Support vector classification for SAR of 5-HT3 receptor antagonists
In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently use...
Saved in:
Published in | Journal of Shanghai University Vol. 10; no. 4; pp. 366 - 370 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese English |
Published |
01.08.2006
|
Subjects | |
Online Access | Get full text |
ISSN | 1007-6417 1863-236X |
DOI | 10.1007/s11741-006-0016-7 |
Cover
Abstract | In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently used in the field. The prediction performance of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the accuracy of prediction of SVC model was higher than those of back propagation artificial neural network (BP ANN), K-nearest neighbor (KNN) and Fisher methods. |
---|---|
AbstractList | In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently used in the field. The prediction performance of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the accuracy of prediction of SVC model was higher than those of back propagation artificial neural network (BP ANN) , K-nearest neighbor (KNN) and Fisher methods. In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3 (5-HT3 ) receptor antagonists with 26 compounds. In a benchmark test, SVC was compared with several techniques of machine learning currently used in the field. The prediction performance of the model was discussed on the basis of the leave-one-out cross-validation. The results show that the accuracy of prediction of SVC model was higher than those of back propagation artificial neural network (BP ANN), K-nearest neighbor (KNN) and Fisher methods. |
Author | 杨善升 陆文聪 纪晓波 陈念贻 |
AuthorAffiliation | Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P.R. China |
Author_xml | – sequence: 1 fullname: 杨善升 陆文聪 纪晓波 陈念贻 |
BookMark | eNotkE9LAzEQxYNUsK1-AG-LB2-rmWQ3f46lqBUKgq3gLaTZpEa3yTbZCn57t7SHYYbhveHNb4JGIQaL0C3gB8CYP2YAXkGJMRsKWMkv0BgEoyWh7HM0zIOoZBXwKzTJ-RtjCljQMZqvDl0XU1_8WtPHVJhW5-ydN7r3MRRuWK1m70V0RV0u1rRI1tjuKNSh19sYfO7zNbp0us325tyn6OP5aT1flMu3l9f5bFkaOOYSDbZV5VhjcGWY0ILbqtbQSCo5J9hZtmm0lJWhEoSWxmFHgFtCpakNYRs6Rfenu12K-4PNvdr5bGzb6mDjISsi61qw4ekpgpPQpJhzsk51ye90-lOA1ZGEOuFSQyx1xKX44Lk7e75i2O592KqNNj_Ot1YRwoiQNab_-3xpwg |
Cites_doi | 10.1126/science.1718042 10.1002/cem.1180070402 10.1016/S0097-8485(01)00094-8 10.1021/ci00020a024 10.1177/002029400103400803 10.1038/339706a0 10.1016/B978-012213815-7/50008-X |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s11741-006-0016-7 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
DocumentTitleAlternate | Support vector classification for SAR of 5-HT3 receptor antagonists |
EISSN | 1863-236X |
EndPage | 370 |
ExternalDocumentID | 10_1007_s11741_006_0016_7 22628950 |
GroupedDBID | -5D -5G -BR -Y2 .86 0R~ 188 29L 2B. 2C- 2JY 2RA 4.4 5GY 5VS 6NX 8RM 8UJ 92D 92I 92L 93E 93N AAIAL ABMNI ABTEG ADKPE ADRFC AFLOW AGJBK AHSBF AINHJ ALMA_UNASSIGNED_HOLDINGS AMKLP BA0 BAPOH CAG COF CQIGP CS3 CSCUP CW9 DU5 EBS EJD H13 HF~ HG6 HLICF HZ~ I~X J9A KOV O9- QOS R9I ROL RPX RSV S1Z S27 SDH SMT SOJ T13 TCJ TGH U2A UGNYK UZ4 VC2 W94 WK8 Z85 ~WA AAYXX AAYZH ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c1006-8d0e44f6dc04c68a87e45a1d9397720fe6bda994c3918a9cf0f217e239c5c26b3 |
ISSN | 1007-6417 |
IngestDate | Thu Sep 04 17:36:55 EDT 2025 Tue Jul 01 02:29:05 EDT 2025 Thu Nov 24 20:34:44 EST 2022 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Chinese English |
License | http://www.springer.com/tdm |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1006-8d0e44f6dc04c68a87e45a1d9397720fe6bda994c3918a9cf0f217e239c5c26b3 |
Notes | O641 31-1735/N support vector classification, structure-activity relationship, chemometrics, 5-HT3 receptor antagonists. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 29558686 |
PQPubID | 23500 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_29558686 crossref_primary_10_1007_s11741_006_0016_7 chongqing_backfile_22628950 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20060801 |
PublicationDateYYYYMMDD | 2006-08-01 |
PublicationDate_xml | – month: 08 year: 2006 text: 20060801 day: 01 |
PublicationDecade | 2000 |
PublicationTitle | Journal of Shanghai University |
PublicationTitleAlternate | Journal of Shanghai University(English Edition) |
PublicationYear | 2006 |
References | D J Livingstone (16_CR5) 1996 D Domine (16_CR3) 1993; 7 B Bienfait (16_CR4) 1994; 34 A V Maricq (16_CR2) 1991; 254 A Derkach V.Suprenant (16_CR1) 1989; 339 M Trotter (16_CR8) 2001; 34 R Burbidge (16_CR7) 2001; 26 Nian-yi Chen (16_CR9) 2002; 19 Wen-cong Lu (16_CR10) 2002; 19 VN Vapnik (16_CR6) 1998 Hui Zhao (16_CR11) 2004; 62 |
References_xml | – volume: 254 start-page: 432 year: 1991 ident: 16_CR2 publication-title: Science doi: 10.1126/science.1718042 – volume: 7 start-page: 227 year: 1993 ident: 16_CR3 publication-title: Journal of Chemometrics doi: 10.1002/cem.1180070402 – volume-title: Statistical Learning Theory [M] year: 1998 ident: 16_CR6 – volume: 19 start-page: 673 year: 2002 ident: 16_CR9 publication-title: Computers and Applied Chemistry – volume: 62 start-page: 649 year: 2004 ident: 16_CR11 publication-title: Acta Chimica Sinica – volume: 26 start-page: 5 issue: 5 year: 2001 ident: 16_CR7 publication-title: Computer and Chemistry doi: 10.1016/S0097-8485(01)00094-8 – volume: 34 start-page: 890 year: 1994 ident: 16_CR4 publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci00020a024 – volume: 19 start-page: 697 year: 2002 ident: 16_CR10 publication-title: Computers and Applied Chemistry – volume: 34 start-page: 235 issue: 8 year: 2001 ident: 16_CR8 publication-title: Measurement and Control doi: 10.1177/002029400103400803 – volume: 339 start-page: 706 year: 1989 ident: 16_CR1 publication-title: Nature doi: 10.1038/339706a0 – start-page: 157 volume-title: Neural Networks in QSAR and Drug Design, Chapter 7 year: 1996 ident: 16_CR5 doi: 10.1016/B978-012213815-7/50008-X |
SSID | ssj0031083 ssib011849603 ssib004208268 ssib001427449 ssib006702986 ssib022315846 |
Score | 1.6093253 |
Snippet | In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3... In this work, support vector classification (SVC) algorithm was used to build structure-activity relationship (SAR) model of the 5-hydroxytryptamine type 3... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 366 |
SubjectTerms | 5-HT3受体拮抗体 化学计量学 支持向量分类 结构-活性关系 |
Title | Support vector classification for SAR of 5-HT3 receptor antagonists |
URI | http://lib.cqvip.com/qk/85172X/20064/22628950.html https://www.proquest.com/docview/29558686 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZQe-GCKA-xFIoPWAJWQYntOPYxabNaIdED3ZV6i7KOQxHSbmG3HPj1zDjPLQ8Bl8iKEyfyfJr5PJ4ZE_JS1DUY0soEQocikLDuCYyOXMC1rh2vSuEqdOi_P1fzpXx3GV8O5Ql8dslu9dZ-_2Veyf9IFe6BXDFL9h8k2w8KN6AN8oUrSBiufyVjPJIT6PP0m3e9Ty0yYQz9GQIIL9IPSAfjYL4QU1Bu7nrnoyZxLwpr5m5_Q04v0I98VX4aBW50omG5YuaMpZrlMTOKaYkNfcZ0MmW5YcYwrfxD0JewXANZZWkKfQnLUmj5PnhOYCMTLOX9e37MbMayGN_LJMuy224J3bklGk2KPlAlm8TMXtWGI0jJkd4USo1MsGjOEvlJu4dttjOsoqLAfxMIa5AMpqwPMARSCStJ9OUc8gRIFSi6JU87Ew2UVjeZF-0_dtvdPqfy1uhYdONqs_74BajEPnnZt92ekCzuk3utsGjawOKI3HHrB-So1dVb-qotKP76ITltcUIbnNB9nFDACQWc0E1NPU5ohxM6wskjspzli9N50B6eEdgIf15XoZOyVpUNpVW61ImTcRlVBhk_D2unVlVpjLTCRLo0tg5rWJ06LoyNLVcr8ZgcrDdr94RQKRy3otShq6ysYShnlVlJbYEBKV7JCTnuZwjIl_2MJcWKTgQT8qabs-K6qaBSDLWycbKLNrZSFcmEvOhmtQA9h5tX5dptbrYFN3GslVZP__ixY3J3AOMzcrD7euOeA2vcrU7IYTrLsvMTj4QfS81cFA |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Support+vector+classification+for+SAR+of+5-HT3+receptor+antagonists&rft.jtitle=Journal+of+Shanghai+University&rft.au=%E6%9D%A8%E5%96%84%E5%8D%87+%E9%99%86%E6%96%87%E8%81%AA+%E7%BA%AA%E6%99%93%E6%B3%A2+%E9%99%88%E5%BF%B5%E8%B4%BB&rft.date=2006-08-01&rft.issn=1007-6417&rft.volume=10&rft.issue=4&rft.spage=366&rft.epage=370&rft_id=info:doi/10.1007%2Fs11741-006-0016-7&rft.externalDocID=22628950 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85172X%2F85172X.jpg |