Image Compression of Neural Network Based on Corner Block

Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development...

Full description

Saved in:
Bibliographic Details
Published inJournal of multimedia Vol. 9; no. 1; p. 166
Main Authors Zhang, Wenjing, Yao, Wei, Ma, Donglai
Format Journal Article
LanguageEnglish
Published Oulu Academy Publisher 01.01.2014
Subjects
Online AccessGet full text
ISSN1796-2048
1796-2048
DOI10.4304/jmm.9.1.166-172

Cover

Abstract Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development of digital image. For example, for a color image whose resolution rate is 1280x1024, each pixel needs 24B for storage, and the total data amount is about 3.75MB. If the earth satellite transmits the acquired image to the earth at 30 frames per second, the transmitting data size in 1 second is about 112.5MB. Under the condition of the existing communication capacity, if the image is not compressed, the real-time transmission of most multimedia information can't be completed. High-speed transmission and storage of digital image has become the biggest obstacle of promoting digital image communication. So it is necessary to compress image. Data compression not only can rapidly transmit various information sources, improve the utilization rage of information channel and reduce transmitted power, but also can save energy and reduce storage capacity. More and more attentions of people have been paid to the application of artificial neural network to image compression, the reason for which is that artificial neural network has good fault tolerance, self-organization and adaptivity compared with traditional compression methods. So the predetermined data coding algorithm is not needed in the process of image compression. Neural network can independently complete the image coding and compression according to the characteristics of image. The paper combines corner detection technology with artificial neural network image compression, and designs a new neural network image compression encoding based on corner block with reasonable structure, high compression rate and rapid convergence rate. Index Terms-Image Compression; Neutral Network; Corner Block
AbstractList Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not compressed, high transmission rate for digital image transmission and tremendous capacity for digital image storage can hinder the development of digital image. For example, for a color image whose resolution rate is 1280x1024, each pixel needs 24B for storage, and the total data amount is about 3.75MB. If the earth satellite transmits the acquired image to the earth at 30 frames per second, the transmitting data size in 1 second is about 112.5MB. Under the condition of the existing communication capacity, if the image is not compressed, the real-time transmission of most multimedia information can't be completed. High-speed transmission and storage of digital image has become the biggest obstacle of promoting digital image communication. So it is necessary to compress image. Data compression not only can rapidly transmit various information sources, improve the utilization rage of information channel and reduce transmitted power, but also can save energy and reduce storage capacity. More and more attentions of people have been paid to the application of artificial neural network to image compression, the reason for which is that artificial neural network has good fault tolerance, self-organization and adaptivity compared with traditional compression methods. So the predetermined data coding algorithm is not needed in the process of image compression. Neural network can independently complete the image coding and compression according to the characteristics of image. The paper combines corner detection technology with artificial neural network image compression, and designs a new neural network image compression encoding based on corner block with reasonable structure, high compression rate and rapid convergence rate. Index Terms-Image Compression; Neutral Network; Corner Block
Author Zhang, Wenjing
Yao, Wei
Ma, Donglai
Author_xml – sequence: 1
  givenname: Wenjing
  surname: Zhang
  fullname: Zhang, Wenjing
– sequence: 2
  givenname: Wei
  surname: Yao
  fullname: Yao, Wei
– sequence: 3
  givenname: Donglai
  surname: Ma
  fullname: Ma, Donglai
BookMark eNpdkEtLw0AUhQepYFtduw24cZN07rySWdrgo1B0o-thOrmRtkmmzjSI_96RuhBX58L9OBy-GZkMfkBCroEWglOx2PV9oQsoQKkcSnZGplBqlTMqqsmf-4LMYtxRqhhlckr0qrfvmNW-PwSMceuHzLfZM47BdimOnz7ss6WN2GTpVfswYMiWnXf7S3Le2i7i1W_OydvD_Wv9lK9fHlf13Tp3QEHmVgrNrEBZVbJSrZANCi4cQMPtRroWBLYNoNswhyWwRgiXVlaikhsruWr5nNyeeg_Bf4wYj6bfRoddZwf0YzQgqeKKKi0TevMP3fkxDGmdAVGWSmspqkQtTpQLPsaArTmEbW_DlwFqflSapNJoAyapNEkl_wZaUmby
Cites_doi 10.1109/72.761706
10.1016/j.optcom.2010.04.100
10.1109/TIP.2002.1014998
10.1109/TNN.2009.2030585
10.1016/j.optcom.2010.10.056
10.1016/j.patcog.2004.03.010
10.3724/SP.J.1004.2008.01508
10.1109/26.477498
10.1016/j.inffus.2010.03.002
10.1049/el:20000267
10.4304/jmm.8.3.270-276
10.1016/j.optcom.2009.05.021
10.1109/5.775414
10.1049/el:20020212
10.1006/gmip.1995.1022
10.1109/42.730397
10.1007/s11517-012-0943-3
ContentType Journal Article
Copyright Copyright Academy Publisher Jan 2014
Copyright_xml – notice: Copyright Academy Publisher Jan 2014
DBID AAYXX
CITATION
7SC
8FD
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L.-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.4304/jmm.9.1.166-172
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest Central
Advanced Technologies & Aerospace Database
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1796-2048
EndPage 166
ExternalDocumentID 3182630371
10_4304_jmm_9_1_166_172
Genre General Information
GroupedDBID .4S
.DC
2WC
5VS
8FE
8FG
8R4
8R5
AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EDO
HCIFZ
I-F
ITG
ITH
KQ8
P2P
P62
PHGZM
PHGZT
PQGLB
PUEGO
Q2X
TR2
TUS
7SC
8FD
DWQXO
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c1015-a5492a4e588586f45de434c11d3ab5cf14efd1ecb2ce712d44c0488485ba536f3
IEDL.DBID BENPR
ISSN 1796-2048
IngestDate Thu Oct 02 09:04:32 EDT 2025
Fri Jul 25 07:36:30 EDT 2025
Wed Oct 01 03:58:30 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1015-a5492a4e588586f45de434c11d3ab5cf14efd1ecb2ce712d44c0488485ba536f3
Notes SourceType-Scholarly Journals-1
ObjectType-General Information-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1477699548
PQPubID 136096
PageCount 1
ParticipantIDs proquest_miscellaneous_1506360695
proquest_journals_1477699548
crossref_primary_10_4304_jmm_9_1_166_172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-01-01
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 2014-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Oulu
PublicationPlace_xml – name: Oulu
PublicationTitle Journal of multimedia
PublicationYear 2014
Publisher Academy Publisher
Publisher_xml – name: Academy Publisher
References ref13
Wang (ref20)
ref12
ref15
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref7
ref9
ref4
ref3
ref6
Bhatnagar (ref14) 2012
ref5
Li (ref8) 2005; 9
References_xml – ident: ref6
  doi: 10.1109/72.761706
– ident: ref20
  article-title: Multisource Image Fusion Based on DWT and Simplified Pulse Coupled Neural Network.
  publication-title: Applied Mechanics and Materials
– ident: ref10
  doi: 10.1016/j.optcom.2010.04.100
– volume: 9
  volume-title: Proceedings of 2005 International Conference on
  year: 2005
  ident: ref8
  article-title: A new image fusion algorithm based on wavelet packet analysis and PCNN.
– ident: ref2
  doi: 10.1109/TIP.2002.1014998
– issn: 09574174
  year: 2012
  ident: ref14
  article-title: Human visual system inspired multi-modal medical image fusion framework.
  publication-title: Expert Syst Appl
– ident: ref7
  doi: 10.1109/TNN.2009.2030585
– ident: ref9
  doi: 10.1016/j.optcom.2010.10.056
– ident: ref4
  doi: 10.1016/j.patcog.2004.03.010
– ident: ref11
  doi: 10.3724/SP.J.1004.2008.01508
– ident: ref13
  doi: 10.1109/26.477498
– ident: ref3
  doi: 10.1016/j.inffus.2010.03.002
– ident: ref18
  doi: 10.1049/el:20000267
– ident: ref19
  doi: 10.4304/jmm.8.3.270-276
– ident: ref17
  doi: 10.1016/j.optcom.2009.05.021
– ident: ref1
  doi: 10.1109/5.775414
– ident: ref15
  doi: 10.1049/el:20020212
– ident: ref5
  doi: 10.1006/gmip.1995.1022
– ident: ref16
  doi: 10.1109/42.730397
– ident: ref12
  doi: 10.1007/s11517-012-0943-3
SSID ssj0062025
Score 1.9106838
Snippet Most information received by the human is acquired through vision. However, image has the largest data amount in three information forms. If the image is not...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 166
SubjectTerms Artificial neural networks
Title Image Compression of Neural Network Based on Corner Block
URI https://www.proquest.com/docview/1477699548
https://www.proquest.com/docview/1506360695
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1796-2048
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062025
  issn: 1796-2048
  databaseCode: KQ8
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1796-2048
  dateEnd: 20150131
  omitProxy: true
  ssIdentifier: ssj0062025
  issn: 1796-2048
  databaseCode: BENPR
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1796-2048
  dateEnd: 20150131
  omitProxy: true
  ssIdentifier: ssj0062025
  issn: 1796-2048
  databaseCode: 8FG
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu7DwRhQKMhIDS0rdnB1nQIiilodEhRCV2CwntgdQE179_5ybBNSFMboksu58T5-_AzilCMTHuZckAaki8sdplKIREbkm0XfcCGtDaeBhIm-neP8iXlZg0tyFCW2VjU1cGGpb5qFGfs4xSWQAL1OX7x9RmBoVTlebERqmHq1gLxYQY6vQHgRkrBa0h6PJ41NjmyWl-mJxRTINq0NVgf0g5fTnr7NZL-3xHpcy4slg2U8tm-mF7xlvwnodNLKrSspbsOKKbdhoBjKwWj93IL2bkXlggVC1txas9Czgb9DXk6rhmw3Jb1lGpOsyDLlnQ3Jnb7swHY-er2-jejZClJMSicgEZDWDTigllPQorMMYc85tbDKRe47OW-7ybJC7hA8sYh50FZXIjIilj_egVZSF2weWeWvQI0UCVqBXJssUqblJ6anvDSYdOGs4od8rCAxNqUNgmiam6VRzTUzTxLQOdBtO6VoXvvSf5Dpw8kumXRyOJkzhyjm9I_oBuEym4uD_XxzCGi0UqyJIF1rfn3N3RGHBd3YMq2p8c1xL_AdfXrW7
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONALlAJieRQjtVIvWeJk7DgHhLo8tFtgVSGQuBkntg-gTXgK8ef62zreJK249MYxcmxZn8fzjV_fAHylCMSnpZc0AlJFxMd5lKMREVGTiB03wtqwNXA2lsNL_Hklrmbgd_cWJlyr7Hzi1FHbugx75Lscs0wG8TK1f3cfhaxR4XS1S6Fh2tQKdm8qMdY-7Dhxry-0hHvcGx3SeH9LkuOji4Nh1GYZiEoyRxGZoFFm0AmlhJIehXWYYsm5TU0hSs_RectdWSSly3hiEctg9ahEYUQqfUrtfoA5qpPT4m9ucDT-dd5xgUziadpXsvqABqpGXAjTGHdvJpN-3ud9LmXEs-QtL76lhSnXHX-ChTZIZT8aq1qCGVd9hsUuAQRr_cEy5KMJuSMWCprrtBWrPQt6H1R73FwwZwPiScuo6KB-qKj2gOjzdgUu3wWlVZit6sqtASu8NeiRIg8r0CtTFIrcisnpK_YGsx5875DQd43khqalSgBNE2g611wTaJpA68Fmh5Ru596j_mcpPdj5W0yzJhyFmMrVz_SPiINQmszF-v-b2Ib54cXZqT4djU824CN1GpsNmE2YfXp4dlsUkjwVX9pxZ3D93qb2B7JE8WE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1RkKpeaClULFAwEkhcshsnY8c5IFQ-FrbQFQeQuLlObB9abcKnKv4av47xJiniwo1j5NiKnp_nTezxDMAWeSA-Lb2kGZAqIj3OoxyNiEiaROy4EdaGrYFfY3lyiT-vxNUMPHV3YUJYZWcTp4ba1mXYIx9wzDIZkpepgW_DIs4Ph3vXN1GoIBVOWrtyGg1FTt3jP_p9u9sdHdJcbyfJ8Oji4CRqKwxEJVFRRCbkJzPohFJCSY_COkyx5NymphCl5-i85a4sktJlPLGIZWA8KlEYkUqf0rgfYC4LWdzDLfXhcacCMomnBV-J7wEHVE1aIUxjHPyZTPp5n_e5lBHPkteK-FoQpio3_ALzrXvKfjR8WoAZV32Fz13pB9ZagkXIRxMyRCw0NIG0Fas9C5k-qPe4CS1n-6SQllHTQX1bUe99Es6_S3D5Lhh9g9mqrtwysMJbgx7J57ACvTJFocigmJyeYm8w68FOh4S-bpJtaPpJCaBpAk3nmmsCTRNoPVjrkNLtqrvTLxzpweb_Zlov4RDEVK5-oHdEHFKkyVysvD3EBnwkgumz0fh0FT7RN2Oz87IGs_e3D-47-SL3xfp00hn8fm-WPQMUXO77
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Image+Compression+of+Neural+Network+Based+on+Corner+Block&rft.jtitle=Journal+of+multimedia&rft.au=Zhang%2C+Wenjing&rft.au=Yao%2C+Wei&rft.au=Ma%2C+Donglai&rft.date=2014-01-01&rft.issn=1796-2048&rft.eissn=1796-2048&rft.volume=9&rft.issue=1&rft_id=info:doi/10.4304%2Fjmm.9.1.166-172&rft.externalDBID=n%2Fa&rft.externalDocID=10_4304_jmm_9_1_166_172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1796-2048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1796-2048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1796-2048&client=summon