Quantitative Evaluation of Vacuum-Induced Morphological Changes in Knee-Disarticulation: A Case Study for Personalized Prosthetic Socket Design

Achieving a best-fit prosthetic socket is essential to comfort, functional performance, and long-term residual limb health in lower-limb amputees. To our knowledge, no previous study has quantitatively compared in vivo residual limb geometry under vacuum versus non-vacuum conditions using high-resol...

Full description

Saved in:
Bibliographic Details
Published inSymmetry (Basel) Vol. 17; no. 10; p. 1719
Main Authors Darwich, Mhd Ayham, Nazha, Hasan Mhd, Ibrahim, Kaysse, Kamleh, Lourance, Shash, Maysaa, Ismaiel, Ebrahim
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 13.10.2025
Subjects
Online AccessGet full text
ISSN2073-8994
2073-8994
DOI10.3390/sym17101719

Cover

More Information
Summary:Achieving a best-fit prosthetic socket is essential to comfort, functional performance, and long-term residual limb health in lower-limb amputees. To our knowledge, no previous study has quantitatively compared in vivo residual limb geometry under vacuum versus non-vacuum conditions using high-resolution computed tomography (CT). In this patient-specific case study of a bilateral knee-disarticulation (KD) amputee, both residual limbs were scanned under standardized conditions: one enclosed in a vacuum-compressed sleeve and the contralateral limb untreated as a natural control, thereby minimizing inter-subject variability. CT-based 3D reconstructions enabled volumetric and cross-sectional quantification, including symmetry/asymmetry analysis of paired limbs, while finite element analysis (FEA) assessed the biomechanical consequences for socket performance. Vacuum application resulted in a 4.1% reduction in total limb volume and a 5.3% reduction in mid-thigh cross-sectional area, with regionally asymmetric displacement of soft tissues. FEA demonstrated that vacuum-induced geometry reduced peak Von Mises stresses (27.43 MPa to 15.83 MPa), minimized maximum displacement (1.72 mm to 0.88 mm), and improved minimum factor of safety (~2.0 to ~3.0), while homogenizing contact pressure distribution (peak fell from 2.42 to 1.28 N/mm2). These findings provide preliminary CT-based evidence that vacuum application induces measurable morphological adaptations with implications for socket conformity, comfort, and load transfer. While limited to a single patient, this study highlights the potential of vacuum-induced modeling to inform personalized prosthetic socket design.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2073-8994
2073-8994
DOI:10.3390/sym17101719