Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstruc...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor Laboratory
14.07.2021
|
Edition | 1.2 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 |
DOI | 10.1101/2021.03.17.435872 |
Cover
Abstract | When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods. |
---|---|
AbstractList | When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods. |
Author | Yeh, Fang-Cheng Hansen, Colin B Yang, Qi Schilling, Kurt G Landman, Bennett A Anderson, Adam W Tax, Chantal MW Rheault, Francois Cai, Leon Y |
Author_xml | – sequence: 1 givenname: Kurt G orcidid: 0000-0003-3686-7645 surname: Schilling fullname: Schilling, Kurt G email: kurt.g.schilling.1@vumc.org organization: Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center – sequence: 2 givenname: Chantal MW orcidid: 0000-0002-7480-8817 surname: Tax fullname: Tax, Chantal MW organization: Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University – sequence: 3 givenname: Francois orcidid: 0000-0002-0097-8004 surname: Rheault fullname: Rheault, Francois organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 4 givenname: Colin B surname: Hansen fullname: Hansen, Colin B organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 5 givenname: Qi surname: Yang fullname: Yang, Qi organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 6 givenname: Fang-Cheng orcidid: 0000-0002-7946-2173 surname: Yeh fullname: Yeh, Fang-Cheng organization: Department of Neurological Surgery, University of Pittsburgh – sequence: 7 givenname: Leon Y orcidid: 0000-0002-5812-5397 surname: Cai fullname: Cai, Leon Y organization: Department of Biomedical Engineering, Vanderbilt University – sequence: 8 givenname: Adam W surname: Anderson fullname: Anderson, Adam W organization: Department of Biomedical Engineering, Vanderbilt University – sequence: 9 givenname: Bennett A orcidid: 0000-0001-5733-2127 surname: Landman fullname: Landman, Bennett A organization: Department of Biomedical Engineering, Vanderbilt University |
BookMark | eNptkL1OwzAUhS0EEqX0AdgyMrTBdn6cjKiigFSJhT1y7OvWkNghTlrKy_FqOAQhEEz373xHV-cMHRtrAKELgkNCMLmimJIQRyFhYRwlGaNHaELTnC4yipNTNHPuCWNM85RELJ6g95UuoQ26lovOblrebA9B2RtZQeBgU4PpeKetCSQ0YKQLfOsEN8YzoBSIzs2Dnb_YHzMXL712-pNrwdmqH9p5ILVSvRu2jtdNpc3Ge22hhl8nMAP6xkeGG_nvP3vbPqvK7s_RieKVg9lXnaLH1c3j8m6xfri9X16vFyVL6SJSDLIyjSVluYw4TUUOKaaxElJmiU-MJLHfYQZeKFjOuYypTIFSBkTQMpoiOtr2puGHPa-qoml1zdtDQXAxBF8MwRc4KggrxuA9dDlCpbbtq959I3-lHyeVjUs |
ContentType | Paper |
Copyright | 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | FX. UNPAY |
DOI | 10.1101/2021.03.17.435872 |
DatabaseName | bioRxiv Unpaywall |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.2 |
ExternalDocumentID | 10.1101/2021.03.17.435872 2021.03.17.435872v2 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI FX. HCIFZ LK8 M7P NQS PIMPY PROAC RHI UNPAY |
ID | FETCH-LOGICAL-b762-3f7e8b64d279d3a26c9e6024fcdd850211546c907ef7ec79aad42d6e227e1c2b3 |
IEDL.DBID | UNPAY |
IngestDate | Thu Aug 28 11:21:42 EDT 2025 Tue Jan 07 18:51:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | white matter tractography bundle segmentation reproducibility harmonization |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b762-3f7e8b64d279d3a26c9e6024fcdd850211546c907ef7ec79aad42d6e227e1c2b3 |
Notes | Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-7946-2173 0000-0002-7480-8817 0000-0001-5733-2127 0000-0002-5812-5397 0000-0003-3686-7645 0000-0002-0097-8004 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.biorxiv.org/content/biorxiv/early/2021/07/14/2021.03.17.435872.full.pdf |
PageCount | 20 |
ParticipantIDs | unpaywall_primary_10_1101_2021_03_17_435872 biorxiv_primary_2021_03_17_435872 |
PublicationCentury | 2000 |
PublicationDate | 20210714 |
PublicationDateYYYYMMDD | 2021-07-14 |
PublicationDate_xml | – month: 7 year: 2021 text: 20210714 day: 14 |
PublicationDecade | 2020 |
PublicationTitle | bioRxiv |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Chamberland, Tax, Jones (2021.03.17.435872v2.51) 2018; 20 Tax (2021.03.17.435872v2.74) 2020; 210 Daducci (2021.03.17.435872v2.92) 2014; 33 Prckovska (2021.03.17.435872v2.91) 2008; 11 De Luca (2021.03.17.435872v2.75) 2021 Sotiropoulos, Behrens, Jbabdi (2021.03.17.435872v2.94) 2012; 60 Zhong (2021.03.17.435872v2.42) 2020; 19 Teipel (2021.03.17.435872v2.22) 2011; 194 Essayed (2021.03.17.435872v2.100) 2017; 15 Neubert (2021.03.17.435872v2.14) 2015; 112 Pierpaoli (2021.03.17.435872v2.17) 1996; 201 Jones (2021.03.17.435872v2.2) 2018; 182 Avesani (2021.03.17.435872v2.102) 2019; 6 Chamberland (2021.03.17.435872v2.6) 2019; 200 Jeurissen (2021.03.17.435872v2.4) 2019; 32 Ning (2021.03.17.435872v2.40) 2020; 221 Jack (2021.03.17.435872v2.103) 2008; 27 Fekonja (2021.03.17.435872v2.99) 2019; 161 Yeh (2021.03.17.435872v2.70) 2018; 178 O’Donnell, Westin (2021.03.17.435872v2.111) 2007; 26 Tax (2021.03.17.435872v2.41) 2019; 195 Yeh (2021.03.17.435872v2.93) 2013; 8 Vazquez (2021.03.17.435872v2.53) 2020; 19 Schilling (2021.03.17.435872v2.87) 2018; 165 Sarubbo (2021.03.17.435872v2.12) 2019; 224 Jones, Horsfield, Simmons (2021.03.17.435872v2.76) 1999; 42 Sarubbo (2021.03.17.435872v2.13) 2013; 218 Forkel (2021.03.17.435872v2.9) 2014; 56 Rheault (2021.03.17.435872v2.80) 2020; 17 Mancini (2021.03.17.435872v2.98) 2019; 23 Magnotta (2021.03.17.435872v2.85) 2012; 2 Jones, Cercignani (2021.03.17.435872v2.38) 2010; 23 Jones (2021.03.17.435872v2.28) 2003; 49 Huynh (2021.03.17.435872v2.79) 2019 Ning (2021.03.17.435872v2.116) 2020; 221 Schilling (2021.03.17.435872v2.55) 2020 Smith (2021.03.17.435872v2.96) 2006; 31 Koller (2021.03.17.435872v2.101) 2021; 225 Cai (2021.03.17.435872v2.62) 2021 Huynh (2021.03.17.435872v2.44) 2019; 38 Griswold (2021.03.17.435872v2.82) 2002; 47 Pestilli (2021.03.17.435872v2.49) 2014; 11 Jones, Basser (2021.03.17.435872v2.33) 2004; 52 Jones (2021.03.17.435872v2.34) 2007 Tax (2021.03.17.435872v2.117) 2019 Moyer (2021.03.17.435872v2.78) 2020; 84 Tournier (2021.03.17.435872v2.67) 2019; 202 Zhang (2021.03.17.435872v2.110) 2019; 11766 Warrington (2021.03.17.435872v2.73) 2020; 217 Zhang (2021.03.17.435872v2.108) 2020; 65 Canales-Rodriguez (2021.03.17.435872v2.88) 2018; 184 Jenkinson (2021.03.17.435872v2.63) 2012; 62 Schilling (2021.03.17.435872v2.81) 2017; 30 Chang, Jones, Pierpaoli (2021.03.17.435872v2.35) 2005; 53 Rheault (2021.03.17.435872v2.52) 2020 Glasser (2021.03.17.435872v2.61) 2013; 80 Hau (2021.03.17.435872v2.11) 2016; 10 Jones (2021.03.17.435872v2.37) 2010; 21 Vishwesh Nath, Parvathaneni, Hansen, Hainline, Bermudez, Remedios, Blaber, Janve, Gao, Stepniewska, Rogers, Newton, Davis, Luci, Anderson, Landman (2021.03.17.435872v2.45) 2018 Lori (2021.03.17.435872v2.29) 2002; 15 Magnotta (2021.03.17.435872v2.20) 2012; 2 Jones (2021.03.17.435872v2.32) 2004; 51 Garyfallidis (2021.03.17.435872v2.71) 2018; 170 Tournier (2021.03.17.435872v2.90) 2008; 42 Wassermann (2021.03.17.435872v2.112) 2016; 221 Landman (2021.03.17.435872v2.25) 2007; 36 Schilling (2021.03.17.435872v2.115) 2021 Mandonnet, Sarubbo, Petit (2021.03.17.435872v2.95) 2018; 12 Prohl (2021.03.17.435872v2.18) 2019; 13 Landman (2021.03.17.435872v2.21) 2011; 54 Andersson, Skare, Ashburner (2021.03.17.435872v2.60) 2003; 20 Yeh, Wedeen, Tseng (2021.03.17.435872v2.69) 2010; 29 Wasserthal, Neher, Maier-Hein (2021.03.17.435872v2.66) 2018 Fortin (2021.03.17.435872v2.48) 2017; 161 Heiervang (2021.03.17.435872v2.26) 2006; 33 Mars (2021.03.17.435872v2.16) 2012; 22 Raffelt (2021.03.17.435872v2.5) 2017; 144 Cetin Karayumak (2021.03.17.435872v2.43) 2019; 184 Tournier, Calamante, Connelly (2021.03.17.435872v2.89) 2013; 26 Wasserthal (2021.03.17.435872v2.64) 2019; 58 Wasserthal, Neher, Maier-Hein (2021.03.17.435872v2.65) 2018; 183 Vollmar (2021.03.17.435872v2.23) 2010; 51 Papinutto, Maule, Jovicich (2021.03.17.435872v2.31) 2013; 31 Hau (2021.03.17.435872v2.10) 2017; 222 Wakana (2021.03.17.435872v2.58) 2007; 36 Tong (2021.03.17.435872v2.105) 2020; 7 Guevara (2021.03.17.435872v2.57) 2012; 61 Zöllei (2021.03.17.435872v2.114) 2019; 199 Zhang (2021.03.17.435872v2.109) 2020; 4 Ros (2021.03.17.435872v2.113) 2013; 8 Yeh (2021.03.17.435872v2.68) 2020; 223 Galluzzi (2021.03.17.435872v2.106) 2016; 279 Novikov (2021.03.17.435872v2.3) 2018 Jones, Knosche, Turner (2021.03.17.435872v2.36) 2013; 73 Jones, Horsfield, Simmons (2021.03.17.435872v2.39) 1999; 42 Pfefferbaum, Adalsteinsson, Sullivan (2021.03.17.435872v2.27) 2003; 18 Maffei, Sarubbo, Jovicich (2021.03.17.435872v2.8) 2019; 9 Yu (2021.03.17.435872v2.46) 2018; 39 Chen (2021.03.17.435872v2.77) 2016; 6 Cai (2021.03.17.435872v2.59) 2020 Farrell (2021.03.17.435872v2.24) 2007; 26 Pruessmann (2021.03.17.435872v2.83) 1999; 42 Chandio (2021.03.17.435872v2.104) 2020; 10 Neubert (2021.03.17.435872v2.15) 2014; 81 Alexander (2021.03.17.435872v2.1) 2019; 32 Mirzaalian (2021.03.17.435872v2.19) 2016; 135 Nath (2021.03.17.435872v2.50) 2019 Min (2021.03.17.435872v2.86) 2018; 19 Marcus (2021.03.17.435872v2.107) 2007; 19 Mirzaalian (2021.03.17.435872v2.47) 2018; 12 Guevara (2021.03.17.435872v2.54) 2017; 147 Zhang (2021.03.17.435872v2.56) 2019; 40 Vanderweyen (2021.03.17.435872v2.97) 2020; 225 Jones (2021.03.17.435872v2.30) 2020 Garyfallidis (2021.03.17.435872v2.72) 2014; 8 Prohl (2021.03.17.435872v2.84) 2019; 13 Yeatman (2021.03.17.435872v2.7) 2012; 7 |
References_xml | – volume: 36 start-page: 1123 issue: 4 year: 2007 end-page: 38 ident: 2021.03.17.435872v2.25 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage – volume: 31 start-page: 827 issue: 6 year: 2013 end-page: 39 ident: 2021.03.17.435872v2.31 article-title: Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables publication-title: Magn Reson Imaging – volume: 221 start-page: 117128 year: 2020 ident: 2021.03.17.435872v2.40 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results publication-title: NeuroImage – year: 2019 ident: 2021.03.17.435872v2.117 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms publication-title: Neuroimage – volume: 195 start-page: 285 year: 2019 end-page: 299 ident: 2021.03.17.435872v2.41 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms publication-title: Neuroimage – volume: 21 start-page: 87 issue: 2 year: 2010 end-page: 99 ident: 2021.03.17.435872v2.37 article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging publication-title: Top Magn Reson Imaging – volume: 2 start-page: 345 issue: 6 year: 2012 end-page: 355 ident: 2021.03.17.435872v2.20 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain connectivity – volume: 42 start-page: 617 issue: 2 year: 2008 end-page: 25 ident: 2021.03.17.435872v2.90 article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data publication-title: Neuroimage – volume: 222 start-page: 1645 issue: 4 year: 2017 end-page: 1662 ident: 2021.03.17.435872v2.10 article-title: Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation publication-title: Brain Struct Funct – volume: 20 start-page: 870 issue: 2 year: 2003 end-page: 88 ident: 2021.03.17.435872v2.60 article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging publication-title: Neuroimage – volume: 17 start-page: 011001 issue: 1 year: 2020 ident: 2021.03.17.435872v2.80 article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography publication-title: J Neural Eng – year: 2019 ident: 2021.03.17.435872v2.50 article-title: Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge publication-title: J Magn Reson Imaging – volume: 27 start-page: 685 issue: 4 year: 2008 end-page: 91 ident: 2021.03.17.435872v2.103 article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods publication-title: J Magn Reson Imaging – volume: 51 start-page: 807 issue: 4 year: 2004 end-page: 15 ident: 2021.03.17.435872v2.32 article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study publication-title: Magn Reson Med – year: 2020 ident: 2021.03.17.435872v2.55 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: bioRxiv – volume: 65 start-page: 101761 year: 2020 ident: 2021.03.17.435872v2.108 article-title: Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation publication-title: Med Image Anal – volume: 19 start-page: 777 issue: 4 year: 2018 end-page: 782 ident: 2021.03.17.435872v2.86 article-title: Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: Implications for Multicenter Clinical Imaging Studies publication-title: Korean J Radiol – volume: 33 start-page: 867 issue: 3 year: 2006 end-page: 77 ident: 2021.03.17.435872v2.26 article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures publication-title: Neuroimage – volume: 31 start-page: 1487 issue: 4 year: 2006 end-page: 1505 ident: 2021.03.17.435872v2.96 article-title: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data publication-title: NeuroImage – volume: 11 start-page: 1058 issue: 10 year: 2014 end-page: 1063 ident: 2021.03.17.435872v2.49 article-title: Evaluation and statistical inference for human connectomes publication-title: Nature Methods – volume: 183 start-page: 239 year: 2018 end-page: 253 ident: 2021.03.17.435872v2.65 article-title: TractSeg -Fast and accurate white matter tract segmentation publication-title: Neuroimage – volume: 7 start-page: 157 issue: 1 year: 2020 ident: 2021.03.17.435872v2.105 article-title: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings publication-title: Sci Data – year: 2021 ident: 2021.03.17.435872v2.115 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: bioRxiv – volume: 11766 start-page: 599 year: 2019 end-page: 608 ident: 2021.03.17.435872v2.110 article-title: Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions publication-title: Med Image Comput Comput Assist Interv – volume: 15 start-page: 494 issue: 7-8 year: 2002 end-page: 515 ident: 2021.03.17.435872v2.29 article-title: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results publication-title: NMR Biomed – volume: 13 start-page: 24 year: 2019 end-page: 24 ident: 2021.03.17.435872v2.18 article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study publication-title: Frontiers in integrative neuroscience – volume: 12 start-page: 284 issue: 1 year: 2018 end-page: 295 ident: 2021.03.17.435872v2.47 article-title: Multi-site harmonization of diffusion MRI data in a registration framework publication-title: Brain Imaging Behav – volume: 147 start-page: 703 year: 2017 end-page: 725 ident: 2021.03.17.435872v2.54 article-title: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography publication-title: Neuroimage – volume: 47 start-page: 1202 issue: 6 year: 2002 end-page: 10 ident: 2021.03.17.435872v2.82 article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA) publication-title: Magn Reson Med – volume: 223 start-page: 117329 year: 2020 ident: 2021.03.17.435872v2.68 article-title: Shape analysis of the human association pathways publication-title: NeuroImage – volume: 39 start-page: 4213 issue: 11 year: 2018 end-page: 4227 ident: 2021.03.17.435872v2.46 article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data publication-title: Hum Brain Mapp – volume: 135 start-page: 311 year: 2016 end-page: 23 ident: 2021.03.17.435872v2.19 article-title: Inter-site and inter-scanner diffusion MRI data harmonization publication-title: Neuroimage – volume: 30 issue: 12 year: 2017 ident: 2021.03.17.435872v2.81 article-title: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI? publication-title: NMR Biomed – volume: 221 start-page: 117128 year: 2020 ident: 2021.03.17.435872v2.116 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results publication-title: Neuroimage – volume: 11 start-page: 9 issue: Pt 2 year: 2008 end-page: 17 ident: 2021.03.17.435872v2.91 article-title: Optimal acquisition schemes in high angular resolution diffusion weighted imaging publication-title: Med Image Comput Comput Assist Interv – volume: 56 start-page: 73 year: 2014 end-page: 84 ident: 2021.03.17.435872v2.9 article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography publication-title: Cortex – volume: 202 start-page: 116137 year: 2019 ident: 2021.03.17.435872v2.67 article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage – volume: 165 start-page: 200 year: 2018 end-page: 221 ident: 2021.03.17.435872v2.87 article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion publication-title: Neuroimage – volume: 6 start-page: 69 issue: 1 year: 2019 ident: 2021.03.17.435872v2.102 article-title: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services publication-title: Scientific Data – volume: 10 start-page: 17149 issue: 1 year: 2020 ident: 2021.03.17.435872v2.104 article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations publication-title: Sci Rep – volume: 182 start-page: 8 year: 2018 end-page: 38 ident: 2021.03.17.435872v2.2 article-title: Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI publication-title: Neuroimage – volume: 62 start-page: 782 issue: 2 year: 2012 end-page: 90 ident: 2021.03.17.435872v2.63 article-title: Fsl publication-title: Neuroimage – volume: 40 start-page: 3041 issue: 10 year: 2019 end-page: 3057 ident: 2021.03.17.435872v2.56 article-title: Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering publication-title: Human Brain Mapping – year: 2019 ident: 2021.03.17.435872v2.79 publication-title: in Computational Diffusion MRI – volume: 58 start-page: 101559 year: 2019 ident: 2021.03.17.435872v2.64 article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography publication-title: Med Image Anal – volume: 225 start-page: 117406 year: 2021 ident: 2021.03.17.435872v2.101 article-title: MICRA: Microstructural image compilation with repeated acquisitions publication-title: NeuroImage – volume: 170 start-page: 283 year: 2018 end-page: 295 ident: 2021.03.17.435872v2.71 article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering publication-title: Neuroimage – volume: 7 start-page: e49790 issue: 11 year: 2012 ident: 2021.03.17.435872v2.7 article-title: Tract profiles of white matter properties: automating fiber-tract quantification publication-title: PLoS One – year: 2018 ident: 2021.03.17.435872v2.45 publication-title: in MICCAI-CDMRI – volume: 12 start-page: 94 year: 2018 ident: 2021.03.17.435872v2.95 article-title: The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification publication-title: Front Neuroanat – volume: 184 start-page: 180 year: 2019 end-page: 200 ident: 2021.03.17.435872v2.43 article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters publication-title: Neuroimage – volume: 22 start-page: 1894 issue: 8 year: 2012 end-page: 903 ident: 2021.03.17.435872v2.16 article-title: Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks publication-title: Cereb Cortex – volume: 18 start-page: 427 issue: 4 year: 2003 end-page: 33 ident: 2021.03.17.435872v2.27 article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain publication-title: J Magn Reson Imaging – volume: 161 start-page: 149 year: 2017 end-page: 170 ident: 2021.03.17.435872v2.48 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage – year: 2020 ident: 2021.03.17.435872v2.52 article-title: Tractostorm: The what, why, and how of tractography dissection reproducibility publication-title: Hum Brain Mapp – volume: 36 start-page: 630 issue: 3 year: 2007 end-page: 44 ident: 2021.03.17.435872v2.58 article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter publication-title: Neuroimage – volume: 19 start-page: 1498 issue: 9 year: 2007 end-page: 507 ident: 2021.03.17.435872v2.107 article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults publication-title: J Cogn Neurosci – volume: 49 start-page: 7 issue: 1 year: 2003 end-page: 12 ident: 2021.03.17.435872v2.28 article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI publication-title: Magn Reson Med – volume: 199 start-page: 1 year: 2019 end-page: 17 ident: 2021.03.17.435872v2.114 article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain publication-title: Neuroimage – volume: 144 start-page: 58 issue: Pt A year: 2017 end-page: 73 ident: 2021.03.17.435872v2.5 article-title: Investigating white matter fibre density and morphology using fixel-based analysis publication-title: Neuroimage – volume: 84 start-page: 2174 issue: 4 year: 2020 end-page: 2189 ident: 2021.03.17.435872v2.78 article-title: Scanner invariant representations for diffusion MRI harmonization publication-title: Magnetic Resonance in Medicine – volume: 9 start-page: 4046 issue: 1 year: 2019 ident: 2021.03.17.435872v2.8 article-title: Diffusion-based tractography atlas of the human acoustic radiation publication-title: Sci Rep – year: 2018 ident: 2021.03.17.435872v2.66 publication-title: in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018 – volume: 184 start-page: 140 year: 2018 end-page: 160 ident: 2021.03.17.435872v2.88 article-title: Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI publication-title: Neuroimage – volume: 210 start-page: 116534 year: 2020 ident: 2021.03.17.435872v2.74 article-title: The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain publication-title: Neuroimage – volume: 23 start-page: 101883 year: 2019 ident: 2021.03.17.435872v2.98 article-title: Automated fiber tract reconstruction for surgery planning: Extensive validation in language-related white matter tracts publication-title: Neuroimage Clin – volume: 224 start-page: 1553 issue: 4 year: 2019 end-page: 1567 ident: 2021.03.17.435872v2.12 article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution publication-title: Brain Struct Funct – start-page: e3998 year: 2018 ident: 2021.03.17.435872v2.3 article-title: Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation publication-title: NMR Biomed – volume: 10 start-page: 58 year: 2016 ident: 2021.03.17.435872v2.11 article-title: Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection publication-title: Front Neuroanat – volume: 73 start-page: 239 year: 2013 end-page: 54 ident: 2021.03.17.435872v2.36 article-title: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI publication-title: Neuroimage – volume: 15 start-page: 659 year: 2017 end-page: 672 ident: 2021.03.17.435872v2.100 article-title: White matter tractography for neurosurgical planning: A topography-based review of the current state of the art publication-title: Neuroimage Clin – volume: 51 start-page: 1384 issue: 4 year: 2010 end-page: 1394 ident: 2021.03.17.435872v2.23 article-title: Identical, but not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners publication-title: NeuroImage – volume: 54 start-page: 2854 issue: 4 year: 2011 end-page: 66 ident: 2021.03.17.435872v2.21 article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study publication-title: Neuroimage – volume: 23 start-page: 803 issue: 7 year: 2010 end-page: 20 ident: 2021.03.17.435872v2.38 article-title: Twenty-five pitfalls in the analysis of diffusion MRI data publication-title: NMR Biomed – volume: 221 start-page: 4705 issue: 9 year: 2016 end-page: 4721 ident: 2021.03.17.435872v2.112 article-title: The white matter query language: a novel approach for describing human white matter anatomy publication-title: Brain Struct Funct – volume: 20 start-page: 458 year: 2018 end-page: 465 ident: 2021.03.17.435872v2.51 article-title: Meyer’s loop tractography for image-guided surgery depends on imaging protocol and hardware publication-title: Neuroimage Clin – volume: 42 start-page: 515 issue: 3 year: 1999 end-page: 25 ident: 2021.03.17.435872v2.76 article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging publication-title: Magn Reson Med – volume: 26 start-page: 1775 issue: 12 year: 2013 end-page: 86 ident: 2021.03.17.435872v2.89 article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging publication-title: NMR Biomed – volume: 8 start-page: e83847 issue: 12 year: 2013 ident: 2021.03.17.435872v2.113 article-title: Atlas-guided cluster analysis of large tractography datasets publication-title: PLoS One – volume: 8 start-page: e80713 issue: 11 year: 2013 ident: 2021.03.17.435872v2.93 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS One – volume: 218 start-page: 21 issue: 1 year: 2013 end-page: 37 ident: 2021.03.17.435872v2.13 article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle publication-title: Brain Struct Funct – volume: 26 start-page: 1562 issue: 11 year: 2007 end-page: 75 ident: 2021.03.17.435872v2.111 article-title: Automatic tractography segmentation using a high-dimensional white matter atlas publication-title: IEEE Trans Med Imaging – volume: 4 start-page: 299 year: 2020 end-page: 309 ident: 2021.03.17.435872v2.109 article-title: SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization publication-title: JCO Clin Cancer Inform – volume: 19 start-page: 4 issue: 1 year: 2020 ident: 2021.03.17.435872v2.42 article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development publication-title: Biomed Eng Online – volume: 33 start-page: 384 issue: 2 year: 2014 end-page: 99 ident: 2021.03.17.435872v2.92 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans Med Imaging – volume: 32 start-page: e3841 issue: 4 year: 2019 ident: 2021.03.17.435872v2.1 article-title: Imaging brain microstructure with diffusion MRI: practicality and applications publication-title: NMR Biomed – volume: 178 start-page: 57 year: 2018 end-page: 68 ident: 2021.03.17.435872v2.70 article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage – volume: 52 start-page: 979 issue: 5 year: 2004 end-page: 93 ident: 2021.03.17.435872v2.33 article-title: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data publication-title: Magn Reson Med – volume: 13 start-page: 24 year: 2019 ident: 2021.03.17.435872v2.84 article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study publication-title: Front Integr Neurosci – volume: 200 start-page: 89 year: 2019 end-page: 100 ident: 2021.03.17.435872v2.6 article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain publication-title: Neuroimage – volume: 81 start-page: 700 issue: 3 year: 2014 end-page: 13 ident: 2021.03.17.435872v2.15 article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex publication-title: Neuron – volume: 6 start-page: 37847 issue: 1 year: 2016 ident: 2021.03.17.435872v2.77 article-title: Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing publication-title: Scientific Reports – volume: 42 start-page: 952 issue: 5 year: 1999 end-page: 62 ident: 2021.03.17.435872v2.83 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magn Reson Med – volume: 19 start-page: 42 issue: 1 year: 2020 ident: 2021.03.17.435872v2.53 article-title: Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information publication-title: Biomed Eng Online – volume: 80 start-page: 105 year: 2013 end-page: 24 ident: 2021.03.17.435872v2.61 article-title: The minimal preprocessing pipelines for the Human Connectome Project publication-title: Neuroimage – volume: 201 start-page: 637 year: 1996 end-page: 648 ident: 2021.03.17.435872v2.17 article-title: Diffusion Tensor MR Imaging of the Human Brain publication-title: Radiology – volume: 217 start-page: 116923 year: 2020 ident: 2021.03.17.435872v2.73 article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage – volume: 194 start-page: 363 issue: 3 year: 2011 end-page: 371 ident: 2021.03.17.435872v2.22 article-title: Multicenter stability of diffusion tensor imaging measures: A European clinical and physical phantom study publication-title: Psychiatry Research: Neuroimaging – start-page: 116704 year: 2020 ident: 2021.03.17.435872v2.30 article-title: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain publication-title: Neuroimage – year: 2021 ident: 2021.03.17.435872v2.75 article-title: On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge publication-title: bioRxiv – volume: 112 start-page: E2695 issue: 20 year: 2015 end-page: 704 ident: 2021.03.17.435872v2.14 article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex publication-title: Proc Natl Acad Sci U S A – year: 2020 ident: 2021.03.17.435872v2.59 article-title: MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging publication-title: bioRxiv – volume: 32 start-page: e3785 issue: 4 year: 2019 ident: 2021.03.17.435872v2.4 article-title: Diffusion MRI fiber tractography of the brain publication-title: NMR Biomed – volume: 38 start-page: 1599 issue: 7 year: 2019 end-page: 1609 ident: 2021.03.17.435872v2.44 article-title: Multi-Site Harmonization of Diffusion MRI Data via Method of Moments publication-title: IEEE Trans Med Imaging – year: 2021 ident: 2021.03.17.435872v2.62 article-title: PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images publication-title: Magnetic Resonance in Medicine – volume: 161 start-page: 1125 issue: 6 year: 2019 end-page: 1137 ident: 2021.03.17.435872v2.99 article-title: Manual for clinical language tractography publication-title: Acta Neurochirurgica – volume: 61 start-page: 1083 issue: 4 year: 2012 end-page: 99 ident: 2021.03.17.435872v2.57 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage – volume: 279 start-page: 576 issue: 6 year: 2016 end-page: 91 ident: 2021.03.17.435872v2.106 article-title: Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a ‘European ADNI study’ publication-title: J Intern Med – volume: 42 start-page: 515 year: 1999 end-page: 525 ident: 2021.03.17.435872v2.39 article-title: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging publication-title: Magnetic Resonance in Medicine – year: 2007 ident: 2021.03.17.435872v2.34 publication-title: What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods – volume: 53 start-page: 1088 issue: 5 year: 2005 end-page: 95 ident: 2021.03.17.435872v2.35 article-title: RESTORE: robust estimation of tensors by outlier rejection publication-title: Magn Reson Med – volume: 60 start-page: 1412 issue: 2 year: 2012 end-page: 25 ident: 2021.03.17.435872v2.94 article-title: Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI publication-title: Neuroimage – volume: 225 start-page: 1413 issue: 4 year: 2020 end-page: 1436 ident: 2021.03.17.435872v2.97 article-title: The role of diffusion tractography in refining glial tumor resection publication-title: Brain Structure and Function – volume: 26 start-page: 756 issue: 3 year: 2007 end-page: 67 ident: 2021.03.17.435872v2.24 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J Magn Reson Imaging – volume: 2 start-page: 345 issue: 6 year: 2012 end-page: 55 ident: 2021.03.17.435872v2.85 article-title: Multicenter reliability of diffusion tensor imaging publication-title: Brain Connect – volume: 8 start-page: 8 year: 2014 ident: 2021.03.17.435872v2.72 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 29 start-page: 1626 issue: 9 year: 2010 end-page: 35 ident: 2021.03.17.435872v2.69 article-title: Generalized q-sampling imaging publication-title: IEEE Trans Med Imaging |
SSID | ssj0002961374 |
Score | 1.6314735 |
SecondaryResourceType | preprint |
Snippet | When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to... |
SourceID | unpaywall biorxiv |
SourceType | Open Access Repository |
SubjectTerms | Neuroscience |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QEAJOPMVbQeIGRU2aNd0ZMU1IIA5D2q1KGgcmjW5sK49fx1_DXqNpiB24tamTVHFiO84Xm7ELK1Ibg44jAFzkivw3WQY-ilViBViLWp4c-vcPaedJ3fWavYVUXwSrtP3h-LP_PjvHJ8A2St96cceC9uqCopIKfY2KPtMofVdxiilCc7V713P3imyhntIqnGMurYkWb-hpk61X5ch8fZjBYEG7tLfY6qMZwXibrUC5w9bq9JBfu-y7TXAOPqWLTCGyNLcVRUXgE3h-DbeGSl4nsp1wfJzgSJVYJ8A0rjjKMjdceDfFW9WvcVocd9ph4l1xSpRSkeeMTwyBzMtnbOsFXuHXJ0K7T8PNTWyrdEv_h7BefjD82GPd9m33phOFhAuRRZkYJV5DZlPlpG65xMi0aEGKOtwXzmVNHD40t7As1oCEhW4Z45R0KUipQRTSJvusUQ5LOGA88U2l0boyiXRKZ976ZiGUVxJ1sldaH7LzMPb5qI6qkRN_8jjJhc5r_hyyyzlX5lSzPUss_lIf_aPFY7ZBZeSaFeqENabjCk7Rppjas9ns-QF-kcsm priority: 102 providerName: Cold Spring Harbor Laboratory Press |
Title | Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow |
URI | https://www.biorxiv.org/content/10.1101/2021.03.17.435872 https://www.biorxiv.org/content/biorxiv/early/2021/07/14/2021.03.17.435872.full.pdf |
UnpaywallVersion | acceptedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdY-4B4YRMghqDypL2xpLHjxunjQKsmJKoKbVJ5iuz4PCq6tDQJg305vtruGjMNxssk3hzn_Cf2xXc-_-7M2KEVmU1AJxEA_uSK7Dd5Dj5KVGoFWItSngz6H6fZ6bn6MB_Ng2ddHWCVdrHa_Fh8357jE2AbV99hyBsChf2lHbsYJnoo1DZJYUqFjlHy51rGZLeO187vsH5Gp0491j-fzo4_hzNN5MH7hVD7DS08YY_bam1-Xpnl8o6kmTxlze8-dgCTr3Hb2Li8_it843_-iF3Wn5k1bPbYI6iesV8TwpHwhjyoQkhrblsKx8BruLgM7koV727QrTkma5yiCssEfMgRx0XUre48m_Jbu-gAYhy3-IHjjzjd0NKSyY7XhtDt1QXW9QUu4Y9XBLNvgsso1lW5f_aHQGZ-ubp6zs4mJ2fvT6Nw00NkcTGOUq8ht5lyUo9damRWjiFD5cGXzuUjHBvU8zAv0YCEpR4b45R0GUipQZTSpi9Yr1pV8JLx1I-URrXOpNIpnXvrR6VQXklUBrzSep8dhFko1l04j4IGv0jSQuiiG_x99vaWBW6ptpulRNynfvUg6tes12xaeIOaTGMHrP_uZDr7NGA7k3k8CHx6A4Cb-jY |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZ4aAWcFljEaxcj7W1JFTtunJ5XVN3lIQ5F6i2y4zFUatPSNDx-HX9tZxqrAi0Hbkn8iuyxZ_z58wxjP61IbQw6jgBwkivCb7IMfBSrxAqwFrU8AfpX12nvVv0dtAcBcKsCrdIOJ7Pn4ePiHJ8I27j6NpM7FrRXF-SVVOgWKvpMyxbB1KtsHeVMkYR3B60lxiI7qKy0CoeZHxZHszc0t8U26nJqXp7MaPRGxXS_svUbM4XZNluBcod9aWJEvuyy1y5xOvicbjMF99Lc1uQagVdwNw5Xh0reRLOtOD5W2F0llglcjTOOC5qbvHk3xUM9bMhaHLfbQfrOOEVLqQk-45Uhpnl5h3XdwxjeJRHlfR6ub2Jdpfvwf4jw5UeTp2-s3z3v_-5FIepCZHFhjBKvIbOpclJ3XGJkWnQgRUXuC-eyNnYf2lz4LdaAGQvdMcYp6VKQUoMopE322Fo5KWGf8cS3lUYTyyTSKZ1569uFUF5JVMxeaX3ATkPf59PGtUZO45PHSS503ozPAfu1HJVlrsXGJRb_5z78RI0nbKPXv7rML_9cXxyxTUonrFaoY7Y2n9XwHY2Muf2xkKR_LtPP9A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZY0C5wgt1FvNdI3JZUsePG6RmIgN1FHEDqLbLjMVQqaWkbHr-Ov8ZMY1VdwYFbEjuTaPyYh7-ZYezQitTGoOMIABe5Iv9NloGPYpVYAdailCeH_r_L9OxGXXTb3blYGIJV2t5g9Nx7nJ7jE2Abd99mcceCbHVBWUmFbqGgz7RskZu6NXT-C1vCuabIAMu7rZmfRXZQYGkVDjQ_JIGqb_jkKluuq6F5eTL9_pyYydfY0pUZwmidLUD1nX1t6kS-_GCvOeE6-IQimkKKaW5rSo_Ax3B7H8KHKt5UtB1zvBwjyyp8J-A1jjhuam4wd2_Kh7rXALY4mtxhBh5xqphSkwuNjw2hzatbpHUH9_BfE8HeJyGEE2lV7sP_IdCX7w-efrLr_PT6-CwKlRcii5tjlHgNmU2Vk7rjEiPTsgMpCnNfOpe1kX2od-GzWAN2LHXHGKekS0FKDaKUNtlgi9Wggk3GE99WGtUsk0indOatb5dCeSVROHul9RY7CLwvhk16jYLGp4iTQuiiGZ8t9ns2KrNeU-MlFu97b3-C4i_27eokL_6eX_7ZYSvUTO5aoXbZ4mRUwx7qGRO7P51IbzE00QU |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELba3QPqpa1aVBBURuoNko0db5w9IsQKIRVxAAlOkR2PYdUlu2yS0vJyvBozG4OgcKnEzXHGP7EnnvH4mzFjP6zIbAI6iQDwJ1dkv8lz8FGiUivAWpTyZND_eZQdnKrDs-FZ8KyrA6zSTmaLP5Pfy3N8Amzj6jsIeQOgsL-0YxeDRA-EWiYpTKnQMUr-XMuY7Nbx3Pn3rJ_RqVOP9U-PjnfPw5km8uDLQqj9hhY-sJW2mpu_N2Y6fSJpxh9Z89DHDmDyK24bG5e3_4RvfOOP-MT6x2YOi8_sHVRf2N2YcCS8IQ-qENKa25bCMfAaLq6Cu1LFuxt0a47JGqeowjIBH7LDcRF1syfPprxuJx1AjOMWP3D8DqcbWloy2fHaELq9usC6LuEKnr0imH0TXEaxrsq92h8Cmfnp7OYrOxnvn-wdROGmh8jiYhylXkNuM-WkHrnUyKwcQYbKgy-dy4c4NqjnYV6iAQlLPTLGKekykFKDKKVNV1mvmlXwjfHUD5VGtc6k0imde-uHpVBeSVQGvNJ6jW2FWSjmXTiPgga_SNJC6KIb_DW2_cgCj1TLzVIiXlKv_xf1Bus1ixY2UZNp7PfAmffmS_ev |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+tractography+bundle+segmentation+depends+on+scanner+effects%2C+vendor+effects%2C+acquisition+resolution%2C+diffusion+sampling+scheme%2C+diffusion+sensitization%2C+and+bundle+segmentation+workflow&rft.jtitle=bioRxiv&rft.au=Schilling%2C+Kurt+G&rft.au=Tax%2C+Chantal+MW&rft.au=Rheault%2C+Francois&rft.au=Hansen%2C+Colin+B&rft.date=2021-07-14&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.03.17.435872&rft.externalDocID=2021.03.17.435872v2 |