Programmable Microbial Ink for 3D Printing of Living Materials Produced from Genetically Engineered Protein Nanofibers
Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions.1–3 The emerging field of living materials has leveraged microbial engineering to produce materials for var...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor Laboratory
20.04.2021
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 |
DOI | 10.1101/2021.04.19.440538 |
Cover
Abstract | Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions.1–3 The emerging field of living materials has leveraged microbial engineering to produce materials for various applications, but building 3D structures in arbitrary patterns and shapes has been a major challenge.1–14 We set out to develop a new bioink, termed as “microbial ink” that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed Escherichia coli (E. coli) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. This report showcases the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures. |
---|---|
AbstractList | Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions.1–3 The emerging field of living materials has leveraged microbial engineering to produce materials for various applications, but building 3D structures in arbitrary patterns and shapes has been a major challenge.1–14 We set out to develop a new bioink, termed as “microbial ink” that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed Escherichia coli (E. coli) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. This report showcases the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures. |
Author | Sourlis, Arjirios Manjula-Basavanna, Avinash Rubio, Andrés G. Zenkl, Michael Xia, Jing Lesha, Ami Rutledge, Jarod Zhang, Yu Shrike Duraj-Thatte, Anna M. Joshi, Neel S. Kan, Anton Hassan, Shabir Weitz, David A. |
Author_xml | – sequence: 1 givenname: Anna M. surname: Duraj-Thatte fullname: Duraj-Thatte, Anna M. email: ne.joshi@northeastern.edu organization: Department of Chemistry and Chemical Biology, Northeastern University – sequence: 2 givenname: Avinash surname: Manjula-Basavanna fullname: Manjula-Basavanna, Avinash email: ne.joshi@northeastern.edu organization: Department of Chemistry and Chemical Biology, Northeastern University – sequence: 3 givenname: Jarod surname: Rutledge fullname: Rutledge, Jarod organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 4 givenname: Jing surname: Xia fullname: Xia, Jing organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 5 givenname: Shabir surname: Hassan fullname: Hassan, Shabir organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 6 givenname: Arjirios surname: Sourlis fullname: Sourlis, Arjirios organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 7 givenname: Andrés G. surname: Rubio fullname: Rubio, Andrés G. organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 8 givenname: Ami surname: Lesha fullname: Lesha, Ami organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 9 givenname: Michael surname: Zenkl fullname: Zenkl, Michael organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 10 givenname: Anton surname: Kan fullname: Kan, Anton organization: Wyss Institute for Biologically Inspired Engineering, Harvard University – sequence: 11 givenname: David A. surname: Weitz fullname: Weitz, David A. organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University – sequence: 12 givenname: Yu Shrike surname: Zhang fullname: Zhang, Yu Shrike organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School – sequence: 13 givenname: Neel S. orcidid: 0000-0001-8236-3566 surname: Joshi fullname: Joshi, Neel S. email: ne.joshi@northeastern.edu organization: Department of Chemistry and Chemical Biology, Northeastern University |
BookMark | eNotUDtPwzAYtBBIlNIfwOaRJeGznTj2iEoplVLo0D1y_KgMiY2cUNF_T6oy3elew92h6xCDReiBQE4IkCcKlORQ5ETmRQElE1doRrmkmaBQ3qLFMHwCAJWcsKqYoeMuxUNSfa_azuKt1ym2XnV4E76wiwmzF7xLPow-HHB0uPbHM9uq0aYpNkxmND_aGuxS7PHaBjt6rbruhFfh4IO1afKm0Gh9wO8qROdbm4Z7dOOmul384xztX1f75VtWf6w3y-c6aysuMlIyUKwiuhRGMkNoVVCQmjM6qUKDKY1zHCSppGCUs8pYTrkxgmvuNOFsjh4vs62P6dcfm-_ke5VOzfmlBoqGyObyEvsD6JRetQ |
Cites_doi | 10.1038/s41589-021-00773-y 10.1038/ncomms5945 10.1038/s41589-019-0412-5 10.1021/acssynbio.6b00395 10.1021/acs.nanolett.8b02642 10.1126/sciadv.aao6804 10.1002/adhm.201601451 10.1042/BST20160067 10.1073/pnas.1309729110 10.1002/adma.201501234 10.1038/s41578-020-00265-w 10.1088/1758-5090/aa90e2 10.1002/smll.201805510 10.1038/s41563-020-00857-5 10.1242/jcs.02619 10.1038/s41589-018-0169-2 10.1021/acs.nanolett.9b00066 10.1002/adma.201901826 10.1073/pnas.0400899101 10.1007/s00449-017-1882-z 10.1038/s41467-019-13336-6 10.1002/adma.201704847 10.1021/acssynbio.8b00423 10.1038/nbt.2958 10.1073/pnas.94.14.7176 10.1002/adma.201704821 10.1021/acsami.8b02719 10.1021/acs.chemrev.0c00084 |
ContentType | Paper |
Copyright | 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | FX. |
DOI | 10.1101/2021.04.19.440538 |
DatabaseName | bioRxiv |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2021.04.19.440538v1 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI |
ID | FETCH-LOGICAL-b768-1530a371c58d93d1274209c632a378c0d5dff609179832637de626dd86c6fc163 |
IEDL.DBID | FX. |
IngestDate | Tue Jan 07 18:53:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b768-1530a371c58d93d1274209c632a378c0d5dff609179832637de626dd86c6fc163 |
Notes | Competing Interest Statement: A.M.D.-T., A.M.-B., A.S., and N.S.J. are inventors on a patent application submitted by Harvard University. |
ORCID | 0000-0001-8236-3566 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2021.04.19.440538 |
PageCount | 15 |
ParticipantIDs | biorxiv_primary_2021_04_19_440538 |
PublicationCentury | 2000 |
PublicationDate | 20210420 |
PublicationDateYYYYMMDD | 2021-04-20 |
PublicationDate_xml | – month: 4 year: 2021 text: 20210420 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Ribeiro (2021.04.19.440538v1.24) 2017; 10 Lehner, Schmieden, Meyer (2021.04.19.440538v1.14) 2017; 6 Manjula-Basavanna, Duraj-Thatte, Joshi (2021.04.19.440538v1.5); n/a Duraj-Thatte (2021.04.19.440538v1.6) 2021 Engelberg-Kulka, Hazan, Amitai (2021.04.19.440538v1.29) 2005; 118 Huang (2021.04.19.440538v1.10) 2019; 15 Maruthamuthu (2021.04.19.440538v1.28) 2018; 41 Tang (2021.04.19.440538v1.2) 2020 Schaffner, Ruhs, Coulter, Kilcher, Studart (2021.04.19.440538v1.11) 2017; 3 Nguyen, Botyanszki, Tay, Joshi (2021.04.19.440538v1.23) 2014; 5 Gilbert, Ellis (2021.04.19.440538v1.3) 2019; 8 Liu (2021.04.19.440538v1.26) 2017; 6 Schwab (2021.04.19.440538v1.19) 2020; 120 Joshi, Cook, Mannoor (2021.04.19.440538v1.20) 2018; 18 Murphy, Atala (2021.04.19.440538v1.15) 2014; 32 Gilbert (2021.04.19.440538v1.8) 2021 Pratt, Cote, Chung, Stenkamp, Davie (2021.04.19.440538v1.22) 1997; 94 Liu (2021.04.19.440538v1.12) 2018; 30 Duraj-Thatte (2021.04.19.440538v1.4) 2019; 31 Smith (2021.04.19.440538v1.18) 2020; 30 Yamada (2021.04.19.440538v1.27) 2004; 101 Rothschild (2021.04.19.440538v1.30) 2016; 44 Qian (2021.04.19.440538v1.13) 2019; 19 Heinrich (2021.04.19.440538v1.16) 2019; 15 Saha (2021.04.19.440538v1.21) 2018; 10 Nguyen, Courchesne, Duraj-Thatte, Praveschotinunt, Joshi (2021.04.19.440538v1.1) 2018; 30 Connell, Ritschdorff, Whiteley, Shear (2021.04.19.440538v1.17) 2013; 110 Praveschotinunt (2021.04.19.440538v1.7) 2019; 10 Gonzalez, Mukhitov, Voigt (2021.04.19.440538v1.9) 2020; 16 Highley, Rodell, Burdick (2021.04.19.440538v1.25) 2015; 27 |
References_xml | – year: 2021 ident: 2021.04.19.440538v1.6 article-title: Water-processable, biodegradable and coatable aquaplastic from engineered biofilms publication-title: Nat Chem Biol doi: 10.1038/s41589-021-00773-y – volume: 5 start-page: 4945 year: 2014 ident: 2021.04.19.440538v1.23 article-title: Programmable biofilm-based materials from engineered curli nanofibres publication-title: Nat Commun doi: 10.1038/ncomms5945 – volume: 16 start-page: 126 year: 2020 end-page: 133 ident: 2021.04.19.440538v1.9 article-title: Resilient living materials built by printing bacterial spores publication-title: Nat Chem Biol doi: 10.1038/s41589-019-0412-5 – volume: 6 start-page: 1124 year: 2017 end-page: 1130 ident: 2021.04.19.440538v1.14 article-title: A Straightforward Approach for 3D Bacterial Printing publication-title: ACS Synth Biol doi: 10.1021/acssynbio.6b00395 – volume: 18 start-page: 7448 year: 2018 end-page: 7456 ident: 2021.04.19.440538v1.20 article-title: Bacterial Nanobionics via 3D Printing publication-title: Nano Lett doi: 10.1021/acs.nanolett.8b02642 – volume: 3 start-page: eaao6804 year: 2017 ident: 2021.04.19.440538v1.11 article-title: 3D printing of bacteria into functional complex materials publication-title: Sci Adv doi: 10.1126/sciadv.aao6804 – volume: 6 year: 2017 ident: 2021.04.19.440538v1.26 article-title: Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks publication-title: Adv Healthc Mater doi: 10.1002/adhm.201601451 – volume: 44 start-page: 1158 year: 2016 end-page: 1164 ident: 2021.04.19.440538v1.30 article-title: Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth) publication-title: Biochem Soc Trans doi: 10.1042/BST20160067 – volume: 110 start-page: 18380 year: 2013 end-page: 18385 ident: 2021.04.19.440538v1.17 article-title: 3D printing of microscopic bacterial communities publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1309729110 – volume: 27 start-page: 5075 year: 2015 end-page: 5079 ident: 2021.04.19.440538v1.25 article-title: Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels publication-title: Adv Mater doi: 10.1002/adma.201501234 – year: 2020 ident: 2021.04.19.440538v1.2 article-title: Materials design by synthetic biology publication-title: Nature Reviews Materials doi: 10.1038/s41578-020-00265-w – volume: 10 start-page: 014102 year: 2017 ident: 2021.04.19.440538v1.24 article-title: Assessing bioink shape fidelity to aid material development in 3D bioprinting publication-title: Biofabrication doi: 10.1088/1758-5090/aa90e2 – volume: 15 start-page: e1805510 year: 2019 ident: 2021.04.19.440538v1.16 article-title: 3D Bioprinting: from Benches to Translational Applications publication-title: Small doi: 10.1002/smll.201805510 – volume: 30 start-page: 1907401 year: 2020 ident: 2021.04.19.440538v1.18 article-title: Hybrid Living Materials: Digital Design and Fabrication of 3D Multimaterial Structures with Programmable Biohybrid Surfaces publication-title: Advanced Functional Materials – year: 2021 ident: 2021.04.19.440538v1.8 article-title: Living materials with programmable functionalities grown from engineered microbial co-cultures publication-title: Nat Mater doi: 10.1038/s41563-020-00857-5 – volume: 118 start-page: 4327 year: 2005 end-page: 4332 ident: 2021.04.19.440538v1.29 article-title: mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria publication-title: J Cell Sci doi: 10.1242/jcs.02619 – volume: 15 start-page: 34 year: 2019 end-page: 41 ident: 2021.04.19.440538v1.10 article-title: Programmable and printable Bacillus subtilis biofilms as engineered living materials publication-title: Nat Chem Biol doi: 10.1038/s41589-018-0169-2 – volume: 19 start-page: 5829 year: 2019 end-page: 5835 ident: 2021.04.19.440538v1.13 article-title: Direct Writing of Tunable Living Inks for Bioprocess Intensification publication-title: Nano Lett doi: 10.1021/acs.nanolett.9b00066 – volume: 31 start-page: e1901826 year: 2019 ident: 2021.04.19.440538v1.4 article-title: Genetically Programmable Self-Regenerating Bacterial Hydrogels publication-title: Adv Mater doi: 10.1002/adma.201901826 – volume: 101 start-page: 4770 year: 2004 end-page: 4775 ident: 2021.04.19.440538v1.27 article-title: Apoptosis or growth arrest: Modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0400899101 – volume: n/a start-page: 2010784 ident: 2021.04.19.440538v1.5 article-title: Robust Self-Regeneratable Stiff Living Materials Fabricated from Microbial Cells publication-title: Advanced Functional Materials – volume: 41 start-page: 479 year: 2018 end-page: 487 ident: 2021.04.19.440538v1.28 article-title: Development of bisphenol A-removing recombinant Escherichia coli by monomeric and dimeric surface display of bisphenol A-binding peptide publication-title: Bioprocess Biosyst Eng doi: 10.1007/s00449-017-1882-z – volume: 10 start-page: 5580 year: 2019 ident: 2021.04.19.440538v1.7 article-title: Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut publication-title: Nat Commun doi: 10.1038/s41467-019-13336-6 – volume: 30 start-page: e1704847 year: 2018 ident: 2021.04.19.440538v1.1 article-title: Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials publication-title: Adv Mater doi: 10.1002/adma.201704847 – volume: 8 start-page: 1 year: 2019 end-page: 15 ident: 2021.04.19.440538v1.3 article-title: Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties publication-title: ACS Synth Biol doi: 10.1021/acssynbio.8b00423 – volume: 32 start-page: 773 year: 2014 end-page: 785 ident: 2021.04.19.440538v1.15 article-title: 3D bioprinting of tissues and organs publication-title: Nat Biotechnol doi: 10.1038/nbt.2958 – volume: 94 start-page: 7176 year: 1997 end-page: 7181 ident: 2021.04.19.440538v1.22 article-title: The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.94.14.7176 – volume: 30 year: 2018 ident: 2021.04.19.440538v1.12 article-title: 3D Printing of Living Responsive Materials and Devices publication-title: Adv Mater doi: 10.1002/adma.201704821 – volume: 10 start-page: 13373 year: 2018 end-page: 13380 ident: 2021.04.19.440538v1.21 article-title: Additive Manufacturing of Catalytically Active Living Materials publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.8b02719 – volume: 120 start-page: 11028 year: 2020 end-page: 11055 ident: 2021.04.19.440538v1.19 article-title: Printability and Shape Fidelity of Bioinks in 3D Bioprinting publication-title: Chem Rev doi: 10.1021/acs.chemrev.0c00084 |
SSID | ssj0002961374 |
Score | 1.6246532 |
SecondaryResourceType | preprint |
Snippet | Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional... |
SourceID | biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Synthetic Biology |
Title | Programmable Microbial Ink for 3D Printing of Living Materials Produced from Genetically Engineered Protein Nanofibers |
URI | https://www.biorxiv.org/content/10.1101/2021.04.19.440538 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDmE59lBa8p2Wx2N3tVW1RsCVKht5B9BII1LaEW---dSar04MHrbkJgMjvzzc7MN4TcCmecSgofiMSpIC6SPDBSiEAr7kInI8MZNjiPxvLxLX6eiunWqC8sqzTlvP4qV00eHwu2wfq2hztkGKsz5CZluh8D1uDJLumCigmc2jCc9n-vVyINfkrFmzzmn28C4t18acujDA9IN80Xvj4kO746InvtSMj1MVmlbcHUB7Y00VHZ8CTlM_pUvVPAl5Q_0LQum_EOdF7QlxIvBOgoX7aaBJvI4Oodxb4RiqTSzWX1bE1_mAdhL0VyhrKiYFpBtwwgwBMyGQ4m94_BZjZCYCBACMBOhTlXzIKINXcME66htpJHsJrY0AlXFBKwgNJwZCVXzkPk4lwirSwsYLBT0qnmlT8jVBovIpt7m2PfKfNGC8usAuRoAXnH0Tm52YgpW7QEGBmKMgvjjOmsFeXFP565JPu4hpmYKLwinWX96a_BoS9Nj3TvBuP0tdf8wm9vvJxr |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfTmE9-u4DUlm012s2e1tNqUHir0FrKPQLCmJdZi_70zSRQPHrxmsgQmuzvfvL4h5C6y2so4d14UW-mFeZx5WkSRpyS3vhWB5gwbnJOxGLyET7No1gbc3tuySl0sqs9iXefxsWAbbt_mcPsMfXWG3KRM9ULAGjzuYZh6m3Rhn4VY0tWf9X5iLIECYyXDNpn553KAve3nfpmV_j7pTrKlqw7IlisPyU4zF3JzRNaTpmrqDfuaaFLUZEnZnA7LVwogk_IHOqmKesYDXeR0VGBUgCbZqtlOIEQaV2cpNo9QZJauI9bzDf2mHwTZBBkaipLC_QobTAMMPCbT_uP0fuC1AxI8DV6CB5eVn3HJDOhZccsw6-orI3gAT2Pj28jmuQBAIBWcW8GldeC-WBsLI3IDQOyEdMpF6U4JFdpFgcmcybD5lDmtIsOMBPhoAH6HwRm5bdWULhsWjBRVmfphylTaqPL8H-_ckN3BNBmlo-H4-YLsoRxTM4F_STqr6sNdgYVf6ev6N34BGP2fqA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oG403n_HtmniFsCws7NlKWm0bDjXpjbAPEmKlDamN_ffOABoPHrwyZEmG2Z1vZna-IeQhNMpEcWGdMDaRExRx7igRho6MuPGM8BVn2OA8mYrha_A8D-e_emHwWqUql_VnuWnq-HhhG07fdnN7DGN1htykTLoBYA0eu5imdlem2CV9sLUALTuZuz95Fl-Cw4qCrqD55xIAfbtP_nItySHpp_nK1kdkx1bHZK-dDbk9IZu0vTn1jr1NdFI2hEn5go6qNwpAk_IBTeuymfNAlwUdl5gZoJN83ZoUCJHK1RqKDSQU2aWbrPViS78pCEGWIktDWVE4Y8HIFEDBUzJLnmaPQ6cbkuAoiBQcOLC8nEdMg64lNwwrr57UgvvwNNaeCU1RCAAFkYS9K3hkLIQwxsRCi0IDGDsjvWpZ2XNChbKhr3Orc2xAZVbJUDMdAYTUAMED_4Lcd2rKVi0TRoaqzLwgYzJrVXn5j3fuyH46SLLxaPpyRQ5QjNUZ37smvXX9YW_Aya_VbfMXvwCS5qC5 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programmable+Microbial+Ink+for+3D+Printing+of+Living+Materials+Produced+from+Genetically+Engineered+Protein+Nanofibers&rft.jtitle=bioRxiv&rft.au=Duraj-Thatte%2C+Anna+M.&rft.au=Manjula-Basavanna%2C+Avinash&rft.au=Rutledge%2C+Jarod&rft.au=Xia%2C+Jing&rft.date=2021-04-20&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.04.19.440538&rft.externalDocID=2021.04.19.440538v1 |