Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow

When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstruc...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Schilling, Kurt G, Tax, Chantal MW, Rheault, Francois, Hansen, Colin B, Yang, Qi, Yeh, Fang-Cheng, Cai, Leon Y, Anderson, Adam W, Landman, Bennett A
Format Paper
LanguageEnglish
Published Cold Spring Harbor Laboratory 14.07.2021
Edition1.2
Subjects
Online AccessGet full text
ISSN2692-8205
DOI10.1101/2021.03.17.435872

Cover

Abstract When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.
AbstractList When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to understand potential confounds and sources of variation in the process. While cross-scanner and cross-protocol effects on diffusion microstructure measures are well described (in particular fractional anisotropy and mean diffusivity), it is unknown how potential sources of variation effect bundle segmentation results, which features of the bundle are most affected, where variability occurs, nor how these sources of variation depend upon the method used to reconstruct and segment bundles. In this study, we investigate six potential sources of variation, or confounds, for bundle segmentation: variation (1) across scan repeats, (2) across scanners, (3) across vendors (4) across acquisition resolution, (5) across diffusion schemes, and (6) across diffusion sensitization. We employ four different bundle segmentation workflows on two benchmark multi-subject cross-scanner and cross-protocol databases, and investigate reproducibility and biases in volume overlap, shape geometry features of fiber pathways, and microstructure features within the pathways. We find that the effects of acquisition protocol, in particular acquisition resolution, result in the lowest reproducibility of tractography and largest variation of features, followed by vendor-effects, scanner-effects, and finally diffusion scheme and b-value effects which had similar reproducibility as scan-rescan variation. However, confounds varied both across pathways and across segmentation workflows, with some bundle segmentation workflows more (or less) robust to sources of variation. Despite variability, bundle dissection is consistently able to recover the same location of pathways in the deep white matter, with variation at the gray matter/ white matter interface. Next, we show that differences due to the choice of bundle segmentation workflows are larger than any other studied confound, with low-to-moderate overlap of the same intended pathway when segmented using different methods. Finally, quantifying microstructure features within a pathway, we show that tractography adds variability over-and-above that which exists due to noise, scanner effects, and acquisition effects. Overall, these confounds need to be considered when harmonizing diffusion datasets, interpreting or combining data across sites, and when attempting to understand the successes and limitations of different methodologies in the design and development of new tractography or bundle segmentation methods.
Author Yeh, Fang-Cheng
Hansen, Colin B
Yang, Qi
Schilling, Kurt G
Landman, Bennett A
Anderson, Adam W
Tax, Chantal MW
Rheault, Francois
Cai, Leon Y
Author_xml – sequence: 1
  givenname: Kurt G
  orcidid: 0000-0003-3686-7645
  surname: Schilling
  fullname: Schilling, Kurt G
  email: kurt.g.schilling.1@vumc.org
  organization: Vanderbilt Institute of Imaging Science, Vanderbilt University Medical Center
– sequence: 2
  givenname: Chantal MW
  orcidid: 0000-0002-7480-8817
  surname: Tax
  fullname: Tax, Chantal MW
  organization: Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University
– sequence: 3
  givenname: Francois
  orcidid: 0000-0002-0097-8004
  surname: Rheault
  fullname: Rheault, Francois
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 4
  givenname: Colin B
  surname: Hansen
  fullname: Hansen, Colin B
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 5
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 6
  givenname: Fang-Cheng
  orcidid: 0000-0002-7946-2173
  surname: Yeh
  fullname: Yeh, Fang-Cheng
  organization: Department of Neurological Surgery, University of Pittsburgh
– sequence: 7
  givenname: Leon Y
  orcidid: 0000-0002-5812-5397
  surname: Cai
  fullname: Cai, Leon Y
  organization: Department of Biomedical Engineering, Vanderbilt University
– sequence: 8
  givenname: Adam W
  surname: Anderson
  fullname: Anderson, Adam W
  organization: Department of Biomedical Engineering, Vanderbilt University
– sequence: 9
  givenname: Bennett A
  orcidid: 0000-0001-5733-2127
  surname: Landman
  fullname: Landman, Bennett A
  organization: Department of Biomedical Engineering, Vanderbilt University
BookMark eNptkL1OwzAUhS0EEqX0AdgyMrTBdn6cjKiigFSJhT1y7OvWkNghTlrKy_FqOAQhEEz373xHV-cMHRtrAKELgkNCMLmimJIQRyFhYRwlGaNHaELTnC4yipNTNHPuCWNM85RELJ6g95UuoQ26lovOblrebA9B2RtZQeBgU4PpeKetCSQ0YKQLfOsEN8YzoBSIzs2Dnb_YHzMXL712-pNrwdmqH9p5ILVSvRu2jtdNpc3Ge22hhl8nMAP6xkeGG_nvP3vbPqvK7s_RieKVg9lXnaLH1c3j8m6xfri9X16vFyVL6SJSDLIyjSVluYw4TUUOKaaxElJmiU-MJLHfYQZeKFjOuYypTIFSBkTQMpoiOtr2puGHPa-qoml1zdtDQXAxBF8MwRc4KggrxuA9dDlCpbbtq959I3-lHyeVjUs
ContentType Paper
Copyright 2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID FX.
UNPAY
DOI 10.1101/2021.03.17.435872
DatabaseName bioRxiv
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.2
ExternalDocumentID 10.1101/2021.03.17.435872
2021.03.17.435872v2
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
UNPAY
ID FETCH-LOGICAL-b762-3f7e8b64d279d3a26c9e6024fcdd850211546c907ef7ec79aad42d6e227e1c2b3
IEDL.DBID UNPAY
IngestDate Thu Aug 28 11:21:42 EDT 2025
Tue Jan 07 18:51:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords white matter
tractography
bundle segmentation
reproducibility
harmonization
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b762-3f7e8b64d279d3a26c9e6024fcdd850211546c907ef7ec79aad42d6e227e1c2b3
Notes Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-7946-2173
0000-0002-7480-8817
0000-0001-5733-2127
0000-0002-5812-5397
0000-0003-3686-7645
0000-0002-0097-8004
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.biorxiv.org/content/biorxiv/early/2021/07/14/2021.03.17.435872.full.pdf
PageCount 20
ParticipantIDs unpaywall_primary_10_1101_2021_03_17_435872
biorxiv_primary_2021_03_17_435872
PublicationCentury 2000
PublicationDate 20210714
PublicationDateYYYYMMDD 2021-07-14
PublicationDate_xml – month: 7
  year: 2021
  text: 20210714
  day: 14
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Chamberland, Tax, Jones (2021.03.17.435872v2.51) 2018; 20
Tax (2021.03.17.435872v2.74) 2020; 210
Daducci (2021.03.17.435872v2.92) 2014; 33
Prckovska (2021.03.17.435872v2.91) 2008; 11
De Luca (2021.03.17.435872v2.75) 2021
Sotiropoulos, Behrens, Jbabdi (2021.03.17.435872v2.94) 2012; 60
Zhong (2021.03.17.435872v2.42) 2020; 19
Teipel (2021.03.17.435872v2.22) 2011; 194
Essayed (2021.03.17.435872v2.100) 2017; 15
Neubert (2021.03.17.435872v2.14) 2015; 112
Pierpaoli (2021.03.17.435872v2.17) 1996; 201
Jones (2021.03.17.435872v2.2) 2018; 182
Avesani (2021.03.17.435872v2.102) 2019; 6
Chamberland (2021.03.17.435872v2.6) 2019; 200
Jeurissen (2021.03.17.435872v2.4) 2019; 32
Ning (2021.03.17.435872v2.40) 2020; 221
Jack (2021.03.17.435872v2.103) 2008; 27
Fekonja (2021.03.17.435872v2.99) 2019; 161
Yeh (2021.03.17.435872v2.70) 2018; 178
O’Donnell, Westin (2021.03.17.435872v2.111) 2007; 26
Tax (2021.03.17.435872v2.41) 2019; 195
Yeh (2021.03.17.435872v2.93) 2013; 8
Vazquez (2021.03.17.435872v2.53) 2020; 19
Schilling (2021.03.17.435872v2.87) 2018; 165
Sarubbo (2021.03.17.435872v2.12) 2019; 224
Jones, Horsfield, Simmons (2021.03.17.435872v2.76) 1999; 42
Sarubbo (2021.03.17.435872v2.13) 2013; 218
Forkel (2021.03.17.435872v2.9) 2014; 56
Rheault (2021.03.17.435872v2.80) 2020; 17
Mancini (2021.03.17.435872v2.98) 2019; 23
Magnotta (2021.03.17.435872v2.85) 2012; 2
Jones, Cercignani (2021.03.17.435872v2.38) 2010; 23
Jones (2021.03.17.435872v2.28) 2003; 49
Huynh (2021.03.17.435872v2.79) 2019
Ning (2021.03.17.435872v2.116) 2020; 221
Schilling (2021.03.17.435872v2.55) 2020
Smith (2021.03.17.435872v2.96) 2006; 31
Koller (2021.03.17.435872v2.101) 2021; 225
Cai (2021.03.17.435872v2.62) 2021
Huynh (2021.03.17.435872v2.44) 2019; 38
Griswold (2021.03.17.435872v2.82) 2002; 47
Pestilli (2021.03.17.435872v2.49) 2014; 11
Jones, Basser (2021.03.17.435872v2.33) 2004; 52
Jones (2021.03.17.435872v2.34) 2007
Tax (2021.03.17.435872v2.117) 2019
Moyer (2021.03.17.435872v2.78) 2020; 84
Tournier (2021.03.17.435872v2.67) 2019; 202
Zhang (2021.03.17.435872v2.110) 2019; 11766
Warrington (2021.03.17.435872v2.73) 2020; 217
Zhang (2021.03.17.435872v2.108) 2020; 65
Canales-Rodriguez (2021.03.17.435872v2.88) 2018; 184
Jenkinson (2021.03.17.435872v2.63) 2012; 62
Schilling (2021.03.17.435872v2.81) 2017; 30
Chang, Jones, Pierpaoli (2021.03.17.435872v2.35) 2005; 53
Rheault (2021.03.17.435872v2.52) 2020
Glasser (2021.03.17.435872v2.61) 2013; 80
Hau (2021.03.17.435872v2.11) 2016; 10
Jones (2021.03.17.435872v2.37) 2010; 21
Vishwesh Nath, Parvathaneni, Hansen, Hainline, Bermudez, Remedios, Blaber, Janve, Gao, Stepniewska, Rogers, Newton, Davis, Luci, Anderson, Landman (2021.03.17.435872v2.45) 2018
Lori (2021.03.17.435872v2.29) 2002; 15
Magnotta (2021.03.17.435872v2.20) 2012; 2
Jones (2021.03.17.435872v2.32) 2004; 51
Garyfallidis (2021.03.17.435872v2.71) 2018; 170
Tournier (2021.03.17.435872v2.90) 2008; 42
Wassermann (2021.03.17.435872v2.112) 2016; 221
Landman (2021.03.17.435872v2.25) 2007; 36
Schilling (2021.03.17.435872v2.115) 2021
Mandonnet, Sarubbo, Petit (2021.03.17.435872v2.95) 2018; 12
Prohl (2021.03.17.435872v2.18) 2019; 13
Landman (2021.03.17.435872v2.21) 2011; 54
Andersson, Skare, Ashburner (2021.03.17.435872v2.60) 2003; 20
Yeh, Wedeen, Tseng (2021.03.17.435872v2.69) 2010; 29
Wasserthal, Neher, Maier-Hein (2021.03.17.435872v2.66) 2018
Fortin (2021.03.17.435872v2.48) 2017; 161
Heiervang (2021.03.17.435872v2.26) 2006; 33
Mars (2021.03.17.435872v2.16) 2012; 22
Raffelt (2021.03.17.435872v2.5) 2017; 144
Cetin Karayumak (2021.03.17.435872v2.43) 2019; 184
Tournier, Calamante, Connelly (2021.03.17.435872v2.89) 2013; 26
Wasserthal (2021.03.17.435872v2.64) 2019; 58
Wasserthal, Neher, Maier-Hein (2021.03.17.435872v2.65) 2018; 183
Vollmar (2021.03.17.435872v2.23) 2010; 51
Papinutto, Maule, Jovicich (2021.03.17.435872v2.31) 2013; 31
Hau (2021.03.17.435872v2.10) 2017; 222
Wakana (2021.03.17.435872v2.58) 2007; 36
Tong (2021.03.17.435872v2.105) 2020; 7
Guevara (2021.03.17.435872v2.57) 2012; 61
Zöllei (2021.03.17.435872v2.114) 2019; 199
Zhang (2021.03.17.435872v2.109) 2020; 4
Ros (2021.03.17.435872v2.113) 2013; 8
Yeh (2021.03.17.435872v2.68) 2020; 223
Galluzzi (2021.03.17.435872v2.106) 2016; 279
Novikov (2021.03.17.435872v2.3) 2018
Jones, Knosche, Turner (2021.03.17.435872v2.36) 2013; 73
Jones, Horsfield, Simmons (2021.03.17.435872v2.39) 1999; 42
Pfefferbaum, Adalsteinsson, Sullivan (2021.03.17.435872v2.27) 2003; 18
Maffei, Sarubbo, Jovicich (2021.03.17.435872v2.8) 2019; 9
Yu (2021.03.17.435872v2.46) 2018; 39
Chen (2021.03.17.435872v2.77) 2016; 6
Cai (2021.03.17.435872v2.59) 2020
Farrell (2021.03.17.435872v2.24) 2007; 26
Pruessmann (2021.03.17.435872v2.83) 1999; 42
Chandio (2021.03.17.435872v2.104) 2020; 10
Neubert (2021.03.17.435872v2.15) 2014; 81
Alexander (2021.03.17.435872v2.1) 2019; 32
Mirzaalian (2021.03.17.435872v2.19) 2016; 135
Nath (2021.03.17.435872v2.50) 2019
Min (2021.03.17.435872v2.86) 2018; 19
Marcus (2021.03.17.435872v2.107) 2007; 19
Mirzaalian (2021.03.17.435872v2.47) 2018; 12
Guevara (2021.03.17.435872v2.54) 2017; 147
Zhang (2021.03.17.435872v2.56) 2019; 40
Vanderweyen (2021.03.17.435872v2.97) 2020; 225
Jones (2021.03.17.435872v2.30) 2020
Garyfallidis (2021.03.17.435872v2.72) 2014; 8
Prohl (2021.03.17.435872v2.84) 2019; 13
Yeatman (2021.03.17.435872v2.7) 2012; 7
References_xml – volume: 36
  start-page: 1123
  issue: 4
  year: 2007
  end-page: 38
  ident: 2021.03.17.435872v2.25
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
– volume: 31
  start-page: 827
  issue: 6
  year: 2013
  end-page: 39
  ident: 2021.03.17.435872v2.31
  article-title: Reproducibility and biases in high field brain diffusion MRI: An evaluation of acquisition and analysis variables
  publication-title: Magn Reson Imaging
– volume: 221
  start-page: 117128
  year: 2020
  ident: 2021.03.17.435872v2.40
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results
  publication-title: NeuroImage
– year: 2019
  ident: 2021.03.17.435872v2.117
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms
  publication-title: Neuroimage
– volume: 195
  start-page: 285
  year: 2019
  end-page: 299
  ident: 2021.03.17.435872v2.41
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: A benchmark database and evaluation of algorithms
  publication-title: Neuroimage
– volume: 21
  start-page: 87
  issue: 2
  year: 2010
  end-page: 99
  ident: 2021.03.17.435872v2.37
  article-title: Precision and accuracy in diffusion tensor magnetic resonance imaging
  publication-title: Top Magn Reson Imaging
– volume: 2
  start-page: 345
  issue: 6
  year: 2012
  end-page: 355
  ident: 2021.03.17.435872v2.20
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain connectivity
– volume: 42
  start-page: 617
  issue: 2
  year: 2008
  end-page: 25
  ident: 2021.03.17.435872v2.90
  article-title: Resolving crossing fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging phantom data
  publication-title: Neuroimage
– volume: 222
  start-page: 1645
  issue: 4
  year: 2017
  end-page: 1662
  ident: 2021.03.17.435872v2.10
  article-title: Revisiting the human uncinate fasciculus, its subcomponents and asymmetries with stem-based tractography and microdissection validation
  publication-title: Brain Struct Funct
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  end-page: 88
  ident: 2021.03.17.435872v2.60
  article-title: How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
  publication-title: Neuroimage
– volume: 17
  start-page: 011001
  issue: 1
  year: 2020
  ident: 2021.03.17.435872v2.80
  article-title: Common misconceptions, hidden biases and modern challenges of dMRI tractography
  publication-title: J Neural Eng
– year: 2019
  ident: 2021.03.17.435872v2.50
  article-title: Tractography reproducibility challenge with empirical data (TraCED): The 2017 ISMRM diffusion study group challenge
  publication-title: J Magn Reson Imaging
– volume: 27
  start-page: 685
  issue: 4
  year: 2008
  end-page: 91
  ident: 2021.03.17.435872v2.103
  article-title: The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods
  publication-title: J Magn Reson Imaging
– volume: 51
  start-page: 807
  issue: 4
  year: 2004
  end-page: 15
  ident: 2021.03.17.435872v2.32
  article-title: The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a Monte Carlo study
  publication-title: Magn Reson Med
– year: 2020
  ident: 2021.03.17.435872v2.55
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: bioRxiv
– volume: 65
  start-page: 101761
  year: 2020
  ident: 2021.03.17.435872v2.108
  article-title: Deep white matter analysis (DeepWMA): Fast and consistent tractography segmentation
  publication-title: Med Image Anal
– volume: 19
  start-page: 777
  issue: 4
  year: 2018
  end-page: 782
  ident: 2021.03.17.435872v2.86
  article-title: Inter-Vendor and Inter-Session Reliability of Diffusion Tensor Imaging: Implications for Multicenter Clinical Imaging Studies
  publication-title: Korean J Radiol
– volume: 33
  start-page: 867
  issue: 3
  year: 2006
  end-page: 77
  ident: 2021.03.17.435872v2.26
  article-title: Between session reproducibility and between subject variability of diffusion MR and tractography measures
  publication-title: Neuroimage
– volume: 31
  start-page: 1487
  issue: 4
  year: 2006
  end-page: 1505
  ident: 2021.03.17.435872v2.96
  article-title: Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data
  publication-title: NeuroImage
– volume: 11
  start-page: 1058
  issue: 10
  year: 2014
  end-page: 1063
  ident: 2021.03.17.435872v2.49
  article-title: Evaluation and statistical inference for human connectomes
  publication-title: Nature Methods
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  ident: 2021.03.17.435872v2.65
  article-title: TractSeg -Fast and accurate white matter tract segmentation
  publication-title: Neuroimage
– volume: 7
  start-page: 157
  issue: 1
  year: 2020
  ident: 2021.03.17.435872v2.105
  article-title: Multicenter dataset of multi-shell diffusion MRI in healthy traveling adults with identical settings
  publication-title: Sci Data
– year: 2021
  ident: 2021.03.17.435872v2.115
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: bioRxiv
– volume: 11766
  start-page: 599
  year: 2019
  end-page: 608
  ident: 2021.03.17.435872v2.110
  article-title: Deep white matter analysis: fast, consistent tractography segmentation across populations and dMRI acquisitions
  publication-title: Med Image Comput Comput Assist Interv
– volume: 15
  start-page: 494
  issue: 7-8
  year: 2002
  end-page: 515
  ident: 2021.03.17.435872v2.29
  article-title: Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results
  publication-title: NMR Biomed
– volume: 13
  start-page: 24
  year: 2019
  end-page: 24
  ident: 2021.03.17.435872v2.18
  article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study
  publication-title: Frontiers in integrative neuroscience
– volume: 12
  start-page: 284
  issue: 1
  year: 2018
  end-page: 295
  ident: 2021.03.17.435872v2.47
  article-title: Multi-site harmonization of diffusion MRI data in a registration framework
  publication-title: Brain Imaging Behav
– volume: 147
  start-page: 703
  year: 2017
  end-page: 725
  ident: 2021.03.17.435872v2.54
  article-title: Reproducibility of superficial white matter tracts using diffusion-weighted imaging tractography
  publication-title: Neuroimage
– volume: 47
  start-page: 1202
  issue: 6
  year: 2002
  end-page: 10
  ident: 2021.03.17.435872v2.82
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 223
  start-page: 117329
  year: 2020
  ident: 2021.03.17.435872v2.68
  article-title: Shape analysis of the human association pathways
  publication-title: NeuroImage
– volume: 39
  start-page: 4213
  issue: 11
  year: 2018
  end-page: 4227
  ident: 2021.03.17.435872v2.46
  article-title: Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data
  publication-title: Hum Brain Mapp
– volume: 135
  start-page: 311
  year: 2016
  end-page: 23
  ident: 2021.03.17.435872v2.19
  article-title: Inter-site and inter-scanner diffusion MRI data harmonization
  publication-title: Neuroimage
– volume: 30
  issue: 12
  year: 2017
  ident: 2021.03.17.435872v2.81
  article-title: Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?
  publication-title: NMR Biomed
– volume: 221
  start-page: 117128
  year: 2020
  ident: 2021.03.17.435872v2.116
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: Algorithms and results
  publication-title: Neuroimage
– volume: 11
  start-page: 9
  issue: Pt 2
  year: 2008
  end-page: 17
  ident: 2021.03.17.435872v2.91
  article-title: Optimal acquisition schemes in high angular resolution diffusion weighted imaging
  publication-title: Med Image Comput Comput Assist Interv
– volume: 56
  start-page: 73
  year: 2014
  end-page: 84
  ident: 2021.03.17.435872v2.9
  article-title: The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography
  publication-title: Cortex
– volume: 202
  start-page: 116137
  year: 2019
  ident: 2021.03.17.435872v2.67
  article-title: MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
– volume: 165
  start-page: 200
  year: 2018
  end-page: 221
  ident: 2021.03.17.435872v2.87
  article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion
  publication-title: Neuroimage
– volume: 6
  start-page: 69
  issue: 1
  year: 2019
  ident: 2021.03.17.435872v2.102
  article-title: The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services
  publication-title: Scientific Data
– volume: 10
  start-page: 17149
  issue: 1
  year: 2020
  ident: 2021.03.17.435872v2.104
  article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations
  publication-title: Sci Rep
– volume: 182
  start-page: 8
  year: 2018
  end-page: 38
  ident: 2021.03.17.435872v2.2
  article-title: Microstructural imaging of the human brain with a ‘super-scanner’: 10 key advantages of ultra-strong gradients for diffusion MRI
  publication-title: Neuroimage
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  end-page: 90
  ident: 2021.03.17.435872v2.63
  article-title: Fsl
  publication-title: Neuroimage
– volume: 40
  start-page: 3041
  issue: 10
  year: 2019
  end-page: 3057
  ident: 2021.03.17.435872v2.56
  article-title: Test–retest reproducibility of white matter parcellation using diffusion MRI tractography fiber clustering
  publication-title: Human Brain Mapping
– year: 2019
  ident: 2021.03.17.435872v2.79
  publication-title: in Computational Diffusion MRI
– volume: 58
  start-page: 101559
  year: 2019
  ident: 2021.03.17.435872v2.64
  article-title: Combined tract segmentation and orientation mapping for bundle-specific tractography
  publication-title: Med Image Anal
– volume: 225
  start-page: 117406
  year: 2021
  ident: 2021.03.17.435872v2.101
  article-title: MICRA: Microstructural image compilation with repeated acquisitions
  publication-title: NeuroImage
– volume: 170
  start-page: 283
  year: 2018
  end-page: 295
  ident: 2021.03.17.435872v2.71
  article-title: Recognition of white matter bundles using local and global streamline-based registration and clustering
  publication-title: Neuroimage
– volume: 7
  start-page: e49790
  issue: 11
  year: 2012
  ident: 2021.03.17.435872v2.7
  article-title: Tract profiles of white matter properties: automating fiber-tract quantification
  publication-title: PLoS One
– year: 2018
  ident: 2021.03.17.435872v2.45
  publication-title: in MICCAI-CDMRI
– volume: 12
  start-page: 94
  year: 2018
  ident: 2021.03.17.435872v2.95
  article-title: The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification
  publication-title: Front Neuroanat
– volume: 184
  start-page: 180
  year: 2019
  end-page: 200
  ident: 2021.03.17.435872v2.43
  article-title: Retrospective harmonization of multi-site diffusion MRI data acquired with different acquisition parameters
  publication-title: Neuroimage
– volume: 22
  start-page: 1894
  issue: 8
  year: 2012
  end-page: 903
  ident: 2021.03.17.435872v2.16
  article-title: Connectivity-based subdivisions of the human right “temporoparietal junction area”: evidence for different areas participating in different cortical networks
  publication-title: Cereb Cortex
– volume: 18
  start-page: 427
  issue: 4
  year: 2003
  end-page: 33
  ident: 2021.03.17.435872v2.27
  article-title: Replicability of diffusion tensor imaging measurements of fractional anisotropy and trace in brain
  publication-title: J Magn Reson Imaging
– volume: 161
  start-page: 149
  year: 2017
  end-page: 170
  ident: 2021.03.17.435872v2.48
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
– year: 2020
  ident: 2021.03.17.435872v2.52
  article-title: Tractostorm: The what, why, and how of tractography dissection reproducibility
  publication-title: Hum Brain Mapp
– volume: 36
  start-page: 630
  issue: 3
  year: 2007
  end-page: 44
  ident: 2021.03.17.435872v2.58
  article-title: Reproducibility of quantitative tractography methods applied to cerebral white matter
  publication-title: Neuroimage
– volume: 19
  start-page: 1498
  issue: 9
  year: 2007
  end-page: 507
  ident: 2021.03.17.435872v2.107
  article-title: Open Access Series of Imaging Studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults
  publication-title: J Cogn Neurosci
– volume: 49
  start-page: 7
  issue: 1
  year: 2003
  end-page: 12
  ident: 2021.03.17.435872v2.28
  article-title: Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI
  publication-title: Magn Reson Med
– volume: 199
  start-page: 1
  year: 2019
  end-page: 17
  ident: 2021.03.17.435872v2.114
  article-title: TRActs constrained by UnderLying INfant anatomy (TRACULInA): An automated probabilistic tractography tool with anatomical priors for use in the newborn brain
  publication-title: Neuroimage
– volume: 144
  start-page: 58
  issue: Pt A
  year: 2017
  end-page: 73
  ident: 2021.03.17.435872v2.5
  article-title: Investigating white matter fibre density and morphology using fixel-based analysis
  publication-title: Neuroimage
– volume: 84
  start-page: 2174
  issue: 4
  year: 2020
  end-page: 2189
  ident: 2021.03.17.435872v2.78
  article-title: Scanner invariant representations for diffusion MRI harmonization
  publication-title: Magnetic Resonance in Medicine
– volume: 9
  start-page: 4046
  issue: 1
  year: 2019
  ident: 2021.03.17.435872v2.8
  article-title: Diffusion-based tractography atlas of the human acoustic radiation
  publication-title: Sci Rep
– year: 2018
  ident: 2021.03.17.435872v2.66
  publication-title: in Medical Image Computing and Computer Assisted Intervention – MICCAI 2018
– volume: 184
  start-page: 140
  year: 2018
  end-page: 160
  ident: 2021.03.17.435872v2.88
  article-title: Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI
  publication-title: Neuroimage
– volume: 210
  start-page: 116534
  year: 2020
  ident: 2021.03.17.435872v2.74
  article-title: The dot-compartment revealed? Diffusion MRI with ultra-strong gradients and spherical tensor encoding in the living human brain
  publication-title: Neuroimage
– volume: 23
  start-page: 101883
  year: 2019
  ident: 2021.03.17.435872v2.98
  article-title: Automated fiber tract reconstruction for surgery planning: Extensive validation in language-related white matter tracts
  publication-title: Neuroimage Clin
– volume: 224
  start-page: 1553
  issue: 4
  year: 2019
  end-page: 1567
  ident: 2021.03.17.435872v2.12
  article-title: Uncovering the inferior fronto-occipital fascicle and its topological organization in non-human primates: the missing connection for language evolution
  publication-title: Brain Struct Funct
– start-page: e3998
  year: 2018
  ident: 2021.03.17.435872v2.3
  article-title: Quantifying brain microstructure with diffusion MRI: Theory and parameter estimation
  publication-title: NMR Biomed
– volume: 10
  start-page: 58
  year: 2016
  ident: 2021.03.17.435872v2.11
  article-title: Cortical Terminations of the Inferior Fronto-Occipital and Uncinate Fasciculi: Anatomical Stem-Based Virtual Dissection
  publication-title: Front Neuroanat
– volume: 73
  start-page: 239
  year: 2013
  end-page: 54
  ident: 2021.03.17.435872v2.36
  article-title: White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI
  publication-title: Neuroimage
– volume: 15
  start-page: 659
  year: 2017
  end-page: 672
  ident: 2021.03.17.435872v2.100
  article-title: White matter tractography for neurosurgical planning: A topography-based review of the current state of the art
  publication-title: Neuroimage Clin
– volume: 51
  start-page: 1384
  issue: 4
  year: 2010
  end-page: 1394
  ident: 2021.03.17.435872v2.23
  article-title: Identical, but not the same: Intra-site and inter-site reproducibility of fractional anisotropy measures on two 3.0T scanners
  publication-title: NeuroImage
– volume: 54
  start-page: 2854
  issue: 4
  year: 2011
  end-page: 66
  ident: 2021.03.17.435872v2.21
  article-title: Multi-parametric neuroimaging reproducibility: a 3-T resource study
  publication-title: Neuroimage
– volume: 23
  start-page: 803
  issue: 7
  year: 2010
  end-page: 20
  ident: 2021.03.17.435872v2.38
  article-title: Twenty-five pitfalls in the analysis of diffusion MRI data
  publication-title: NMR Biomed
– volume: 221
  start-page: 4705
  issue: 9
  year: 2016
  end-page: 4721
  ident: 2021.03.17.435872v2.112
  article-title: The white matter query language: a novel approach for describing human white matter anatomy
  publication-title: Brain Struct Funct
– volume: 20
  start-page: 458
  year: 2018
  end-page: 465
  ident: 2021.03.17.435872v2.51
  article-title: Meyer’s loop tractography for image-guided surgery depends on imaging protocol and hardware
  publication-title: Neuroimage Clin
– volume: 42
  start-page: 515
  issue: 3
  year: 1999
  end-page: 25
  ident: 2021.03.17.435872v2.76
  article-title: Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 26
  start-page: 1775
  issue: 12
  year: 2013
  end-page: 86
  ident: 2021.03.17.435872v2.89
  article-title: Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging
  publication-title: NMR Biomed
– volume: 8
  start-page: e83847
  issue: 12
  year: 2013
  ident: 2021.03.17.435872v2.113
  article-title: Atlas-guided cluster analysis of large tractography datasets
  publication-title: PLoS One
– volume: 8
  start-page: e80713
  issue: 11
  year: 2013
  ident: 2021.03.17.435872v2.93
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS One
– volume: 218
  start-page: 21
  issue: 1
  year: 2013
  end-page: 37
  ident: 2021.03.17.435872v2.13
  article-title: Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle
  publication-title: Brain Struct Funct
– volume: 26
  start-page: 1562
  issue: 11
  year: 2007
  end-page: 75
  ident: 2021.03.17.435872v2.111
  article-title: Automatic tractography segmentation using a high-dimensional white matter atlas
  publication-title: IEEE Trans Med Imaging
– volume: 4
  start-page: 299
  year: 2020
  end-page: 309
  ident: 2021.03.17.435872v2.109
  article-title: SlicerDMRI: Diffusion MRI and Tractography Research Software for Brain Cancer Surgery Planning and Visualization
  publication-title: JCO Clin Cancer Inform
– volume: 19
  start-page: 4
  issue: 1
  year: 2020
  ident: 2021.03.17.435872v2.42
  article-title: Inter-site harmonization based on dual generative adversarial networks for diffusion tensor imaging: application to neonatal white matter development
  publication-title: Biomed Eng Online
– volume: 33
  start-page: 384
  issue: 2
  year: 2014
  end-page: 99
  ident: 2021.03.17.435872v2.92
  article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI
  publication-title: IEEE Trans Med Imaging
– volume: 32
  start-page: e3841
  issue: 4
  year: 2019
  ident: 2021.03.17.435872v2.1
  article-title: Imaging brain microstructure with diffusion MRI: practicality and applications
  publication-title: NMR Biomed
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  ident: 2021.03.17.435872v2.70
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
– volume: 52
  start-page: 979
  issue: 5
  year: 2004
  end-page: 93
  ident: 2021.03.17.435872v2.33
  article-title: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data
  publication-title: Magn Reson Med
– volume: 13
  start-page: 24
  year: 2019
  ident: 2021.03.17.435872v2.84
  article-title: Reproducibility of Structural and Diffusion Tensor Imaging in the TACERN Multi-Center Study
  publication-title: Front Integr Neurosci
– volume: 200
  start-page: 89
  year: 2019
  end-page: 100
  ident: 2021.03.17.435872v2.6
  article-title: Dimensionality reduction of diffusion MRI measures for improved tractometry of the human brain
  publication-title: Neuroimage
– volume: 81
  start-page: 700
  issue: 3
  year: 2014
  end-page: 13
  ident: 2021.03.17.435872v2.15
  article-title: Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex
  publication-title: Neuron
– volume: 6
  start-page: 37847
  issue: 1
  year: 2016
  ident: 2021.03.17.435872v2.77
  article-title: Improving Estimation of Fiber Orientations in Diffusion MRI Using Inter-Subject Information Sharing
  publication-title: Scientific Reports
– volume: 42
  start-page: 952
  issue: 5
  year: 1999
  end-page: 62
  ident: 2021.03.17.435872v2.83
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 19
  start-page: 42
  issue: 1
  year: 2020
  ident: 2021.03.17.435872v2.53
  article-title: Automatic group-wise whole-brain short association fiber bundle labeling based on clustering and cortical surface information
  publication-title: Biomed Eng Online
– volume: 80
  start-page: 105
  year: 2013
  end-page: 24
  ident: 2021.03.17.435872v2.61
  article-title: The minimal preprocessing pipelines for the Human Connectome Project
  publication-title: Neuroimage
– volume: 201
  start-page: 637
  year: 1996
  end-page: 648
  ident: 2021.03.17.435872v2.17
  article-title: Diffusion Tensor MR Imaging of the Human Brain
  publication-title: Radiology
– volume: 217
  start-page: 116923
  year: 2020
  ident: 2021.03.17.435872v2.73
  article-title: XTRACT - Standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
– volume: 194
  start-page: 363
  issue: 3
  year: 2011
  end-page: 371
  ident: 2021.03.17.435872v2.22
  article-title: Multicenter stability of diffusion tensor imaging measures: A European clinical and physical phantom study
  publication-title: Psychiatry Research: Neuroimaging
– start-page: 116704
  year: 2020
  ident: 2021.03.17.435872v2.30
  article-title: Insight into the fundamental trade-offs of diffusion MRI from polarization-sensitive optical coherence tomography in ex vivo human brain
  publication-title: Neuroimage
– year: 2021
  ident: 2021.03.17.435872v2.75
  article-title: On the generalizability of diffusion MRI signal representations across acquisition parameters, sequences and tissue types: chronicles of the MEMENTO challenge
  publication-title: bioRxiv
– volume: 112
  start-page: E2695
  issue: 20
  year: 2015
  end-page: 704
  ident: 2021.03.17.435872v2.14
  article-title: Connectivity reveals relationship of brain areas for reward-guided learning and decision making in human and monkey frontal cortex
  publication-title: Proc Natl Acad Sci U S A
– year: 2020
  ident: 2021.03.17.435872v2.59
  article-title: MASiVar: Multisite, Multiscanner, and Multisubject Acquisitions for Studying Variability in Diffusion Weighted Magnetic Resonance Imaging
  publication-title: bioRxiv
– volume: 32
  start-page: e3785
  issue: 4
  year: 2019
  ident: 2021.03.17.435872v2.4
  article-title: Diffusion MRI fiber tractography of the brain
  publication-title: NMR Biomed
– volume: 38
  start-page: 1599
  issue: 7
  year: 2019
  end-page: 1609
  ident: 2021.03.17.435872v2.44
  article-title: Multi-Site Harmonization of Diffusion MRI Data via Method of Moments
  publication-title: IEEE Trans Med Imaging
– year: 2021
  ident: 2021.03.17.435872v2.62
  article-title: PreQual: An automated pipeline for integrated preprocessing and quality assurance of diffusion weighted MRI images
  publication-title: Magnetic Resonance in Medicine
– volume: 161
  start-page: 1125
  issue: 6
  year: 2019
  end-page: 1137
  ident: 2021.03.17.435872v2.99
  article-title: Manual for clinical language tractography
  publication-title: Acta Neurochirurgica
– volume: 61
  start-page: 1083
  issue: 4
  year: 2012
  end-page: 99
  ident: 2021.03.17.435872v2.57
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
– volume: 279
  start-page: 576
  issue: 6
  year: 2016
  end-page: 91
  ident: 2021.03.17.435872v2.106
  article-title: Clinical and biomarker profiling of prodromal Alzheimer’s disease in workpackage 5 of the Innovative Medicines Initiative PharmaCog project: a ‘European ADNI study’
  publication-title: J Intern Med
– volume: 42
  start-page: 515
  year: 1999
  end-page: 525
  ident: 2021.03.17.435872v2.39
  article-title: Optimal Strategies for Measuring Diffusion in Anisotropic Systems by Magnetic Resonance Imaging
  publication-title: Magnetic Resonance in Medicine
– year: 2007
  ident: 2021.03.17.435872v2.34
  publication-title: What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods
– volume: 53
  start-page: 1088
  issue: 5
  year: 2005
  end-page: 95
  ident: 2021.03.17.435872v2.35
  article-title: RESTORE: robust estimation of tensors by outlier rejection
  publication-title: Magn Reson Med
– volume: 60
  start-page: 1412
  issue: 2
  year: 2012
  end-page: 25
  ident: 2021.03.17.435872v2.94
  article-title: Ball and rackets: Inferring fiber fanning from diffusion-weighted MRI
  publication-title: Neuroimage
– volume: 225
  start-page: 1413
  issue: 4
  year: 2020
  end-page: 1436
  ident: 2021.03.17.435872v2.97
  article-title: The role of diffusion tractography in refining glial tumor resection
  publication-title: Brain Structure and Function
– volume: 26
  start-page: 756
  issue: 3
  year: 2007
  end-page: 67
  ident: 2021.03.17.435872v2.24
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T
  publication-title: J Magn Reson Imaging
– volume: 2
  start-page: 345
  issue: 6
  year: 2012
  end-page: 55
  ident: 2021.03.17.435872v2.85
  article-title: Multicenter reliability of diffusion tensor imaging
  publication-title: Brain Connect
– volume: 8
  start-page: 8
  year: 2014
  ident: 2021.03.17.435872v2.72
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 29
  start-page: 1626
  issue: 9
  year: 2010
  end-page: 35
  ident: 2021.03.17.435872v2.69
  article-title: Generalized q-sampling imaging
  publication-title: IEEE Trans Med Imaging
SSID ssj0002961374
Score 1.6314735
SecondaryResourceType preprint
Snippet When investigating connectivity and microstructure of white matter pathways of the brain using diffusion tractography bundle segmentation, it is important to...
SourceID unpaywall
biorxiv
SourceType Open Access Repository
SubjectTerms Neuroscience
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7QEAJOPMVbQeIGRU2aNd0ZMU1IIA5D2q1KGgcmjW5sK49fx1_DXqNpiB24tamTVHFiO84Xm7ELK1Ibg44jAFzkivw3WQY-ilViBViLWp4c-vcPaedJ3fWavYVUXwSrtP3h-LP_PjvHJ8A2St96cceC9uqCopIKfY2KPtMofVdxiilCc7V713P3imyhntIqnGMurYkWb-hpk61X5ch8fZjBYEG7tLfY6qMZwXibrUC5w9bq9JBfu-y7TXAOPqWLTCGyNLcVRUXgE3h-DbeGSl4nsp1wfJzgSJVYJ8A0rjjKMjdceDfFW9WvcVocd9ph4l1xSpRSkeeMTwyBzMtnbOsFXuHXJ0K7T8PNTWyrdEv_h7BefjD82GPd9m33phOFhAuRRZkYJV5DZlPlpG65xMi0aEGKOtwXzmVNHD40t7As1oCEhW4Z45R0KUipQRTSJvusUQ5LOGA88U2l0boyiXRKZ976ZiGUVxJ1sldaH7LzMPb5qI6qkRN_8jjJhc5r_hyyyzlX5lSzPUss_lIf_aPFY7ZBZeSaFeqENabjCk7Rppjas9ns-QF-kcsm
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
URI https://www.biorxiv.org/content/10.1101/2021.03.17.435872
https://www.biorxiv.org/content/biorxiv/early/2021/07/14/2021.03.17.435872.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1fb9MwELdY-4B4YRMghqDypL2xpLHjxunjQKsmJKoKbVJ5iuz4PCq6tDQJg305vtruGjMNxssk3hzn_Cf2xXc-_-7M2KEVmU1AJxEA_uSK7Dd5Dj5KVGoFWItSngz6H6fZ6bn6MB_Ng2ddHWCVdrHa_Fh8357jE2AbV99hyBsChf2lHbsYJnoo1DZJYUqFjlHy51rGZLeO187vsH5Gp0491j-fzo4_hzNN5MH7hVD7DS08YY_bam1-Xpnl8o6kmTxlze8-dgCTr3Hb2Li8_it843_-iF3Wn5k1bPbYI6iesV8TwpHwhjyoQkhrblsKx8BruLgM7koV727QrTkma5yiCssEfMgRx0XUre48m_Jbu-gAYhy3-IHjjzjd0NKSyY7XhtDt1QXW9QUu4Y9XBLNvgsso1lW5f_aHQGZ-ubp6zs4mJ2fvT6Nw00NkcTGOUq8ht5lyUo9damRWjiFD5cGXzuUjHBvU8zAv0YCEpR4b45R0GUipQZTSpi9Yr1pV8JLx1I-URrXOpNIpnXvrR6VQXklUBrzSep8dhFko1l04j4IGv0jSQuiiG_x99vaWBW6ptpulRNynfvUg6tes12xaeIOaTGMHrP_uZDr7NGA7k3k8CHx6A4Cb-jY
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZ4aAWcFljEaxcj7W1JFTtunJ5XVN3lIQ5F6i2y4zFUatPSNDx-HX9tZxqrAi0Hbkn8iuyxZ_z58wxjP61IbQw6jgBwkivCb7IMfBSrxAqwFrU8AfpX12nvVv0dtAcBcKsCrdIOJ7Pn4ePiHJ8I27j6NpM7FrRXF-SVVOgWKvpMyxbB1KtsHeVMkYR3B60lxiI7qKy0CoeZHxZHszc0t8U26nJqXp7MaPRGxXS_svUbM4XZNluBcod9aWJEvuyy1y5xOvicbjMF99Lc1uQagVdwNw5Xh0reRLOtOD5W2F0llglcjTOOC5qbvHk3xUM9bMhaHLfbQfrOOEVLqQk-45Uhpnl5h3XdwxjeJRHlfR6ub2Jdpfvwf4jw5UeTp2-s3z3v_-5FIepCZHFhjBKvIbOpclJ3XGJkWnQgRUXuC-eyNnYf2lz4LdaAGQvdMcYp6VKQUoMopE322Fo5KWGf8cS3lUYTyyTSKZ1569uFUF5JVMxeaX3ATkPf59PGtUZO45PHSS503ozPAfu1HJVlrsXGJRb_5z78RI0nbKPXv7rML_9cXxyxTUonrFaoY7Y2n9XwHY2Muf2xkKR_LtPP9A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELZY0C5wgt1FvNdI3JZUsePG6RmIgN1FHEDqLbLjMVQqaWkbHr-Ov8ZMY1VdwYFbEjuTaPyYh7-ZYezQitTGoOMIABe5Iv9NloGPYpVYAdailCeH_r_L9OxGXXTb3blYGIJV2t5g9Nx7nJ7jE2Abd99mcceCbHVBWUmFbqGgz7RskZu6NXT-C1vCuabIAMu7rZmfRXZQYGkVDjQ_JIGqb_jkKluuq6F5eTL9_pyYydfY0pUZwmidLUD1nX1t6kS-_GCvOeE6-IQimkKKaW5rSo_Ax3B7H8KHKt5UtB1zvBwjyyp8J-A1jjhuam4wd2_Kh7rXALY4mtxhBh5xqphSkwuNjw2hzatbpHUH9_BfE8HeJyGEE2lV7sP_IdCX7w-efrLr_PT6-CwKlRcii5tjlHgNmU2Vk7rjEiPTsgMpCnNfOpe1kX2od-GzWAN2LHXHGKekS0FKDaKUNtlgi9Wggk3GE99WGtUsk0indOatb5dCeSVROHul9RY7CLwvhk16jYLGp4iTQuiiGZ8t9ns2KrNeU-MlFu97b3-C4i_27eokL_6eX_7ZYSvUTO5aoXbZ4mRUwx7qGRO7P51IbzE00QU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTtwwELba3QPqpa1aVBBURuoNko0db5w9IsQKIRVxAAlOkR2PYdUlu2yS0vJyvBozG4OgcKnEzXHGP7EnnvH4mzFjP6zIbAI6iQDwJ1dkv8lz8FGiUivAWpTyZND_eZQdnKrDs-FZ8KyrA6zSTmaLP5Pfy3N8Amzj6jsIeQOgsL-0YxeDRA-EWiYpTKnQMUr-XMuY7Nbx3Pn3rJ_RqVOP9U-PjnfPw5km8uDLQqj9hhY-sJW2mpu_N2Y6fSJpxh9Z89DHDmDyK24bG5e3_4RvfOOP-MT6x2YOi8_sHVRf2N2YcCS8IQ-qENKa25bCMfAaLq6Cu1LFuxt0a47JGqeowjIBH7LDcRF1syfPprxuJx1AjOMWP3D8DqcbWloy2fHaELq9usC6LuEKnr0imH0TXEaxrsq92h8Cmfnp7OYrOxnvn-wdROGmh8jiYhylXkNuM-WkHrnUyKwcQYbKgy-dy4c4NqjnYV6iAQlLPTLGKekykFKDKKVNV1mvmlXwjfHUD5VGtc6k0imde-uHpVBeSVQGvNJ6jW2FWSjmXTiPgga_SNJC6KIb_DW2_cgCj1TLzVIiXlKv_xf1Bus1ixY2UZNp7PfAmffmS_ev
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fiber+tractography+bundle+segmentation+depends+on+scanner+effects%2C+vendor+effects%2C+acquisition+resolution%2C+diffusion+sampling+scheme%2C+diffusion+sensitization%2C+and+bundle+segmentation+workflow&rft.jtitle=bioRxiv&rft.au=Schilling%2C+Kurt+G&rft.au=Tax%2C+Chantal+MW&rft.au=Rheault%2C+Francois&rft.au=Hansen%2C+Colin+B&rft.date=2021-07-14&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.03.17.435872&rft.externalDocID=2021.03.17.435872v2