Programmable Microbial Ink for 3D Printing of Living Materials Produced from Genetically Engineered Protein Nanofibers

Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions.1–3 The emerging field of living materials has leveraged microbial engineering to produce materials for var...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Duraj-Thatte, Anna M., Manjula-Basavanna, Avinash, Rutledge, Jarod, Xia, Jing, Hassan, Shabir, Sourlis, Arjirios, Rubio, Andrés G., Lesha, Ami, Zenkl, Michael, Kan, Anton, Weitz, David A., Zhang, Yu Shrike, Joshi, Neel S.
Format Paper
LanguageEnglish
Published Cold Spring Harbor Laboratory 20.04.2021
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
DOI10.1101/2021.04.19.440538

Cover

Abstract Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions.1–3 The emerging field of living materials has leveraged microbial engineering to produce materials for various applications, but building 3D structures in arbitrary patterns and shapes has been a major challenge.1–14 We set out to develop a new bioink, termed as “microbial ink” that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed Escherichia coli (E. coli) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. This report showcases the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures.
AbstractList Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional architectures under ambient conditions.1–3 The emerging field of living materials has leveraged microbial engineering to produce materials for various applications, but building 3D structures in arbitrary patterns and shapes has been a major challenge.1–14 We set out to develop a new bioink, termed as “microbial ink” that is produced entirely from genetically engineered microbial cells, programmed to perform a bottom-up, hierarchical self-assembly of protein monomers into nanofibers, and further into nanofiber networks that comprise extrudable hydrogels. We further demonstrate the 3D printing of functional living materials by embedding programmed Escherichia coli (E. coli) cells and nanofibers into microbial ink, which can sequester toxic moieties, release biologics and regulate its own cell growth through the chemical induction of rationally designed genetic circuits. This report showcases the advanced capabilities of nanobiotechnology and living materials technology to 3D-print functional living architectures.
Author Sourlis, Arjirios
Manjula-Basavanna, Avinash
Rubio, Andrés G.
Zenkl, Michael
Xia, Jing
Lesha, Ami
Rutledge, Jarod
Zhang, Yu Shrike
Duraj-Thatte, Anna M.
Joshi, Neel S.
Kan, Anton
Hassan, Shabir
Weitz, David A.
Author_xml – sequence: 1
  givenname: Anna M.
  surname: Duraj-Thatte
  fullname: Duraj-Thatte, Anna M.
  email: ne.joshi@northeastern.edu
  organization: Department of Chemistry and Chemical Biology, Northeastern University
– sequence: 2
  givenname: Avinash
  surname: Manjula-Basavanna
  fullname: Manjula-Basavanna, Avinash
  email: ne.joshi@northeastern.edu
  organization: Department of Chemistry and Chemical Biology, Northeastern University
– sequence: 3
  givenname: Jarod
  surname: Rutledge
  fullname: Rutledge, Jarod
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 4
  givenname: Jing
  surname: Xia
  fullname: Xia, Jing
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 5
  givenname: Shabir
  surname: Hassan
  fullname: Hassan, Shabir
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 6
  givenname: Arjirios
  surname: Sourlis
  fullname: Sourlis, Arjirios
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 7
  givenname: Andrés G.
  surname: Rubio
  fullname: Rubio, Andrés G.
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 8
  givenname: Ami
  surname: Lesha
  fullname: Lesha, Ami
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 9
  givenname: Michael
  surname: Zenkl
  fullname: Zenkl, Michael
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 10
  givenname: Anton
  surname: Kan
  fullname: Kan, Anton
  organization: Wyss Institute for Biologically Inspired Engineering, Harvard University
– sequence: 11
  givenname: David A.
  surname: Weitz
  fullname: Weitz, David A.
  organization: John A. Paulson School of Engineering and Applied Sciences, Harvard University
– sequence: 12
  givenname: Yu Shrike
  surname: Zhang
  fullname: Zhang, Yu Shrike
  organization: Division of Engineering in Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
– sequence: 13
  givenname: Neel S.
  orcidid: 0000-0001-8236-3566
  surname: Joshi
  fullname: Joshi, Neel S.
  email: ne.joshi@northeastern.edu
  organization: Department of Chemistry and Chemical Biology, Northeastern University
BookMark eNotUDtPwzAYtBBIlNIfwOaRJeGznTj2iEoplVLo0D1y_KgMiY2cUNF_T6oy3elew92h6xCDReiBQE4IkCcKlORQ5ETmRQElE1doRrmkmaBQ3qLFMHwCAJWcsKqYoeMuxUNSfa_azuKt1ym2XnV4E76wiwmzF7xLPow-HHB0uPbHM9uq0aYpNkxmND_aGuxS7PHaBjt6rbruhFfh4IO1afKm0Gh9wO8qROdbm4Z7dOOmul384xztX1f75VtWf6w3y-c6aysuMlIyUKwiuhRGMkNoVVCQmjM6qUKDKY1zHCSppGCUs8pYTrkxgmvuNOFsjh4vs62P6dcfm-_ke5VOzfmlBoqGyObyEvsD6JRetQ
Cites_doi 10.1038/s41589-021-00773-y
10.1038/ncomms5945
10.1038/s41589-019-0412-5
10.1021/acssynbio.6b00395
10.1021/acs.nanolett.8b02642
10.1126/sciadv.aao6804
10.1002/adhm.201601451
10.1042/BST20160067
10.1073/pnas.1309729110
10.1002/adma.201501234
10.1038/s41578-020-00265-w
10.1088/1758-5090/aa90e2
10.1002/smll.201805510
10.1038/s41563-020-00857-5
10.1242/jcs.02619
10.1038/s41589-018-0169-2
10.1021/acs.nanolett.9b00066
10.1002/adma.201901826
10.1073/pnas.0400899101
10.1007/s00449-017-1882-z
10.1038/s41467-019-13336-6
10.1002/adma.201704847
10.1021/acssynbio.8b00423
10.1038/nbt.2958
10.1073/pnas.94.14.7176
10.1002/adma.201704821
10.1021/acsami.8b02719
10.1021/acs.chemrev.0c00084
ContentType Paper
Copyright 2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID FX.
DOI 10.1101/2021.04.19.440538
DatabaseName bioRxiv
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2021.04.19.440538v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
ID FETCH-LOGICAL-b768-1530a371c58d93d1274209c632a378c0d5dff609179832637de626dd86c6fc163
IEDL.DBID FX.
IngestDate Tue Jan 07 18:53:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b768-1530a371c58d93d1274209c632a378c0d5dff609179832637de626dd86c6fc163
Notes Competing Interest Statement: A.M.D.-T., A.M.-B., A.S., and N.S.J. are inventors on a patent application submitted by Harvard University.
ORCID 0000-0001-8236-3566
OpenAccessLink https://www.biorxiv.org/content/10.1101/2021.04.19.440538
PageCount 15
ParticipantIDs biorxiv_primary_2021_04_19_440538
PublicationCentury 2000
PublicationDate 20210420
PublicationDateYYYYMMDD 2021-04-20
PublicationDate_xml – month: 4
  year: 2021
  text: 20210420
  day: 20
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Ribeiro (2021.04.19.440538v1.24) 2017; 10
Lehner, Schmieden, Meyer (2021.04.19.440538v1.14) 2017; 6
Manjula-Basavanna, Duraj-Thatte, Joshi (2021.04.19.440538v1.5); n/a
Duraj-Thatte (2021.04.19.440538v1.6) 2021
Engelberg-Kulka, Hazan, Amitai (2021.04.19.440538v1.29) 2005; 118
Huang (2021.04.19.440538v1.10) 2019; 15
Maruthamuthu (2021.04.19.440538v1.28) 2018; 41
Tang (2021.04.19.440538v1.2) 2020
Schaffner, Ruhs, Coulter, Kilcher, Studart (2021.04.19.440538v1.11) 2017; 3
Nguyen, Botyanszki, Tay, Joshi (2021.04.19.440538v1.23) 2014; 5
Gilbert, Ellis (2021.04.19.440538v1.3) 2019; 8
Liu (2021.04.19.440538v1.26) 2017; 6
Schwab (2021.04.19.440538v1.19) 2020; 120
Joshi, Cook, Mannoor (2021.04.19.440538v1.20) 2018; 18
Murphy, Atala (2021.04.19.440538v1.15) 2014; 32
Gilbert (2021.04.19.440538v1.8) 2021
Pratt, Cote, Chung, Stenkamp, Davie (2021.04.19.440538v1.22) 1997; 94
Liu (2021.04.19.440538v1.12) 2018; 30
Duraj-Thatte (2021.04.19.440538v1.4) 2019; 31
Smith (2021.04.19.440538v1.18) 2020; 30
Yamada (2021.04.19.440538v1.27) 2004; 101
Rothschild (2021.04.19.440538v1.30) 2016; 44
Qian (2021.04.19.440538v1.13) 2019; 19
Heinrich (2021.04.19.440538v1.16) 2019; 15
Saha (2021.04.19.440538v1.21) 2018; 10
Nguyen, Courchesne, Duraj-Thatte, Praveschotinunt, Joshi (2021.04.19.440538v1.1) 2018; 30
Connell, Ritschdorff, Whiteley, Shear (2021.04.19.440538v1.17) 2013; 110
Praveschotinunt (2021.04.19.440538v1.7) 2019; 10
Gonzalez, Mukhitov, Voigt (2021.04.19.440538v1.9) 2020; 16
Highley, Rodell, Burdick (2021.04.19.440538v1.25) 2015; 27
References_xml – year: 2021
  ident: 2021.04.19.440538v1.6
  article-title: Water-processable, biodegradable and coatable aquaplastic from engineered biofilms
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-021-00773-y
– volume: 5
  start-page: 4945
  year: 2014
  ident: 2021.04.19.440538v1.23
  article-title: Programmable biofilm-based materials from engineered curli nanofibres
  publication-title: Nat Commun
  doi: 10.1038/ncomms5945
– volume: 16
  start-page: 126
  year: 2020
  end-page: 133
  ident: 2021.04.19.440538v1.9
  article-title: Resilient living materials built by printing bacterial spores
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-019-0412-5
– volume: 6
  start-page: 1124
  year: 2017
  end-page: 1130
  ident: 2021.04.19.440538v1.14
  article-title: A Straightforward Approach for 3D Bacterial Printing
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.6b00395
– volume: 18
  start-page: 7448
  year: 2018
  end-page: 7456
  ident: 2021.04.19.440538v1.20
  article-title: Bacterial Nanobionics via 3D Printing
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.8b02642
– volume: 3
  start-page: eaao6804
  year: 2017
  ident: 2021.04.19.440538v1.11
  article-title: 3D printing of bacteria into functional complex materials
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aao6804
– volume: 6
  year: 2017
  ident: 2021.04.19.440538v1.26
  article-title: Extrusion Bioprinting of Shear-Thinning Gelatin Methacryloyl Bioinks
  publication-title: Adv Healthc Mater
  doi: 10.1002/adhm.201601451
– volume: 44
  start-page: 1158
  year: 2016
  end-page: 1164
  ident: 2021.04.19.440538v1.30
  article-title: Synthetic biology meets bioprinting: enabling technologies for humans on Mars (and Earth)
  publication-title: Biochem Soc Trans
  doi: 10.1042/BST20160067
– volume: 110
  start-page: 18380
  year: 2013
  end-page: 18385
  ident: 2021.04.19.440538v1.17
  article-title: 3D printing of microscopic bacterial communities
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1309729110
– volume: 27
  start-page: 5075
  year: 2015
  end-page: 5079
  ident: 2021.04.19.440538v1.25
  article-title: Direct 3D Printing of Shear-Thinning Hydrogels into Self-Healing Hydrogels
  publication-title: Adv Mater
  doi: 10.1002/adma.201501234
– year: 2020
  ident: 2021.04.19.440538v1.2
  article-title: Materials design by synthetic biology
  publication-title: Nature Reviews Materials
  doi: 10.1038/s41578-020-00265-w
– volume: 10
  start-page: 014102
  year: 2017
  ident: 2021.04.19.440538v1.24
  article-title: Assessing bioink shape fidelity to aid material development in 3D bioprinting
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/aa90e2
– volume: 15
  start-page: e1805510
  year: 2019
  ident: 2021.04.19.440538v1.16
  article-title: 3D Bioprinting: from Benches to Translational Applications
  publication-title: Small
  doi: 10.1002/smll.201805510
– volume: 30
  start-page: 1907401
  year: 2020
  ident: 2021.04.19.440538v1.18
  article-title: Hybrid Living Materials: Digital Design and Fabrication of 3D Multimaterial Structures with Programmable Biohybrid Surfaces
  publication-title: Advanced Functional Materials
– year: 2021
  ident: 2021.04.19.440538v1.8
  article-title: Living materials with programmable functionalities grown from engineered microbial co-cultures
  publication-title: Nat Mater
  doi: 10.1038/s41563-020-00857-5
– volume: 118
  start-page: 4327
  year: 2005
  end-page: 4332
  ident: 2021.04.19.440538v1.29
  article-title: mazEF: a chromosomal toxin-antitoxin module that triggers programmed cell death in bacteria
  publication-title: J Cell Sci
  doi: 10.1242/jcs.02619
– volume: 15
  start-page: 34
  year: 2019
  end-page: 41
  ident: 2021.04.19.440538v1.10
  article-title: Programmable and printable Bacillus subtilis biofilms as engineered living materials
  publication-title: Nat Chem Biol
  doi: 10.1038/s41589-018-0169-2
– volume: 19
  start-page: 5829
  year: 2019
  end-page: 5835
  ident: 2021.04.19.440538v1.13
  article-title: Direct Writing of Tunable Living Inks for Bioprocess Intensification
  publication-title: Nano Lett
  doi: 10.1021/acs.nanolett.9b00066
– volume: 31
  start-page: e1901826
  year: 2019
  ident: 2021.04.19.440538v1.4
  article-title: Genetically Programmable Self-Regenerating Bacterial Hydrogels
  publication-title: Adv Mater
  doi: 10.1002/adma.201901826
– volume: 101
  start-page: 4770
  year: 2004
  end-page: 4775
  ident: 2021.04.19.440538v1.27
  article-title: Apoptosis or growth arrest: Modulation of tumor suppressor p53’s specificity by bacterial redox protein azurin
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0400899101
– volume: n/a
  start-page: 2010784
  ident: 2021.04.19.440538v1.5
  article-title: Robust Self-Regeneratable Stiff Living Materials Fabricated from Microbial Cells
  publication-title: Advanced Functional Materials
– volume: 41
  start-page: 479
  year: 2018
  end-page: 487
  ident: 2021.04.19.440538v1.28
  article-title: Development of bisphenol A-removing recombinant Escherichia coli by monomeric and dimeric surface display of bisphenol A-binding peptide
  publication-title: Bioprocess Biosyst Eng
  doi: 10.1007/s00449-017-1882-z
– volume: 10
  start-page: 5580
  year: 2019
  ident: 2021.04.19.440538v1.7
  article-title: Engineered E. coli Nissle 1917 for the delivery of matrix-tethered therapeutic domains to the gut
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-13336-6
– volume: 30
  start-page: e1704847
  year: 2018
  ident: 2021.04.19.440538v1.1
  article-title: Engineered Living Materials: Prospects and Challenges for Using Biological Systems to Direct the Assembly of Smart Materials
  publication-title: Adv Mater
  doi: 10.1002/adma.201704847
– volume: 8
  start-page: 1
  year: 2019
  end-page: 15
  ident: 2021.04.19.440538v1.3
  article-title: Biological Engineered Living Materials: Growing Functional Materials with Genetically Programmable Properties
  publication-title: ACS Synth Biol
  doi: 10.1021/acssynbio.8b00423
– volume: 32
  start-page: 773
  year: 2014
  end-page: 785
  ident: 2021.04.19.440538v1.15
  article-title: 3D bioprinting of tissues and organs
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2958
– volume: 94
  start-page: 7176
  year: 1997
  end-page: 7181
  ident: 2021.04.19.440538v1.22
  article-title: The primary fibrin polymerization pocket: three-dimensional structure of a 30-kDa C-terminal gamma chain fragment complexed with the peptide Gly-Pro-Arg-Pro
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.94.14.7176
– volume: 30
  year: 2018
  ident: 2021.04.19.440538v1.12
  article-title: 3D Printing of Living Responsive Materials and Devices
  publication-title: Adv Mater
  doi: 10.1002/adma.201704821
– volume: 10
  start-page: 13373
  year: 2018
  end-page: 13380
  ident: 2021.04.19.440538v1.21
  article-title: Additive Manufacturing of Catalytically Active Living Materials
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.8b02719
– volume: 120
  start-page: 11028
  year: 2020
  end-page: 11055
  ident: 2021.04.19.440538v1.19
  article-title: Printability and Shape Fidelity of Bioinks in 3D Bioprinting
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.0c00084
SSID ssj0002961374
Score 1.6246532
SecondaryResourceType preprint
Snippet Living cells have the capability to synthesize molecular components and precisely assemble them from the nanoscale to build macroscopic living functional...
SourceID biorxiv
SourceType Open Access Repository
SubjectTerms Synthetic Biology
Title Programmable Microbial Ink for 3D Printing of Living Materials Produced from Genetically Engineered Protein Nanofibers
URI https://www.biorxiv.org/content/10.1101/2021.04.19.440538
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfDmE59lBa8p2Wx2N3tVW1RsCVKht5B9BII1LaEW---dSar04MHrbkJgMjvzzc7MN4TcCmecSgofiMSpIC6SPDBSiEAr7kInI8MZNjiPxvLxLX6eiunWqC8sqzTlvP4qV00eHwu2wfq2hztkGKsz5CZluh8D1uDJLumCigmc2jCc9n-vVyINfkrFmzzmn28C4t18acujDA9IN80Xvj4kO746InvtSMj1MVmlbcHUB7Y00VHZ8CTlM_pUvVPAl5Q_0LQum_EOdF7QlxIvBOgoX7aaBJvI4Oodxb4RiqTSzWX1bE1_mAdhL0VyhrKiYFpBtwwgwBMyGQ4m94_BZjZCYCBACMBOhTlXzIKINXcME66htpJHsJrY0AlXFBKwgNJwZCVXzkPk4lwirSwsYLBT0qnmlT8jVBovIpt7m2PfKfNGC8usAuRoAXnH0Tm52YgpW7QEGBmKMgvjjOmsFeXFP565JPu4hpmYKLwinWX96a_BoS9Nj3TvBuP0tdf8wm9vvJxr
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60RfTmE9-u4DUlm012s2e1tNqUHir0FrKPQLCmJdZi_70zSRQPHrxmsgQmuzvfvL4h5C6y2so4d14UW-mFeZx5WkSRpyS3vhWB5gwbnJOxGLyET7No1gbc3tuySl0sqs9iXefxsWAbbt_mcPsMfXWG3KRM9ULAGjzuYZh6m3Rhn4VY0tWf9X5iLIECYyXDNpn553KAve3nfpmV_j7pTrKlqw7IlisPyU4zF3JzRNaTpmrqDfuaaFLUZEnZnA7LVwogk_IHOqmKesYDXeR0VGBUgCbZqtlOIEQaV2cpNo9QZJauI9bzDf2mHwTZBBkaipLC_QobTAMMPCbT_uP0fuC1AxI8DV6CB5eVn3HJDOhZccsw6-orI3gAT2Pj28jmuQBAIBWcW8GldeC-WBsLI3IDQOyEdMpF6U4JFdpFgcmcybD5lDmtIsOMBPhoAH6HwRm5bdWULhsWjBRVmfphylTaqPL8H-_ckN3BNBmlo-H4-YLsoRxTM4F_STqr6sNdgYVf6ev6N34BGP2fqA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN5oG403n_HtmniFsCws7NlKWm0bDjXpjbAPEmKlDamN_ffOABoPHrwyZEmG2Z1vZna-IeQhNMpEcWGdMDaRExRx7igRho6MuPGM8BVn2OA8mYrha_A8D-e_emHwWqUql_VnuWnq-HhhG07fdnN7DGN1htykTLoBYA0eu5imdlem2CV9sLUALTuZuz95Fl-Cw4qCrqD55xIAfbtP_nItySHpp_nK1kdkx1bHZK-dDbk9IZu0vTn1jr1NdFI2hEn5go6qNwpAk_IBTeuymfNAlwUdl5gZoJN83ZoUCJHK1RqKDSQU2aWbrPViS78pCEGWIktDWVE4Y8HIFEDBUzJLnmaPQ6cbkuAoiBQcOLC8nEdMg64lNwwrr57UgvvwNNaeCU1RCAAFkYS9K3hkLIQwxsRCi0IDGDsjvWpZ2XNChbKhr3Orc2xAZVbJUDMdAYTUAMED_4Lcd2rKVi0TRoaqzLwgYzJrVXn5j3fuyH46SLLxaPpyRQ5QjNUZ37smvXX9YW_Aya_VbfMXvwCS5qC5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programmable+Microbial+Ink+for+3D+Printing+of+Living+Materials+Produced+from+Genetically+Engineered+Protein+Nanofibers&rft.jtitle=bioRxiv&rft.au=Duraj-Thatte%2C+Anna+M.&rft.au=Manjula-Basavanna%2C+Avinash&rft.au=Rutledge%2C+Jarod&rft.au=Xia%2C+Jing&rft.date=2021-04-20&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.04.19.440538&rft.externalDocID=2021.04.19.440538v1