Image Compression of Neural Network Based on Corner Block
Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development...
        Saved in:
      
    
          | Published in | Journal of multimedia Vol. 9; no. 1; p. 166 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oulu
          Academy Publisher
    
        01.01.2014
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1796-2048 1796-2048  | 
| DOI | 10.4304/jmm.9.1.166-172 | 
Cover
| Abstract | Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development of digital image. For example, for a color image whose resolution rate is 1280x1024, each pixel needs 24B for storage, and the total data amount is about 3.75MB. If the earth satellite transmits the acquired image to the earth at 30 frames per second, the transmitting data size in 1 second is about 112.5MB. Under the condition of the existing communication capacity, if the image is not compressed, the real-time transmission of most multimedia information can't be completed. High-speed transmission and storage of digital image has become the biggest obstacle of promoting digital image communication. So it is necessary to compress image. Data compression not only can rapidly transmit various information sources, improve the utilization rage of information channel and reduce transmitted power, but also can save energy and reduce storage capacity. More and more attentions of people have been paid to the application of artificial neural network to image compression, the reason for which is that artificial neural network has good fault tolerance, self-organization and adaptivity compared with traditional compression methods. So the predetermined data coding algorithm is not needed in the process of image compression. Neural network can independently complete the image coding and compression according to the characteristics of image. The paper combines corner detection technology with artificial neural network image compression, and designs a new neural network image compression encoding based on corner block with reasonable structure, high compression rate and rapid convergence rate. Index Terms-Image Compression; Neutral Network; Corner Block | 
    
|---|---|
| AbstractList | Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development of digital image. For example, for a color image whose resolution rate is 1280x1024, each pixel needs 24B for storage, and the total data amount is about 3.75MB. If the earth satellite transmits the acquired image to the earth at 30 frames per second, the transmitting data size in 1 second is about 112.5MB. Under the condition of the existing communication capacity, if the image is not compressed, the real-time transmission of most multimedia information can't be completed. High-speed transmission and storage of digital image has become the biggest obstacle of promoting digital image communication. So it is necessary to compress image. Data compression not only can rapidly transmit various information sources, improve the utilization rage of information channel and reduce transmitted power, but also can save energy and reduce storage capacity. More and more attentions of people have been paid to the application of artificial neural network to image compression, the reason for which is that artificial neural network has good fault tolerance, self-organization and adaptivity compared with traditional compression methods. So the predetermined data coding algorithm is not needed in the process of image compression. Neural network can independently complete the image coding and compression according to the characteristics of image. The paper combines corner detection technology with artificial neural network image compression, and designs a new neural network image compression encoding based on corner block with reasonable structure, high compression rate and rapid convergence rate. Index Terms-Image Compression; Neutral Network; Corner Block | 
    
| Author | Zhang, Wenjing Yao, Wei Ma, Donglai  | 
    
| Author_xml | – sequence: 1 givenname: Wenjing surname: Zhang fullname: Zhang, Wenjing – sequence: 2 givenname: Wei surname: Yao fullname: Yao, Wei – sequence: 3 givenname: Donglai surname: Ma fullname: Ma, Donglai  | 
    
| BookMark | eNpdkEtLw0AUhQepYFtduw24cZN07rySWdrgo1B0o-thOrmRtkmmzjSI_96RuhBX58L9OBy-GZkMfkBCroEWglOx2PV9oQsoQKkcSnZGplBqlTMqqsmf-4LMYtxRqhhlckr0qrfvmNW-PwSMceuHzLfZM47BdimOnz7ss6WN2GTpVfswYMiWnXf7S3Le2i7i1W_OydvD_Wv9lK9fHlf13Tp3QEHmVgrNrEBZVbJSrZANCi4cQMPtRroWBLYNoNswhyWwRgiXVlaikhsruWr5nNyeeg_Bf4wYj6bfRoddZwf0YzQgqeKKKi0TevMP3fkxDGmdAVGWSmspqkQtTpQLPsaArTmEbW_DlwFqflSapNJoAyapNEkl_wZaUmby | 
    
| Cites_doi | 10.1109/72.761706 10.1016/j.optcom.2010.04.100 10.1109/TIP.2002.1014998 10.1109/TNN.2009.2030585 10.1016/j.optcom.2010.10.056 10.1016/j.patcog.2004.03.010 10.3724/SP.J.1004.2008.01508 10.1109/26.477498 10.1016/j.inffus.2010.03.002 10.1049/el:20000267 10.4304/jmm.8.3.270-276 10.1016/j.optcom.2009.05.021 10.1109/5.775414 10.1049/el:20020212 10.1006/gmip.1995.1022 10.1109/42.730397 10.1007/s11517-012-0943-3  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Academy Publisher Jan 2014 | 
    
| Copyright_xml | – notice: Copyright Academy Publisher Jan 2014 | 
    
| DBID | AAYXX CITATION 7SC 8FD 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L.- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI  | 
    
| DOI | 10.4304/jmm.9.1.166-172 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest Central Advanced Technologies & Aerospace Database ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1796-2048 | 
    
| EndPage | 166 | 
    
| ExternalDocumentID | 3182630371 10_4304_jmm_9_1_166_172  | 
    
| Genre | General Information | 
    
| GroupedDBID | .4S .DC 2WC 5VS 8FE 8FG 8R4 8R5 AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION E3Z EDO HCIFZ I-F ITG ITH KQ8 P2P P62 PHGZM PHGZT PQGLB PUEGO Q2X TR2 TUS 7SC 8FD DWQXO JQ2 L.- L7M L~C L~D PKEHL PQEST PQQKQ PQUKI  | 
    
| ID | FETCH-LOGICAL-c1015-a5492a4e588586f45de434c11d3ab5cf14efd1ecb2ce712d44c0488485ba536f3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1796-2048 | 
    
| IngestDate | Thu Oct 02 09:04:32 EDT 2025 Fri Jul 25 07:36:30 EDT 2025 Wed Oct 01 03:58:30 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c1015-a5492a4e588586f45de434c11d3ab5cf14efd1ecb2ce712d44c0488485ba536f3 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-General Information-1 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1477699548 | 
    
| PQPubID | 136096 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_1506360695 proquest_journals_1477699548 crossref_primary_10_4304_jmm_9_1_166_172  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-01-01 20140101  | 
    
| PublicationDateYYYYMMDD | 2014-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2014 text: 2014-01-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oulu | 
    
| PublicationPlace_xml | – name: Oulu | 
    
| PublicationTitle | Journal of multimedia | 
    
| PublicationYear | 2014 | 
    
| Publisher | Academy Publisher | 
    
| Publisher_xml | – name: Academy Publisher | 
    
| References | ref13 Wang (ref20) ref12 ref15 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref7 ref9 ref4 ref3 ref6 Bhatnagar (ref14) 2012 ref5 Li (ref8) 2005; 9  | 
    
| References_xml | – ident: ref6 doi: 10.1109/72.761706 – ident: ref20 article-title: Multisource Image Fusion Based on DWT and Simplified Pulse Coupled Neural Network. publication-title: Applied Mechanics and Materials – ident: ref10 doi: 10.1016/j.optcom.2010.04.100 – volume: 9 volume-title: Proceedings of 2005 International Conference on year: 2005 ident: ref8 article-title: A new image fusion algorithm based on wavelet packet analysis and PCNN. – ident: ref2 doi: 10.1109/TIP.2002.1014998 – issn: 09574174 year: 2012 ident: ref14 article-title: Human visual system inspired multi-modal medical image fusion framework. publication-title: Expert Syst Appl – ident: ref7 doi: 10.1109/TNN.2009.2030585 – ident: ref9 doi: 10.1016/j.optcom.2010.10.056 – ident: ref4 doi: 10.1016/j.patcog.2004.03.010 – ident: ref11 doi: 10.3724/SP.J.1004.2008.01508 – ident: ref13 doi: 10.1109/26.477498 – ident: ref3 doi: 10.1016/j.inffus.2010.03.002 – ident: ref18 doi: 10.1049/el:20000267 – ident: ref19 doi: 10.4304/jmm.8.3.270-276 – ident: ref17 doi: 10.1016/j.optcom.2009.05.021 – ident: ref1 doi: 10.1109/5.775414 – ident: ref15 doi: 10.1049/el:20020212 – ident: ref5 doi: 10.1006/gmip.1995.1022 – ident: ref16 doi: 10.1109/42.730397 – ident: ref12 doi: 10.1007/s11517-012-0943-3  | 
    
| SSID | ssj0062025 | 
    
| Score | 1.9106838 | 
    
| Snippet | Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Index Database  | 
    
| StartPage | 166 | 
    
| SubjectTerms | Artificial neural networks | 
    
| Title | Image Compression of Neural Network Based on Corner Block | 
    
| URI | https://www.proquest.com/docview/1477699548 https://www.proquest.com/docview/1506360695  | 
    
| Volume | 9 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1796-2048 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062025 issn: 1796-2048 databaseCode: KQ8 dateStart: 20060101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1796-2048 dateEnd: 20150131 omitProxy: true ssIdentifier: ssj0062025 issn: 1796-2048 databaseCode: BENPR dateStart: 20100201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1796-2048 dateEnd: 20150131 omitProxy: true ssIdentifier: ssj0062025 issn: 1796-2048 databaseCode: 8FG dateStart: 20100201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu7DwRhQKMhIDS0rdnB1nQIiilodEhRCV2CwntgdQE179_5ybBNSFMboksu58T5-_AzilCMTHuZckAaki8sdplKIREbkm0XfcCGtDaeBhIm-neP8iXlZg0tyFCW2VjU1cGGpb5qFGfs4xSWQAL1OX7x9RmBoVTlebERqmHq1gLxYQY6vQHgRkrBa0h6PJ41NjmyWl-mJxRTINq0NVgf0g5fTnr7NZL-3xHpcy4slg2U8tm-mF7xlvwnodNLKrSspbsOKKbdhoBjKwWj93IL2bkXlggVC1txas9Czgb9DXk6rhmw3Jb1lGpOsyDLlnQ3Jnb7swHY-er2-jejZClJMSicgEZDWDTigllPQorMMYc85tbDKRe47OW-7ybJC7hA8sYh50FZXIjIilj_egVZSF2weWeWvQI0UCVqBXJssUqblJ6anvDSYdOGs4od8rCAxNqUNgmiam6VRzTUzTxLQOdBtO6VoXvvSf5Dpw8kumXRyOJkzhyjm9I_oBuEym4uD_XxzCGi0UqyJIF1rfn3N3RGHBd3YMq2p8c1xL_AdfXrW7 | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONALlAJieRQjtVIvWeJk7DgHhLo8tFtgVSGQuBkntg-gTXgK8ef62zreJK249MYxcmxZn8fzjV_fAHylCMSnpZc0AlJFxMd5lKMREVGTiB03wtqwNXA2lsNL_Hklrmbgd_cWJlyr7Hzi1FHbugx75Lscs0wG8TK1f3cfhaxR4XS1S6Fh2tQKdm8qMdY-7Dhxry-0hHvcGx3SeH9LkuOji4Nh1GYZiEoyRxGZoFFm0AmlhJIehXWYYsm5TU0hSs_RectdWSSly3hiEctg9ahEYUQqfUrtfoA5qpPT4m9ucDT-dd5xgUziadpXsvqABqpGXAjTGHdvJpN-3ud9LmXEs-QtL76lhSnXHX-ChTZIZT8aq1qCGVd9hsUuAQRr_cEy5KMJuSMWCprrtBWrPQt6H1R73FwwZwPiScuo6KB-qKj2gOjzdgUu3wWlVZit6sqtASu8NeiRIg8r0CtTFIrcisnpK_YGsx5875DQd43khqalSgBNE2g611wTaJpA68Fmh5Ru596j_mcpPdj5W0yzJhyFmMrVz_SPiINQmszF-v-b2Ib54cXZqT4djU824CN1GpsNmE2YfXp4dlsUkjwVX9pxZ3D93qb2B7JE8WE | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RkKpeaClULFAwEkhcshsnY8c5IFQ-FrbQFQeQuLlObB9abcKnKv4av47xJiniwo1j5NiKnp_nTezxDMAWeSA-Lb2kGZAqIj3OoxyNiEiaROy4EdaGrYFfY3lyiT-vxNUMPHV3YUJYZWcTp4ba1mXYIx9wzDIZkpepgW_DIs4Ph3vXN1GoIBVOWrtyGg1FTt3jP_p9u9sdHdJcbyfJ8Oji4CRqKwxEJVFRRCbkJzPohFJCSY_COkyx5NymphCl5-i85a4sktJlPLGIZWA8KlEYkUqf0rgfYC4LWdzDLfXhcacCMomnBV-J7wEHVE1aIUxjHPyZTPp5n_e5lBHPkteK-FoQpio3_ALzrXvKfjR8WoAZV32Fz13pB9ZagkXIRxMyRCw0NIG0Fas9C5k-qPe4CS1n-6SQllHTQX1bUe99Es6_S3D5Lhh9g9mqrtwysMJbgx7J57ACvTJFocigmJyeYm8w68FOh4S-bpJtaPpJCaBpAk3nmmsCTRNoPVjrkNLtqrvTLxzpweb_Zlov4RDEVK5-oHdEHFKkyVysvD3EBnwkgumz0fh0FT7RN2Oz87IGs_e3D-47-SL3xfp00hn8fm-WPQMUXO77 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Compression+of+Neural+Network+Based+on+Corner+Block&rft.jtitle=Journal+of+multimedia&rft.au=Zhang%2C+Wenjing&rft.au=Yao%2C+Wei&rft.au=Ma%2C+Donglai&rft.date=2014-01-01&rft.issn=1796-2048&rft.eissn=1796-2048&rft.volume=9&rft.issue=1&rft_id=info:doi/10.4304%2Fjmm.9.1.166-172&rft.externalDBID=n%2Fa&rft.externalDocID=10_4304_jmm_9_1_166_172 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1796-2048&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1796-2048&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1796-2048&client=summon |