LGL patient with a STAT3 mutation demonstrated pathologic evidence of MDS and the majority (19 of 21) showed no other myeloid-associated somatic mutations. In addition, 5 cases in our cohort had likely somatic, non-SH2 domain STAT3 mutations in the context of disparate clinical scenarios, suggesting that these mutations may have a pathogenic role in other hematologic malignancies, a subject of future study. [Display omitted] DeAngelo:Ariad: Consultancy; Pfizer: Consultancy; Novartis: Consultancy; Amgen: Consultancy; Baxter: Consultancy; Incyte: Consultancy; Celgene: Consultancy. Stone:Celator: Consultancy; Jansen: Consultancy; ONO: Consultancy; Agios: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Consultancy; Amgen: Consultancy; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy; Merck: Consultancy; Roche: Consultancy; Seattle Genetics: Consultancy; Sunesis Pharmaceuticals: Consultancy; Xenetic Biosciences: Consultancy. Lindsley:MedImmune: Research Funding; Takeda Pharmaceuticals: Consultancy.
AbstractList ▪ The initial clinical presentation of T-cell large granular lymphocytic leukemia (T-LGL) and myelodysplastic syndromes (MDS) can be similar, each characterized by unexplained peripheral cytopenias. However, these diseases are pathobiologically distinct and associated with stark differences in prognosis and therapy. T-LGL is a clonal lymphoid disorder defined by phenotypically abnormal cytotoxic T cells and an indolent clinical course, while MDS is a clonal disorder of hematopoietic stem cells defined by ineffective hematopoiesis, morphologic dysplasia, and an elevated risk of acute leukemia. Despite these differences, distinction between T-LGL and MDS can be challenging and misdiagnosis can significantly delay initiation of appropriate therapy. The recent identification of STAT3 mutations in LGL may facilitate this distinction: activating STAT3 mutations occur in 40-70% of T-LGL cases, primarily within the SH2 domain, but have not been reported in patients with MDS without concomitant T-LGL. STAT3 is included within our clinical next generation sequencing (NGS) panel, which is used to evaluate patients with known or suspected hematologic malignancies, primarily acute myeloid leukemia, MDS and myeloproliferative neoplasms, as well as various lymphocytic leukemias. We report the frequency and type of STAT3 mutations within our patient population and assess the impact of this information on diagnosis. Between 1/1/2015 and 6/30/2016, 3414 samples (primarily peripheral blood (PB) or bone marrow (BM)) from 2530 unique patients evaluated at Brigham and Women's Hospital and/or Dana-Farber Cancer Institute underwent clinical NGS with a custom, 95-gene, amplicon-based panel (PMID: 27339098). Exons 2-17 and 21-23 of the STAT3 gene were analyzed in each sample using reference transcript 1 (NM_139276). We identified 40 patients with 40 candidate STAT3 mutations (Figure 1). Based on domain localization, variant allele fraction, and population allele frequency, we classified these sequence variants as somatic SH2 domain mutations (n = 21), somatic non-SH2 domain mutations of unknown significance (n = 5) or germline variants (n = 14). Of the 21 patients with somatic SH2 domain mutations, 9 carried a prior diagnosis of T-LGL and 8 were concurrently diagnosed with T-LGL by conventional diagnostic criteria (clonal aberrant T cells in the setting of neutropenia, anemia, or lymphocytosis). The final 4 patients with STAT3 SH2 domain mutations were unexpected diagnoses of T-LGL. These 4 patients were initially referred from outside institutions for MDS based on the reported presence of unilineage erythroid dysplasia (n=2), unquantified ring sideroblasts (n=1), or pancytopenia with unspecified marrow findings (n=1). In 3 of these cases, the STAT3 mutation discovery prompted T-cell flow cytometric analysis of peripheral blood, which revealed an aberrant immunophenotype, and T-cell receptor gamma gene rearrangement studies, which were clonal; these tests are pending in the 4th case. BM evaluation was performed in 12 of 21 patients, including the 4 with suspected MDS; in all cases, the findings did not meet diagnostic criteria for MDS by expert hematopathology review and all showed a normal karyotype. Five additional cases demonstrated somatic non-SH2 domain STAT3 mutations of unknown pathobiologic significance: 3 myeloid neoplasms, 1 chronic lymphocytic leukemia, and 1 autoimmune hemolytic anemia. Additional non-STAT3 mutations were also frequently identified in tumors other than T-LGL. Our experience demonstrates that STAT3 sequencing is a critical component of the evaluation of unexplained cytopenias, and identification of a mutation can clarify ambiguous phenotypes thus averting the consequences of misdiagnosis or diagnostic delay. Notably, several series have reported that MDS and T-LGL can infrequently occur concurrently and thus identification of a STAT3 mutation and a clonal T-LGL population does not exclude the possibility of concomitant MDS. In our cohort, however, no T-LGL patient with a STAT3 mutation demonstrated pathologic evidence of MDS and the majority (19 of 21) showed no other myeloid-associated somatic mutations. In addition, 5 cases in our cohort had likely somatic, non-SH2 domain STAT3 mutations in the context of disparate clinical scenarios, suggesting that these mutations may have a pathogenic role in other hematologic malignancies, a subject of future study. [Display omitted] DeAngelo:Ariad: Consultancy; Pfizer: Consultancy; Novartis: Consultancy; Amgen: Consultancy; Baxter: Consultancy; Incyte: Consultancy; Celgene: Consultancy. Stone:Celator: Consultancy; Jansen: Consultancy; ONO: Consultancy; Agios: Consultancy; Novartis: Consultancy; Pfizer: Consultancy; Celgene: Consultancy, Membership on an entity's Board of Directors or advisory committees; Juno Therapeutics: Consultancy; Amgen: Consultancy; Abbvie: Consultancy, Membership on an entity's Board of Directors or advisory committees; Karyopharm: Consultancy; Merck: Consultancy; Roche: Consultancy; Seattle Genetics: Consultancy; Sunesis Pharmaceuticals: Consultancy; Xenetic Biosciences: Consultancy. Lindsley:MedImmune: Research Funding; Takeda Pharmaceuticals: Consultancy.
The initial clinical presentation of T-cell large granular lymphocytic leukemia (T-LGL) and myelodysplastic syndromes (MDS) can be similar, each characterized by unexplained peripheral cytopenias. However, these diseases are pathobiologically distinct and associated with stark differences in prognosis and therapy. T-LGL is a clonal lymphoid disorder defined by phenotypically abnormal cytotoxic T cells and an indolent clinical course, while MDS is a clonal disorder of hematopoietic stem cells defined by ineffective hematopoiesis, morphologic dysplasia, and an elevated risk of acute leukemia. Despite these differences, distinction between T-LGL and MDS can be challenging and misdiagnosis can significantly delay initiation of appropriate therapy. The recent identification of STAT3 mutations in LGL may facilitate this distinction: activating STAT3 mutations occur in 40-70% of T-LGL cases, primarily within the SH2 domain, but have not been reported in patients with MDS without concomitant T-LGL. STAT3 is included within our clinical next generation sequencing (NGS) panel, which is used to evaluate patients with known or suspected hematologic malignancies, primarily acute myeloid leukemia, MDS and myeloproliferative neoplasms, as well as various lymphocytic leukemias. We report the frequency and type of STAT3 mutations within our patient population and assess the impact of this information on diagnosis. Between 1/1/2015 and 6/30/2016, 3414 samples (primarily peripheral blood (PB) or bone marrow (BM)) from 2530 unique patients evaluated at Brigham and Women's Hospital and/or Dana-Farber Cancer Institute underwent clinical NGS with a custom, 95-gene, amplicon-based panel (PMID: 27339098). Exons 2-17 and 21-23 of the STAT3 gene were analyzed in each sample using reference transcript 1 (NM_139276). We identified 40 patients with 40 candidate STAT3 mutations (Figure 1). Based on domain localization, variant allele fraction, and population allele frequency, we classified these sequence variants as somatic SH2 domain mutations (n = 21), somatic non-SH2 domain mutations of unknown significance (n = 5) or germline variants (n = 14). Of the 21 patients with somatic SH2 domain mutations, 9 carried a prior diagnosis of T-LGL and 8 were concurrently diagnosed with T-LGL by conventional diagnostic criteria (clonal aberrant T cells in the setting of neutropenia, anemia, or lymphocytosis). The final 4 patients with STAT3 SH2 domain mutations were unexpected diagnoses of T-LGL. These 4 patients were initially referred from outside institutions for MDS based on the reported presence of unilineage erythroid dysplasia (n=2), unquantified ring sideroblasts (n=1), or pancytopenia with unspecified marrow findings (n=1). In 3 of these cases, the STAT3 mutation discovery prompted T-cell flow cytometric analysis of peripheral blood, which revealed an aberrant immunophenotype, and T-cell receptor gamma gene rearrangement studies, which were clonal; these tests are pending in the 4th case. BM evaluation was performed in 12 of 21 patients, including the 4 with suspected MDS; in all cases, the findings did not meet diagnostic criteria for MDS by expert hematopathology review and all showed a normal karyotype. Five additional cases demonstrated somatic non-SH2 domain STAT3 mutations of unknown pathobiologic significance: 3 myeloid neoplasms, 1 chronic lymphocytic leukemia, and 1 autoimmune hemolytic anemia. Additional non-STAT3 mutations were also frequently identified in tumors other than T-LGL. Our experience demonstrates that STAT3 sequencing is a critical component of the evaluation of unexplained cytopenias, and identification of a mutation can clarify ambiguous phenotypes thus averting the consequences of misdiagnosis or diagnostic delay. Notably, several series have reported that MDS and T-LGL can infrequently occur concurrently and thus identification of a STAT3 mutation and a clonal T-LGL population does not exclude the possibility of concomitant MDS. In our cohort, however, no T-LGL patient with a STAT3 mutation demonstrated pathologic evidence of MDS and the majority (19 of 21) showed no other myeloid-associated somatic mutations. In addition, 5 cases in our cohort had likely somatic, non-SH2 domain STAT3 mutations in the context of disparate clinical scenarios, suggesting that these mutations may have a pathogenic role in other hematologic malignancies, a subject of future study.
Author Aster, Jon C.
Lee, Mark N.
Lindsley, R. Coleman
Gibson, Christopher J.
Morgan, Elizabeth A.
Steensma, David P.
Stone, Richard M.
Kuo, Frank C.
DeAngelo, Daniel J.
Author_xml – sequence: 1
  givenname: Elizabeth A.
  surname: Morgan
  fullname: Morgan, Elizabeth A.
  organization: Department of Pathology, Brigham and Women's Hospital, Boston, MA
– sequence: 2
  givenname: Mark N.
  surname: Lee
  fullname: Lee, Mark N.
  organization: Department of Pathology, Brigham and Women's Hospital, Boston, MA
– sequence: 3
  givenname: Daniel J.
  surname: DeAngelo
  fullname: DeAngelo, Daniel J.
  organization: Dana-Farber Cancer Institute, Boston, MA
– sequence: 4
  givenname: David P.
  surname: Steensma
  fullname: Steensma, David P.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
– sequence: 5
  givenname: Richard M.
  surname: Stone
  fullname: Stone, Richard M.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
– sequence: 6
  givenname: Frank C.
  surname: Kuo
  fullname: Kuo, Frank C.
  organization: Department of Pathology, Brigham and Women's Hospital, Boston, MA
– sequence: 7
  givenname: Jon C.
  surname: Aster
  fullname: Aster, Jon C.
  organization: Department of Pathology, Brigham and Women's Hospital, Boston, MA
– sequence: 8
  givenname: Christopher J.
  surname: Gibson
  fullname: Gibson, Christopher J.
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
– sequence: 9
  givenname: R. Coleman
  surname: Lindsley
  fullname: Lindsley, R. Coleman
  organization: Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
BookMark eNqFkFFLwzAUhYNMcJv-BCF_oDNJmzV9kjF0DioK63wNXXKzRbt2Jq3Sf2_qfPfhcjlczuGeb4JGdVMDQreUzCgV7G5XNY2evVEmZozNMpoNc4HGlDMREcLICI0JIfMoyVJ6hSbevxNCk5jxMfrc9L6FY9lahTfFoojxc9cG1dS4AN_aeo_XGurWGgsev4ZLEB5_2_aAt7Xv_AlUCxoX0RKqCuel2wNeubLuqtLhvD-eDo3qh_Qcug842vIaXZqy8nDzt6do-_hQLJ-i_GW1Xi7ySFHCskgkPObEpLrkiqssAx3z1GRzUJkxYGgMVGth0likTJEUkt2OcpGo-U4IPeckniJ-zlWu8d6BkSdnj6XrJSVy4CZ_ucmBm2RMBmbDBN_92QfhuS8LTnoVSivQ1oWuUjf2n4Qffpp7qw
ContentType Journal Article
Copyright 2016 American Society of Hematology
Copyright_xml – notice: 2016 American Society of Hematology
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1182/blood.V128.22.919.919
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Biology
Anatomy & Physiology
EISSN 1528-0020
EndPage 919
ExternalDocumentID 10_1182_blood_V128_22_919_919
S0006497119309206
GroupedDBID ---
-~X
.55
1CY
23N
2WC
34G
39C
4.4
53G
5GY
5RE
5VS
6I.
6J9
AAEDW
AAFTH
AAXUO
ABOCM
ABVKL
ACGFO
ADBBV
AENEX
AFOSN
AHPSJ
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CS3
DIK
DU5
E3Z
EBS
EJD
EX3
F5P
FDB
FRP
GS5
GX1
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
OK1
P2P
R.V
RHF
RHI
ROL
SJN
THE
TR2
TWZ
W2D
W8F
WH7
WOQ
WOW
X7M
YHG
YKV
ZA5
0R~
AALRI
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
CITATION
EFKBS
H13
ID FETCH-LOGICAL-c1029-845350f7da5c5c99ed357f96ec9ffef13e1dd8f73872c07e4bb1584c6b88d6503
ISSN 0006-4971
IngestDate Wed Oct 01 00:24:50 EDT 2025
Fri Feb 23 02:36:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License This article is made available under the Elsevier license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1029-845350f7da5c5c99ed357f96ec9ffef13e1dd8f73872c07e4bb1584c6b88d6503
OpenAccessLink https://dx.doi.org/10.1182/blood.V128.22.919.919
PageCount 1
ParticipantIDs crossref_primary_10_1182_blood_V128_22_919_919
elsevier_sciencedirect_doi_10_1182_blood_V128_22_919_919
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-02
PublicationDateYYYYMMDD 2016-12-02
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-02
  day: 02
PublicationDecade 2010
PublicationTitle Blood
PublicationYear 2016
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0014325
Score 2.205782
Snippet ▪ The initial clinical presentation of T-cell large granular lymphocytic leukemia (T-LGL) and myelodysplastic syndromes (MDS) can be similar, each...
The initial clinical presentation of T-cell large granular lymphocytic leukemia (T-LGL) and myelodysplastic syndromes (MDS) can be similar, each characterized...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 919
Title Systematic STAT3 Mutation Testing Identifies Patients with Unsuspected T-Cell Large Granular Lymphocytic Leukemia
URI https://dx.doi.org/10.1182/blood.V128.22.919.919
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1528-0020
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014325
  issn: 0006-4971
  databaseCode: KQ8
  dateStart: 19460101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1528-0020
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0014325
  issn: 0006-4971
  databaseCode: DIK
  dateStart: 19460101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1528-0020
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014325
  issn: 0006-4971
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1528-0020
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014325
  issn: 0006-4971
  databaseCode: AKRWK
  dateStart: 19460101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWqQTw2CDoghpe8QGyihMSPxFmWDjAM7QipKZpdlDjOaARNgUkX5VP4Wq4d51GoEMyiUeLWTttzYl_b596L0AuRl1FOuXCpX0YuKwvq5mBmu3GY8ZAFovBNnO75WXiyZKfn_Hw0-jlQLW3q3JM_9vqVXAdVKANctZfsfyDbNQoFcA74whEQhuM_YbzowzAvkklCnfnGigcTHTxDawGKRg2krnQw_svenW1ZXW2MlyUYnIk71St4My0Kd97B4GWkqbMtAL2WW936TG0-q9VltrMF_MXmmbea3YtmKbXTiTkT7ze1j_YLcs660mM10Yrade_p7px2by5qPcFeZZ3u3vnoDVcoApPXx-_ns53rzI6yU4-TOr1dQyxle18dLtsn_k73TMSAh40Ts-1tY9vbquHVn2OC0DFmjR-A9wla8wjx4LNeV3sn3PbCWGnwvcCy9WOio7nfIDBi6LQgx-8_dDtUjJImO4b9GdY7DG72au-t9ts9A1smuYfu2kkInjSMuo9Gqhqjw0mV1evVFr_ERhZs9lvG6Obr9uz2tE0OOEa35laTcYi-9SzEhoW4ZSG2LMQ9C3HLQqxZiAcsxA0LsWEhblmIByzELQsfoOXbN8n0xLWJPFwZaHmVYJxy6AuKjEsu41gVlEdlHCoZl6UqA6qCohBlREVEpB8plucBGMYyzIUoYApBH6KDal2pRwiznErGeSiDsmAy0JcxL_3MZxETYaaOkNf-zenXJl5Laua5gqQGl1TjkhKSAib6dYREC0Zqjc7GmEyBP3-v-vj6VZ-gO_2T8hQd1N836hlYt3X-3NDsF8nPowI
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+STAT3+Mutation+Testing+Identifies+Patients+with+Unsuspected+T-Cell+Large+Granular+Lymphocytic+Leukemia&rft.jtitle=Blood&rft.au=Morgan%2C+Elizabeth+A.&rft.au=Lee%2C+Mark+N.&rft.au=DeAngelo%2C+Daniel+J.&rft.au=Steensma%2C+David+P.&rft.date=2016-12-02&rft.pub=Elsevier+Inc&rft.issn=0006-4971&rft.eissn=1528-0020&rft.volume=128&rft.issue=22&rft.spage=919&rft.epage=919&rft_id=info:doi/10.1182%2Fblood.V128.22.919.919&rft.externalDocID=S0006497119309206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-4971&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-4971&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-4971&client=summon