Support vector classification for SAR of 5-HT3 receptor antagonists

In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently use...

Full description

Saved in:
Bibliographic Details
Published inJournal of Shanghai University Vol. 10; no. 4; pp. 366 - 370
Main Author 杨善升 陆文聪 纪晓波 陈念贻
Format Journal Article
LanguageChinese
English
Published 01.08.2006
Subjects
Online AccessGet full text
ISSN1007-6417
1863-236X
DOI10.1007/s11741-006-0016-7

Cover

Abstract In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently used in the field. The prediction performance of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the accuracy of prediction of SVC model was higher than those of back propagation artificial neural network (BP ANN), K-nearest neighbor (KNN) and Fisher methods.
AbstractList In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently used in the field. The prediction performance of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the accuracy of prediction of SVC model was higher than those of back propagation artificial neural network (BP ANN) , K-nearest neighbor (KNN) and Fisher methods.
In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently used in the field. The prediction performance of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the accuracy of prediction of SVC model was higher than those of back propagation artificial neural network (BP ANN), K-nearest neighbor (KNN) and Fisher methods.
Author 杨善升 陆文聪 纪晓波 陈念贻
AuthorAffiliation Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China
Author_xml – sequence: 1
  fullname: 杨善升 陆文聪 纪晓波 陈念贻
BookMark eNotkE9LAzEQxYNUsK1-AG-LB2-rmWQ3f46lqBUKgq3gLaTZpEa3yTbZCn57t7SHYYbhveHNb4JGIQaL0C3gB8CYP2YAXkGJMRsKWMkv0BgEoyWh7HM0zIOoZBXwKzTJ-RtjCljQMZqvDl0XU1_8WtPHVJhW5-ydN7r3MRRuWK1m70V0RV0u1rRI1tjuKNSh19sYfO7zNbp0us325tyn6OP5aT1flMu3l9f5bFkaOOYSDbZV5VhjcGWY0ILbqtbQSCo5J9hZtmm0lJWhEoSWxmFHgFtCpakNYRs6Rfenu12K-4PNvdr5bGzb6mDjISsi61qw4ekpgpPQpJhzsk51ye90-lOA1ZGEOuFSQyx1xKX44Lk7e75i2O592KqNNj_Ot1YRwoiQNab_-3xpwg
Cites_doi 10.1126/science.1718042
10.1002/cem.1180070402
10.1016/S0097-8485(01)00094-8
10.1021/ci00020a024
10.1177/002029400103400803
10.1038/339706a0
10.1016/B978-012213815-7/50008-X
ContentType Journal Article
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s11741-006-0016-7
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Support vector classification for SAR of 5-HT3 receptor antagonists
EISSN 1863-236X
EndPage 370
ExternalDocumentID 10_1007_s11741_006_0016_7
22628950
GroupedDBID -5D
-5G
-BR
-Y2
.86
0R~
188
29L
2B.
2C-
2JY
2RA
4.4
5GY
5VS
6NX
8RM
8UJ
92D
92I
92L
93E
93N
AAIAL
ABMNI
ABTEG
ADKPE
ADRFC
AFLOW
AGJBK
AHSBF
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
BA0
BAPOH
CAG
COF
CQIGP
CS3
CSCUP
CW9
DU5
EBS
EJD
H13
HF~
HG6
HLICF
HZ~
I~X
J9A
KOV
O9-
QOS
R9I
ROL
RPX
RSV
S1Z
S27
SDH
SMT
SOJ
T13
TCJ
TGH
U2A
UGNYK
UZ4
VC2
W94
WK8
Z85
~WA
AAYXX
AAYZH
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c1006-8d0e44f6dc04c68a87e45a1d9397720fe6bda994c3918a9cf0f217e239c5c26b3
ISSN 1007-6417
IngestDate Thu Sep 04 17:36:55 EDT 2025
Tue Jul 01 02:29:05 EDT 2025
Thu Nov 24 20:34:44 EST 2022
IsPeerReviewed false
IsScholarly true
Issue 4
Language Chinese
English
License http://www.springer.com/tdm
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1006-8d0e44f6dc04c68a87e45a1d9397720fe6bda994c3918a9cf0f217e239c5c26b3
Notes O641
31-1735/N
support vector classification, structure-activity relationship, chemometrics, 5-HT3 receptor antagonists.
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 29558686
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_29558686
crossref_primary_10_1007_s11741_006_0016_7
chongqing_backfile_22628950
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20060801
PublicationDateYYYYMMDD 2006-08-01
PublicationDate_xml – month: 08
  year: 2006
  text: 20060801
  day: 01
PublicationDecade 2000
PublicationTitle Journal of Shanghai University
PublicationTitleAlternate Journal of Shanghai University(English Edition)
PublicationYear 2006
References D J Livingstone (16_CR5) 1996
D Domine (16_CR3) 1993; 7
B Bienfait (16_CR4) 1994; 34
A V Maricq (16_CR2) 1991; 254
A Derkach V.Suprenant (16_CR1) 1989; 339
M Trotter (16_CR8) 2001; 34
R Burbidge (16_CR7) 2001; 26
Nian-yi Chen (16_CR9) 2002; 19
Wen-cong Lu (16_CR10) 2002; 19
VN Vapnik (16_CR6) 1998
Hui Zhao (16_CR11) 2004; 62
References_xml – volume: 254
  start-page: 432
  year: 1991
  ident: 16_CR2
  publication-title: Science
  doi: 10.1126/science.1718042
– volume: 7
  start-page: 227
  year: 1993
  ident: 16_CR3
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.1180070402
– volume-title: Statistical Learning Theory [M]
  year: 1998
  ident: 16_CR6
– volume: 19
  start-page: 673
  year: 2002
  ident: 16_CR9
  publication-title: Computers and Applied Chemistry
– volume: 62
  start-page: 649
  year: 2004
  ident: 16_CR11
  publication-title: Acta Chimica Sinica
– volume: 26
  start-page: 5
  issue: 5
  year: 2001
  ident: 16_CR7
  publication-title: Computer and Chemistry
  doi: 10.1016/S0097-8485(01)00094-8
– volume: 34
  start-page: 890
  year: 1994
  ident: 16_CR4
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci00020a024
– volume: 19
  start-page: 697
  year: 2002
  ident: 16_CR10
  publication-title: Computers and Applied Chemistry
– volume: 34
  start-page: 235
  issue: 8
  year: 2001
  ident: 16_CR8
  publication-title: Measurement and Control
  doi: 10.1177/002029400103400803
– volume: 339
  start-page: 706
  year: 1989
  ident: 16_CR1
  publication-title: Nature
  doi: 10.1038/339706a0
– start-page: 157
  volume-title: Neural Networks in QSAR and Drug Design, Chapter 7
  year: 1996
  ident: 16_CR5
  doi: 10.1016/B978-012213815-7/50008-X
SSID ssj0031083
ssib011849603
ssib004208268
ssib001427449
ssib006702986
ssib022315846
Score 1.6093253
Snippet In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3...
In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 366
SubjectTerms 5-HT3受体拮抗体
化学计量学
支持向量分类
结构-活性关系
Title Support vector classification for SAR of 5-HT3 receptor antagonists
URI http://lib.cqvip.com/qk/85172X/20064/22628950.html
https://www.proquest.com/docview/29558686
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe-GCKA-xFIoPWAJWQYntOPYxabNaIdED3ZV6i7KOQxHSbmG3HPj1zDjPLQ8Bl8iKEyfyfJr5PJ4ZE_JS1DUY0soEQocikLDuCYyOXMC1rh2vSuEqdOi_P1fzpXx3GV8O5Ql8dslu9dZ-_2Veyf9IFe6BXDFL9h8k2w8KN6AN8oUrSBiufyVjPJIT6PP0m3e9Ty0yYQz9GQIIL9IPSAfjYL4QU1Bu7nrnoyZxLwpr5m5_Q04v0I98VX4aBW50omG5YuaMpZrlMTOKaYkNfcZ0MmW5YcYwrfxD0JewXANZZWkKfQnLUmj5PnhOYCMTLOX9e37MbMayGN_LJMuy224J3bklGk2KPlAlm8TMXtWGI0jJkd4USo1MsGjOEvlJu4dttjOsoqLAfxMIa5AMpqwPMARSCStJ9OUc8gRIFSi6JU87Ew2UVjeZF-0_dtvdPqfy1uhYdONqs_74BajEPnnZt92ekCzuk3utsGjawOKI3HHrB-So1dVb-qotKP76ITltcUIbnNB9nFDACQWc0E1NPU5ohxM6wskjspzli9N50B6eEdgIf15XoZOyVpUNpVW61ImTcRlVBhk_D2unVlVpjLTCRLo0tg5rWJ06LoyNLVcr8ZgcrDdr94RQKRy3otShq6ysYShnlVlJbYEBKV7JCTnuZwjIl_2MJcWKTgQT8qabs-K6qaBSDLWycbKLNrZSFcmEvOhmtQA9h5tX5dptbrYFN3GslVZP__ixY3J3AOMzcrD7euOeA2vcrU7IYTrLsvMTj4QfS81cFA
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+classification+for+SAR+of+5-HT3+receptor+antagonists&rft.jtitle=Journal+of+Shanghai+University&rft.au=%E6%9D%A8%E5%96%84%E5%8D%87+%E9%99%86%E6%96%87%E8%81%AA+%E7%BA%AA%E6%99%93%E6%B3%A2+%E9%99%88%E5%BF%B5%E8%B4%BB&rft.date=2006-08-01&rft.issn=1007-6417&rft.volume=10&rft.issue=4&rft.spage=366&rft.epage=370&rft_id=info:doi/10.1007%2Fs11741-006-0016-7&rft.externalDocID=22628950
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85172X%2F85172X.jpg