Electron microscopy 3-dimensional segmentation and quantification of axonal dispersion and diameter distribution in mouse brain corpus callosum

To model the diffusion MRI signal in brain white matter, general assumptions have been made about the microstructural properties of axonal fiber bundles, such as the axonal shape and the fiber orientation dispersion. In particular, axons are modeled by perfectly circular cylinders with no diameter v...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Hong-Hsi, Lee, Yaros, Katarina, Veraart, Jelle, Pathan, Jasmine, Feng-Xia, Liang, Kim, Sungheon G, Novikov, Dmitry S, Fieremans, Els
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 27.06.2018
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/357491

Cover

More Information
Summary:To model the diffusion MRI signal in brain white matter, general assumptions have been made about the microstructural properties of axonal fiber bundles, such as the axonal shape and the fiber orientation dispersion. In particular, axons are modeled by perfectly circular cylinders with no diameter variation within each axon, and their directions obey a specific orientation distribution. However, these assumptions have not been validated by histology in 3-dimensional high-resolution neural tissue. Here, we reconstructed sequential scanning electron microscopy images in mouse brain corpus callosum, and introduced a semi-automatic random-walker (RaW) based algorithm to rapidly segment individual intra-axonal spaces and myelin sheaths of myelinated axons. Confirmed with a conventional machine-learning-based interactive segmentation method, our semi-automatic algorithm is reliable and less time-consuming. Based on the segmentation, we calculated histological estimates of size-related (e.g., inner axonal diameter, g-ratio) and orientation-related (e.g., Fiber orientation distribution and its rotational invariants, dispersion angle) quantities, and simulated how these quantities would be observed in actual diffusion MRI experiments by considering diffusion time-dependence. The reported dispersion angle is consistent with previous 2-dimensional histology studies and diffusion MRI measurements, though the reported diameter is larger than those in other mouse brain studies. Our results show that the orientation-related metrics have negligible diffusion time-dependence; however, inner axonal diameters demonstrate a non-trivial time-dependence at diffusion times typical for clinical and preclinical use. In other words, the fiber dispersion estimated by diffusion MRI modeling is relatively independent, while the "apparent" axonal size estimated by axonal diameter mapping potentially depends on experimental MRI settings.
Bibliography:SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ISSN:2692-8205
2692-8205
DOI:10.1101/357491