Anticipation of ventricular tachyarrhythmias by a novel mathematical method: Further insights towards an early warning system in implantable cardioverter defibrillators

Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate malignant ventricular arrhythmias (VA) and therefore to prevent sudden cardiac death. Until today, there is no way to predict the onset of such VA. Our aim was to develop a mathematical model that could predict...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Zamudio, Gabriel S., Márquez, Manlio F., José, Marco V.
Format Paper
LanguageEnglish
Published Cold Spring Harbor Laboratory 10.06.2020
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
DOI10.1101/2020.06.10.144030

Cover

Abstract Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate malignant ventricular arrhythmias (VA) and therefore to prevent sudden cardiac death. Until today, there is no way to predict the onset of such VA. Our aim was to develop a mathematical model that could predict VA in a timely fashion. We analyzed the time series of R-R intervals from 3 groups. Two groups from the Spontaneous Ventricular Tachyarrhythmia Database (v 1.0) were analyzed from a set of 81 pairs of R-R interval time series records from patients, each pair containing one record before the VT episode (Dataset 1A) and one control record which was obtained during the follow up visit (Dataset 1B). A third data set was composed of the RR interval time series of 54 subjects without a significant arrhythmia heart disease (Dataset 2). We developed a new method to transform a time series into a network for its analysis, the ε − regular graphs. This novel approach transforms a time series into a network which is sensitive to the quantitative properties of the time series, it has a single parameter (ε) to be adjusted, and it can trace long-range correlations. This procedure allows to use graph theory to extract the dynamics of any time series. The average of the difference between the VT and the control record graph degree of each patient, at each time window, reached a global minimum value of −2.12 followed by a drastic increase of the average graph until reaching a local maximum of 5.59. The global minimum and the following local maxima occur at the windows 276 and 393, respectively. This change in the connectivity of the graphs distinguishes two distinct dynamics occurring during the VA, while the states in between the 276 and 393, determine a transitional state. We propose this change in the dynamic of the R-R intervals as a measurable and detectable “early warning” of the VT event, occurring an average of 514.625 seconds (8 : 30 minutes) before the onset of the VT episode. It is feasible to detect retrospectively early warnings of the VA episode using their corresponding ε − regular graphs, with an average of 8 : 30 minutes before the ICD terminates the VA event.
AbstractList Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate malignant ventricular arrhythmias (VA) and therefore to prevent sudden cardiac death. Until today, there is no way to predict the onset of such VA. Our aim was to develop a mathematical model that could predict VA in a timely fashion. We analyzed the time series of R-R intervals from 3 groups. Two groups from the Spontaneous Ventricular Tachyarrhythmia Database (v 1.0) were analyzed from a set of 81 pairs of R-R interval time series records from patients, each pair containing one record before the VT episode (Dataset 1A) and one control record which was obtained during the follow up visit (Dataset 1B). A third data set was composed of the RR interval time series of 54 subjects without a significant arrhythmia heart disease (Dataset 2). We developed a new method to transform a time series into a network for its analysis, the ε − regular graphs. This novel approach transforms a time series into a network which is sensitive to the quantitative properties of the time series, it has a single parameter (ε) to be adjusted, and it can trace long-range correlations. This procedure allows to use graph theory to extract the dynamics of any time series. The average of the difference between the VT and the control record graph degree of each patient, at each time window, reached a global minimum value of −2.12 followed by a drastic increase of the average graph until reaching a local maximum of 5.59. The global minimum and the following local maxima occur at the windows 276 and 393, respectively. This change in the connectivity of the graphs distinguishes two distinct dynamics occurring during the VA, while the states in between the 276 and 393, determine a transitional state. We propose this change in the dynamic of the R-R intervals as a measurable and detectable “early warning” of the VT event, occurring an average of 514.625 seconds (8 : 30 minutes) before the onset of the VT episode. It is feasible to detect retrospectively early warnings of the VA episode using their corresponding ε − regular graphs, with an average of 8 : 30 minutes before the ICD terminates the VA event.
Author Zamudio, Gabriel S.
Márquez, Manlio F.
José, Marco V.
Author_xml – sequence: 1
  givenname: Gabriel S.
  orcidid: 0000-0003-4486-9843
  surname: Zamudio
  fullname: Zamudio, Gabriel S.
  email: gazaso92@gmail.com
  organization: Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
– sequence: 2
  givenname: Manlio F.
  surname: Márquez
  fullname: Márquez, Manlio F.
  organization: Electrophysiology Department, Instituto Nacional de Cardiología Ignacio Chávez
– sequence: 3
  givenname: Marco V.
  orcidid: 0000-0001-8497-6681
  surname: José
  fullname: José, Marco V.
  email: gazaso92@gmail.com
  organization: Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México
BookMark eNplkDFPwzAQhS0EEqX0B7B5ZGm5OImTslUVBaRKLN2js-M0Ro5T2W5L_hE_E7dFLCx3-u7ee8O7I9e2t4qQhwRmSQLJEwMGM-CzE2cZpHBFRozP2bRkkN-SifefAMDmPEmLbES-FzZoqXcYdG9p39CDssFpuTfoaEDZDuhcO4S20-ipGChS2x-UoR2GVsWhJUZQoe3rZ7rau3h1VFuvt23wNPRHdLWnaKlCZwYa0Wq7pX7wQXVRSHW3M2gDCqOojGId412IIbVqtHDaGAy98_fkpkHj1eR3j8lm9bJZvk3XH6_vy8V6KgoO0wagTCWInAkOdZ4qjqIoOYtVSJY1SmaIUqki_tOCQVGWAjKV8zrNs6JElY4Ju8Tu7Q6HIxpT7Zzu0A1VAtWp4erUcAX8zOeGo-nxYhK6d1_68Gf5L_0BA06EHg
ContentType Paper
Copyright 2020, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2020, Posted by Cold Spring Harbor Laboratory
DBID FX.
UNPAY
DOI 10.1101/2020.06.10.144030
DatabaseName bioRxiv
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 10.1101/2020.06.10.144030
2020.06.10.144030v1
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
FX.
HCIFZ
LK8
M7P
NQS
PIMPY
PROAC
RHI
UNPAY
ID FETCH-LOGICAL-b760-f0083c0b52b60d53e6ab7862144c24fec4aacee752b3720788b04e56d35478ae3
IEDL.DBID FX.
IngestDate Sun Oct 26 04:13:07 EDT 2025
Tue Jan 07 18:57:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords ventricular fibrillation
Ventricular tachyarrhythmias
ventricular tachycardia
graph theory
early warnings
time series
complex networks
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b760-f0083c0b52b60d53e6ab7862144c24fec4aacee752b3720788b04e56d35478ae3
ORCID 0000-0001-8497-6681
0000-0003-4486-9843
OpenAccessLink https://www.biorxiv.org/content/10.1101/2020.06.10.144030
PageCount 15
ParticipantIDs unpaywall_primary_10_1101_2020_06_10_144030
biorxiv_primary_2020_06_10_144030
PublicationCentury 2000
PublicationDate 20200610
PublicationDateYYYYMMDD 2020-06-10
PublicationDate_xml – month: 6
  year: 2020
  text: 20200610
  day: 10
PublicationDecade 2020
PublicationTitle bioRxiv
PublicationYear 2020
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Marwan, Donges, Zou, Donner, Kurths (2020.06.10.144030v1.11) 2009; 373
Bryce, Sprague (2020.06.10.144030v1.18) 2012; 2
Henriques, Ribeiro, Teixeira, Castro, Antunes, Costa-Santos (2020.06.10.144030v1.19) 2020; 22
Tereshchenko, Fetics, Domitrovich, Lindsay, Berger (2020.06.10.144030v1.26) 2009; 2
Bhaduri, Bhaduri, Ghosh (2020.06.10.144030v1.20) 2017; 482
Au-Yeung, Reinhall, Bardy, Brunton (2020.06.10.144030v1.24) 2018; 13
Dyer, Nason, Garrick (2020.06.10.144030v1.2) 2010; 19
Schwartz (2020.06.10.144030v1.14) 2011; 75
Lacasa, Luque, Ballesteros, Luque, Nuño (2020.06.10.144030v1.8) 2008; 105
Albert, Barabási (2020.06.10.144030v1.1) 2002; 74
Simini, González, Maritan, Barabási (2020.06.10.144030v1.4) 2012; 484
Barrio, Varea, Govezensky, Jose (2020.06.10.144030v1.5) 2016; 7
Triposkiadis, Karayannis, Giamouzis, Skoularigis, Louridas, Butler (2020.06.10.144030v1.15) 2009; 54
Hu, Jin, Zhang, Yu, Yin, Lu, Xiao, Chen, Zhang (2020.06.10.144030v1.25) 2016; 6
Patel, White, Abbara, Bluemke, Herfkens, Picard, Shaw, Silver, Stillman, Udelson (2020.06.10.144030v1.16) 2013; 61
Juarez-Flores, José (2020.06.10.144030v1.6) 2018; 20
Dyer, Nason (2020.06.10.144030v1.3) 2004; 13
Scheffer, Bascompte, Brock, Brovkin, Carpenter, Dakos, Held, van Nes, Rietkerk, Sugihara (2020.06.10.144030v1.7) 2009; 461
Wang, Tian (2020.06.10.144030v1.13) 2016; 461
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (2020.06.10.144030v1.17) 2000; 101
Bezsudnov, Snarskii (2020.06.10.144030v1.10) 2014; 414
Gonçalves, Carpi, Rosso, Ravetti (2020.06.10.144030v1.9) 2016; 464
Boettiger, Hastings (2020.06.10.144030v1.22) 2012; 9
Lee, Shin, Seo, Nam, Joo (2020.06.10.144030v1.23) 2016; 6
González, Infante, Perez-Grovas, José, Lerma (2020.06.10.144030v1.12) 2013; 35
Madl (2020.06.10.144030v1.21) 2016; 43
References_xml – volume: 484
  start-page: 96
  year: 2012
  end-page: 100
  ident: 2020.06.10.144030v1.4
  article-title: A universal model for mobility and migration patterns
  publication-title: Nature
– volume: 6
  start-page: 32390
  year: 2016
  ident: 2020.06.10.144030v1.23
  article-title: Prediction of Ventricular Tachycardia One Hour before Occurrence Using Artificial Neural Networks
  publication-title: Sci. Rep
– volume: 19
  start-page: 3746
  year: 2010
  end-page: 3759
  ident: 2020.06.10.144030v1.2
  article-title: Landscape modelling of gene flow: Improved power using conditional genetic distance derived from the topology of population networks
  publication-title: Mol. Ecol
– volume: 35
  start-page: 178
  year: 2013
  end-page: 187
  ident: 2020.06.10.144030v1.12
  article-title: Nonlinear dynamics of heart rate variability in response to orthostatism and hemodialysis in chronic renal failure patients: Recurrence analysis approach
  publication-title: Medical Engineering and Physics
– volume: 9
  start-page: 2527
  year: 2012
  end-page: 2539
  ident: 2020.06.10.144030v1.22
  article-title: Quantifying limits to detection of early warning for critical transitions
  publication-title: J. R. Soc. Interface
– volume: 464
  start-page: 93
  year: 2016
  end-page: 102
  ident: 2020.06.10.144030v1.9
  article-title: Time series characterization via horizontal visibility graph and Information Theory
  publication-title: Phys. A Stat. Mech. its Appl
– volume: 2
  start-page: 315
  year: 2012
  ident: 2020.06.10.144030v1.18
  article-title: Revisiting detrended fluctuation analysis
  publication-title: Sci. Rep
– volume: 482
  start-page: 786
  year: 2017
  end-page: 795
  ident: 2020.06.10.144030v1.20
  article-title: Visibility graph analysis of heart rate time series and bio-marker of congestive heart failure
  publication-title: Phys. A Stat. Mech. its Appl
– volume: 373
  start-page: 4246
  year: 2009
  end-page: 4254
  ident: 2020.06.10.144030v1.11
  article-title: Complex network approach for recurrence analysis of time series
  publication-title: Phys. Lett. Sect. A Gen. At. Solid State Phys
– volume: 20
  start-page: 154
  year: 2018
  ident: 2020.06.10.144030v1.6
  article-title: Multivariate Entropy Characterizes the Gene Expression and Protein-Protein Networks in Four Types of Cancer
  publication-title: Entropy
– volume: 414
  start-page: 53
  year: 2014
  end-page: 60
  ident: 2020.06.10.144030v1.10
  article-title: From the time series to the complex networks: The parametric natural visibility graph
  publication-title: Phys. A Stat. Mech. its Appl
– volume: 101
  year: 2000
  ident: 2020.06.10.144030v1.17
  article-title: PhysioBank, PhysioToolkit, and PhysioNet
  publication-title: Circulation
– volume: 2
  start-page: 276
  year: 2009
  end-page: 284
  ident: 2020.06.10.144030v1.26
  article-title: Prediction of Ventricular Tachyarrhythmias by Intracardiac Repolarization Variability Analysis
  publication-title: Circ. Arrhythmia Electrophysiol
– volume: 74
  start-page: 47
  year: 2002
  end-page: 97
  ident: 2020.06.10.144030v1.1
  article-title: Statistical mechanics of complex networks
  publication-title: Rev. Mod. Phys
– volume: 54
  start-page: 1747
  year: 2009
  end-page: 1762
  ident: 2020.06.10.144030v1.15
  article-title: The Sympathetic Nervous System in Heart Failure. Physiology, Pathophysiology, and Clinical Implications
  publication-title: J. Am. Coll. Cardiol
– volume: 61
  start-page: 2207
  year: 2013
  end-page: 2231
  ident: 2020.06.10.144030v1.16
  article-title: 2013 ACCF/ACR/ASE/ASNC/SCCT/SCMR Appropriate Utilization of Cardiovascular Imaging in Heart Failure
  publication-title: J. Am. Coll. Cardiol
– volume: 43
  start-page: 733
  year: 2016
  end-page: 736
  ident: 2020.06.10.144030v1.21
  article-title: Network analysis of heart beat intervals using horizontal visibility graphs
  publication-title: In Proceedings of the Computing in Cardiology
– volume: 7
  start-page: 2143
  year: 2016
  end-page: 2176
  ident: 2020.06.10.144030v1.5
  article-title: Modeling the geographical spread of influenza A(H1N1): the case of Mexico
  publication-title: Appl. Math. Sci
– volume: 6
  start-page: 23617
  year: 2016
  ident: 2020.06.10.144030v1.25
  article-title: Deceleration and acceleration capacities of heart rate associated with heart failure with high discriminating performance
  publication-title: Sci. Rep
– volume: 75
  start-page: 20
  year: 2011
  end-page: 27
  ident: 2020.06.10.144030v1.14
  article-title: Vagal Stimulation for Heart Diseases: From Animals to Men
  publication-title: Circ. J
– volume: 13
  start-page: 1713
  year: 2004
  end-page: 1727
  ident: 2020.06.10.144030v1.3
  article-title: Population Graphs: the graph theoretic shape of genetic structure
  publication-title: Mol. Ecol
– volume: 461
  start-page: 53
  year: 2009
  end-page: 59
  ident: 2020.06.10.144030v1.7
  article-title: Early-warning signals for critical transitions
  publication-title: Nature
– volume: 461
  start-page: 456
  year: 2016
  end-page: 468
  ident: 2020.06.10.144030v1.13
  article-title: From time series to complex networks: The phase space coarse graining
  publication-title: Phys. A Stat. Mech. its Appl
– volume: 13
  start-page: e0207215
  year: 2018
  ident: 2020.06.10.144030v1.24
  article-title: Development and validation of warning system of ventricular tachyarrhythmia in patients with heart failure with heart rate variability data
  publication-title: PLoS One
– volume: 105
  start-page: 4972
  year: 2008
  end-page: 4975
  ident: 2020.06.10.144030v1.8
  article-title: From time series to complex networks: The visibility graph
  publication-title: Proc. Natl. Acad. Sci
– volume: 22
  start-page: 309
  year: 2020
  ident: 2020.06.10.144030v1.19
  article-title: Nonlinear Methods Most Applied to Heart-Rate Time Series: A Review
  publication-title: Entropy
SSID ssj0002961374
Score 1.5963554
SecondaryResourceType preprint
Snippet Implantable cardioverter defibrillators (ICD) are the most effective therapy to terminate malignant ventricular arrhythmias (VA) and therefore to prevent...
SourceID unpaywall
biorxiv
SourceType Open Access Repository
SubjectTerms Systems Biology
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEN0oHIwXNWrUqBkTbwYodNuCN2IkxETCARI8kdl2GxqhNG0B8Rf5M51pKxo5mXjrttN0vztv9s2MELct5WKdTW--Z3kV6UtaUpKKTSVNROU2UbKj8HPP7g7l08gaFZ51SUGrVME8fguW2Tk-E7Zp960V92qaw_4yYicwb9OSzy45AievfilpylbZbl2NPH9XlG2LFPSSKA97_fZLcaZJNdt-ibTf4gv7Ym8RRrhe4XT640_TORDpVx1zgslrdZGqqvv-K3zjPzfiUJT7GOn4SOzo8Fh8tMNvsjXMfWBSZGYpxBhSdCdrjOPJOp3MAkxArQEhnC_1FGabILBIhSw59T10FjFrmRCECVsCEkgzqm4CGEJWR1jl5hnIw0qTIASzaEpjzn5d4OaUWc3kU_C0z04KNHk5TdCJGHQeBw_dSpHSoaIc26j4rPG5hrIayjY8y9Q2KocwFTXabUhfuxKR_toOPefsOQTPlSG1ZXsmhx1DbZ6KUjgP9ZmAJiEtxzA0bfQtPp1tOaZHRRIkzC0teS5uiu4eR3ncjjH38tiwx4x7sl4-F3ebsd5IZajIqG9LX_xJ-lKU0nihr0hlSdV1MQU_AZx_7TU
  priority: 102
  providerName: Unpaywall
Title Anticipation of ventricular tachyarrhythmias by a novel mathematical method: Further insights towards an early warning system in implantable cardioverter defibrillators
URI https://www.biorxiv.org/content/10.1101/2020.06.10.144030
https://www.biorxiv.org/content/biorxiv/early/2020/06/10/2020.06.10.144030.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La8JAEF5apbQ99Untiyn0Viyr2STamy2KFCpSFOxJZpMNBjRKjNr8o_7MziRihfbQ4ySTBGZ3M_PNfjsjxH1de1jh1Fvg235ZBYqWlCKxppWFqL0aKj4o_NZx2n31OrAHW62-mFapw2n8GS6zfXwmbNPfN1_cssJYXXLBTZaVohm6K4ouuXhmc7UGj5v0SrVOfspV633MP5-kiHf9pUOxv4hmmK5wPN7yLq0jUezizMTHYsdEJ2Ivbw-ZnoqvRvTDeYZpAMxNzBJ2GEOC3ijFOB6lyWgS4hx0CgjRdGnGMNnUYkUSsh7RT9BaxBzsQRjNGZDPIckYs3PACAyXOYZVniWBvLozKUI4mY3J9Hy8CrycuWqYAwq-CfisAM0h7tZzJnqtZu-lXV53Vihr15HlgAMvT2q7qh3p25ZxULsEbcguXlUFxlOI5Dxdus9NbAgla6mM7fgWV_9CY52LQjSNzIWAGgEeV0pD_9s6b5LWXcsnkRQJ-ipblcTd2sjDWV4-Y8gDMZTOkOFHNhAl8bAx_0YrAyey8lv78h9vvBIHfI0pXRV5LQpJvDA3FDwk-lYUn5ud7vttNl1I6ne6jY9vJ-nECg
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60IurJJ74dwZtUNs0mab2JWOoTDxV6C7PJhgbatCSpNf_In-lMEqqgB4-TnSQwO_v4Zr-dEeKiowO0OPQWhU7YVJGiIaVIbGtlI-qgjYovCj-_uL039TBwBnXALatplTqepB_xe3mOz4Rtmn2rwS0txuqSE26yrBR56BWHqZfFikfrPHt4d3C1iLHQE8v2VH2Y-efrtO2tf7ch1mbJFIs5jkY_lpjuplh5xalJt8SSSbbFalUjstgRnzfJN_EZJhEwQbGM2mEKOQbDAtN0WOTDcYwZ6AIQksm7GcF4kZAVSSgLRV9Dd5byjg_iJGNUnkFe0mYzwAQM5zqGeRUqgSrFMylCPJ6OyP58xwqCir5qmAgKoYn4wgA5Epfs2RX97l3_ttesyys0tefKZsS7r0Bqp6VdGTq2cVF7hG_ILkFLRSZQiLSCetTOlWwIKmupjOOGNqcAQ2PviUYyScy-gDahHk9KQ5Nuh09KO54dkkiKhH-Vow7EeW1kf1rl0PC5I3zp-oxByo44EJcL8y-0SoQird_ah__44plY6_Wfn_yn-5fHI7HO7czxsuSxaOTpzJzQbiLXp6XLfAEL68WO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7U4uvkE-tzBG_Ssm02SetN1FCfeFDoLcwmGxpo05Cmav6RP9OZpFRBDx6HDBvY18w3-82MEGddHWCLQ29RaIcNFSk6UorEjlYWog46qDhR-PHJ6b2qu77d_5ELw7RKHY-zj_itfMdnwjbdvtXhli3G6pILbrKsFO3QJoepm2kYLYqaS7aeAZjXb87jLO0uGSxXzR40_xyCXN_ZL9fF6jRJsXjH4fCHmfE2RO0ZU5NtigWTbInlqk9ksS0-L5Nv8jOMI2CSYhm5wwxyDAYFZtmgyAejGCegC0BIxm9mCKN5UVYkoWwWfQHeNGOvD-Jkwsh8AnlJnZ0AJmC43jG8V-ESqMo8kyLEo3RIa8B5VhBUFFbDZFAITcRJA7SZuG3Pjnjxbl6ueo1Zi4WGdh3ZiNgDC6S229qRoW0ZB7VLGIfmJWiryAQKkayoS9-5mw3BZS2VsZ3Q4jJgaKxdsZSME7MnoEPIx5XS0MXb5dfSrmuFJJIiYWBlq7o4nU2yn1Z1NHxeCF86PuOQciHq4nw-_XOtEqXI1m_t_X-MeCJWnq89_-H26f5ArPFnpnm15KFYyrOpOSKHItfH5Y75AvnWxp8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT8JAEN0oHIwXNWrUqBkTbwYodNuCN2IkxETCARI8kdl2GxqhNG0B8Rf5M51pKxo5mXjrttN0vztv9s2MELct5WKdTW--Z3kV6UtaUpKKTSVNROU2UbKj8HPP7g7l08gaFZ51SUGrVME8fguW2Tk-E7Zp960V92qaw_4yYicwb9OSzy45AievfilpylbZbl2NPH9XlG2LFPSSKA97_fZLcaZJNdt-ibTf4gv7Ym8RRrhe4XT640_TORDpVx1zgslrdZGqqvv-K3zjPzfiUJT7GOn4SOzo8Fh8tMNvsjXMfWBSZGYpxBhSdCdrjOPJOp3MAkxArQEhnC_1FGabILBIhSw59T10FjFrmRCECVsCEkgzqm4CGEJWR1jl5hnIw0qTIASzaEpjzn5d4OaUWc3kU_C0z04KNHk5TdCJGHQeBw_dSpHSoaIc26j4rPG5hrIayjY8y9Q2KocwFTXabUhfuxKR_toOPefsOQTPlSG1ZXsmhx1DbZ6KUjgP9ZmAJiEtxzA0bfQtPp1tOaZHRRIkzC0teS5uiu4eR3ncjjH38tiwx4x7sl4-F3ebsd5IZajIqG9LX_xJ-lKU0nihr0hlSdV1MQU_AZx_7TU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anticipation+of+ventricular+tachyarrhythmias+by+a+novel+mathematical+method%3A+Further+insights+towards+an+early+warning+system+in+implantable+cardioverter+defibrillators&rft.jtitle=bioRxiv&rft.au=Zamudio%2C+Gabriel+S.&rft.au=M%C3%A1rquez%2C+Manlio+F.&rft.au=Jos%C3%A9%2C+Marco+V.&rft.date=2020-06-10&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2020.06.10.144030&rft.externalDocID=2020.06.10.144030v1