Evidence for a force favouring GC over AT at short intronic sites in Drosophila simulans and D. melanogaster

Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Jackson, Ben, Charlesworth, Brian
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 17.02.2021
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2021.02.16.431542

Cover

Abstract Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favouring GC in both species, which is stronger in D. simulans. Some homologous short intronic sites have diverged in GC content between the two species, which may have been caused by lineage-specific changes in the extent to which different regions of the genome are subject to a GC (or AT)-favouring force.
AbstractList Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favouring GC in both species, which is stronger in D. simulans. Some homologous short intronic sites have diverged in GC content between the two species, which may have been caused by lineage-specific changes in the extent to which different regions of the genome are subject to a GC (or AT)-favouring force.
Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favouring GC in both species, which is stronger in D. simulans. Some homologous short intronic sites have diverged in GC content between the two species, which may have been caused by lineage-specific changes in the extent to which different regions of the genome are subject to a GC (or AT)-favouring force.
Author Charlesworth, Brian
Jackson, Ben
Author_xml – sequence: 1
  givenname: Ben
  surname: Jackson
  fullname: Jackson, Ben
– sequence: 2
  givenname: Brian
  surname: Charlesworth
  fullname: Charlesworth, Brian
BookMark eNpNkDFPwzAQhS0EEqX0B7BZYmFJsB3HTsaqLQWpEkt3y3HOravULnYawb8nVRlY7t47PZ3uvgd064MHhJ4oySkl9JURRnPCcipyXtCSsxs0YaJmWcVIeftP36NZSgdCCKsFLSSfoG41uBa8AWxDxPpSL1oP4Ryd3-H1AocBIp5vse5x2ofYY-f7GLwzOLke0mjxMoYUTnvX6XF2PHfaJ6x9i5c5PsLowk6nHuIjurO6SzD761O0fVttF-_Z5nP9sZhvskZQntlSmAaqWgprOCms1qxqrIBaGlNXQCUHSwVviWwMYboGDmVrW92A1K00tJiil-vaxoX47QZ1iu6o44-6cFKEKSrUldMYfb5GTzF8nSH16jA-7sfjFCtJyQsxUip-AWk_aoY
ContentType Paper
Copyright 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
DOI 10.1101/2021.02.16.431542
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2021.02.16.431542v1
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
ID FETCH-LOGICAL-b614-f56cbe8976fc403faa28bf6e97cc98e174ef164d07bc02a9e4e5dfdabe7ad7c13
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 19:00:12 EST 2025
Fri Jul 25 09:23:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords GC-biased gene conversion
Evolution
Mutation
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b614-f56cbe8976fc403faa28bf6e97cc98e174ef164d07bc02a9e4e5dfdabe7ad7c13
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ORCID 0000-0002-9981-0649
0000-0002-2706-355X
OpenAccessLink https://www.biorxiv.org/content/10.1101/2021.02.16.431542
PQID 2505436374
PQPubID 2050091
PageCount 48
ParticipantIDs biorxiv_primary_2021_02_16_431542
proquest_journals_2505436374
PublicationCentury 2000
PublicationDate 20210217
PublicationDateYYYYMMDD 2021-02-17
PublicationDate_xml – month: 02
  year: 2021
  text: 20210217
  day: 17
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2021
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Assaf, Tilk, Park, Siegal, Petrov (2021.02.16.431542v1.5) 2017; 27
Capuano, Mülleder, Kok, Blom, Ralser (2021.02.16.431542v1.17) 2014; 86
Pool, Corbett-Detig, Sugino, Stevens, Cardeno, Crepeau, Duchen, Emerson, Saelao, Begun (2021.02.16.431542v1.66) 2012; 8
Campos, Zeng, Parker, Charlesworth, Haddrill (2021.02.16.431542v1.16) 2013; 30
Jackson, Campos, Haddrill, Charlesworth, Zeng (2021.02.16.431542v1.41) 2017
Robinson, Stone, Singh (2021.02.16.431542v1.68) 2014; 31
Kimura (2021.02.16.431542v1.49) 1968; 217
Li, Durbin (2021.02.16.431542v1.52) 2009; 25
Campos, Charlesworth, Haddrill (2021.02.16.431542v1.15) 2012; 4
Kapun, Barrón, Staubach, Obbard, Wiberg, Vieira, Goubert, Rota-Stabelli, Kankare, Bogaerts-Márquez (2021.02.16.431542v1.42) 2020; 37
Kim, Huber, Lohmueller (2021.02.16.431542v1.48) 2017; 206
Keightley, Eyre-Walker (2021.02.16.431542v1.43) 2007
Kennedy, Berget (2021.02.16.431542v1.45) 1997; 17
Boyko, Williamson, Indap, Degenhardt, Hernandez, Lohmueller, Adams, Schmidt, Sninsky, Sunyaev (2021.02.16.431542v1.12) 2008; 4
Eyre-Walker, Woolfit, Phelps (2021.02.16.431542v1.25) 2006; 173
Sekelsky (2021.02.16.431542v1.71) 2017; 205
Halligan, Keightley (2021.02.16.431542v1.36) 2006; 16
Comeron, Ratnappan, Bailin (2021.02.16.431542v1.20) 2012; 8
Mount, Burks, Herts, Stormo, White, Fields (2021.02.16.431542v1.62) 1992; 20
Becher, Jackson, Charlesworth (2021.02.16.431542v1.8) 2020; 30
Webb, Berg, Jeffreys (2021.02.16.431542v1.78) 2008; 105
Bachtrog, Weiss, Zangerl, Brem, Schlötterer (2021.02.16.431542v1.6) 1999; 16
Fagundes, Ray, Beaumont, Neuenschwander, Salzano, Bonatto, Excoffier (2021.02.16.431542v1.26) 2007; 104
Akashi (2021.02.16.431542v1.1) 1995; 139
Charlesworth, Charlesworth (2021.02.16.431542v1.18) 2010
Smith, Eyre-Walker (2021.02.16.431542v1.72) 2002; 415
Wright (2021.02.16.431542v1.80) 1938; 24
Machado, Lawrie, Petrov (2021.02.16.431542v1.55) 2020; 214
Matsumoto, Akashi, Yang (2021.02.16.431542v1.57) 2015; 200
Kent, Baertsch, Hinrichs, Miller, Haussler (2021.02.16.431542v1.46) 2003; 100
Zeng, Charlesworth (2021.02.16.431542v1.82) 2010; 70
Arbeithuber, Betancourt, Ebner, Tiemann-Boege (2021.02.16.431542v1.4) 2015; 112
Barton, Zeng (2021.02.16.431542v1.7) 2018; 35
Nagylaki (2021.02.16.431542v1.63) 1983; 80
Haddrill, Bachtrog, Andolfatto (2021.02.16.431542v1.33) 2008; 25
Efron (2021.02.16.431542v1.23) 1979
Duret, Galtier (2021.02.16.431542v1.22) 2009; 10
Clemente, Vogl (2021.02.16.431542v1.19) 2012; 25
McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (2021.02.16.431542v1.59) 2010; 20
Vicario, Moriyama, Powell (2021.02.16.431542v1.77) 2007; 7
Haddrill, Charlesworth (2021.02.16.431542v1.34) 2008; 4
Harris (2021.02.16.431542v1.38) 2007
Borges, Szöllősi, Kosiol (2021.02.16.431542v1.11) 2019; 212
Takano-Shimizu (2021.02.16.431542v1.73) 2001; 18
Glémin, Arndt, Messer, Petrov, Galtier, Duret (2021.02.16.431542v1.30) 2015; 25
Tange (2021.02.16.431542v1.74) 2011; 36
de Procé, Zeng, Betancourt, Charlesworth (2021.02.16.431542v1.21) 2012; 8
Bulmer (2021.02.16.431542v1.14) 1991; 129
Keightley, Jackson (2021.02.16.431542v1.44) 2018; 209
Schneider, Charlesworth, Eyre-Walker, Keightley (2021.02.16.431542v1.70) 2011; 189
Harrison, Charlesworth (2021.02.16.431542v1.39) 2011; 28
Lack, Cardeno, Crepeau, Taylor, Corbett-Detig, Stevens, Langley, Pool (2021.02.16.431542v1.50) 2015; 199
McDonald, Kreitman (2021.02.16.431542v1.58) 1991; 351
Hernandez, Williamson, Zhu, Bustamante (2021.02.16.431542v1.40) 2007; 24
Yang (2021.02.16.431542v1.81) 2007; 24
Parsch, Novozhilov, Saminadin-Peter, Wong, Andolfatto (2021.02.16.431542v1.65) 2010; 27
Quinlan, Hall (2021.02.16.431542v1.67) 2010; 26
Andolfatto (2021.02.16.431542v1.3) 2005; 437
(2021.02.16.431542v1.76) 2018
Eyre-Walker, Keightley (2021.02.16.431542v1.24) 2009; 26
Fay, Wyckoff, Wu (2021.02.16.431542v1.27) 2001; 158
Akashi, Ko, Piao, John, Goel, Lin, Vitins (2021.02.16.431542v1.2) 2006; 172
Hämälä, Tiffin (2021.02.16.431542v1.37) 2020
Welch (2021.02.16.431542v1.79) 2006; 173
Li (2021.02.16.431542v1.53) 1987; 24
Begun (2021.02.16.431542v1.9) 2001; 18
Rogers, Cridland, Shao, Hu, Andolfatto, Thornton (2021.02.16.431542v1.69) 2014; 31
Mancera, Bourgon, Brozzi, Huber, Steinmetz (2021.02.16.431542v1.56) 2008; 454
McVean, Charlesworth (2021.02.16.431542v1.60) 1999; 74
Lawrie, Messer, Hershberg, Petrov (2021.02.16.431542v1.51) 2013; 9
Green (2021.02.16.431542v1.32) 1986; 20
Liu, Huang, Sun, Li, Hu, Yu, Liti, Tian, Hurst, Yang (2021.02.16.431542v1.54) 2018; 2
Haddrill, Thornton, Charlesworth, Andolfatto (2021.02.16.431542v1.35) 2005; 15
Garud, Messer, Buzbas, Petrov (2021.02.16.431542v1.29) 2015; 11
Obbard, Maclennan, Kim, Rambaut, O’Grady, Jiggins (2021.02.16.431542v1.64) 2012; 29
Brown, Jiricny (2021.02.16.431542v1.13) 1987; 50
Galtier (2021.02.16.431542v1.28) 2016
Kern, Begun (2021.02.16.431542v1.47) 2005; 22
Blanchette, Kent, Riemer, Elnitski, Smit, Roskin, Baertsch, Rosenbloom, Clawson, Green (2021.02.16.431542v1.10) 2004; 14
Gowher, Leismann, Jeltsch (2021.02.16.431542v1.31) 2000; 19
Tataru, Mollion, Glémin, Bataillon (2021.02.16.431542v1.75) 2017; 207
Messer, Petrov (2021.02.16.431542v1.61) 2013; 110
Zeng, Jackson, Barton (2021.02.16.431542v1.83) 2019; 36
References_xml – volume: 24
  start-page: 337
  year: 1987
  end-page: 345
  ident: 2021.02.16.431542v1.53
  article-title: Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons
  publication-title: Journal of Molecular Evolution
– volume: 30
  start-page: 94
  year: 2020
  end-page: 100
  ident: 2021.02.16.431542v1.8
  article-title: Patterns of genetic variability in genomic regions with low rates of recombination
  publication-title: Curr Biol
– volume: 50
  start-page: 945
  year: 1987
  end-page: 950
  ident: 2021.02.16.431542v1.13
  article-title: A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine
  publication-title: Cell
– volume: 20
  start-page: 4255
  year: 1992
  end-page: 4262
  ident: 2021.02.16.431542v1.62
  article-title: Splicing signals in Drosophila: Intron size, information content, and consensus sequences
  publication-title: Nucleic Acids Research
– volume: 105
  start-page: 10471
  year: 2008
  end-page: 10476
  ident: 2021.02.16.431542v1.78
  article-title: Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association
  publication-title: Proceedings of the National Academy of Sciences
– start-page: 12
  year: 2016
  ident: 2021.02.16.431542v1.28
  article-title: Adaptive protein evolution in animals and the effective population size hypothesis
  publication-title: PLOS Genetics
– volume: 199
  start-page: 1229
  year: 2015
  end-page: 1241
  ident: 2021.02.16.431542v1.50
  article-title: The drosophila genome nexus: A population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population
  publication-title: Genetics
– volume: 4
  start-page: 438
  year: 2008
  end-page: 441
  ident: 2021.02.16.431542v1.34
  article-title: Non-neutral processes drive the nucleotide composition of non-coding sequences in Drosophila
  publication-title: Biology letters
– volume: 70
  start-page: 116
  year: 2010
  end-page: 128
  ident: 2021.02.16.431542v1.82
  article-title: Studying patterns of recent evolution at synonymous sites and intronic sites in Drosophila melanogaster
  publication-title: Journal of Molecular Evolution
– volume: 112
  start-page: 2109
  year: 2015
  end-page: 2114
  ident: 2021.02.16.431542v1.4
  article-title: Crossovers are associated with mutation and biased gene conversion at recombination hotspots
  publication-title: Proceedings of the National Academy of Sciences
– volume: 14
  start-page: 708
  year: 2004
  end-page: 715
  ident: 2021.02.16.431542v1.10
  article-title: Aligning multiple genomic sequences with the threaded blockset aligner
  publication-title: Genome Research
– volume: 173
  start-page: 891
  year: 2006
  end-page: 900
  ident: 2021.02.16.431542v1.25
  article-title: The distribution of fitness effects of new deleterious amino acid mutations in humans
  publication-title: Genetics
– volume: 200
  start-page: 873
  year: 2015
  end-page: 890
  ident: 2021.02.16.431542v1.57
  article-title: Evaluation of ancestral sequence reconstruction methods to infer nonstationary patterns of nucleotide substitution
  publication-title: Genetics
– volume: 19
  start-page: 6918
  year: 2000
  end-page: 6923
  ident: 2021.02.16.431542v1.31
  article-title: DNA of Drosophila melanogaster contains 5-methylcytosine
  publication-title: The EMBO journal
– volume: 35
  start-page: 1536
  year: 2018
  end-page: 1546
  ident: 2021.02.16.431542v1.7
  article-title: New methods for inferring the distribution of fitness effects for indels and snps
  publication-title: Molecular Biology and Evolution
– volume: 22
  start-page: 51
  year: 2005
  end-page: 62
  ident: 2021.02.16.431542v1.47
  article-title: Patterns of polymorphism and divergence from noncoding sequences of Drosophila melanogaster and D. simulans: Evidence for nonequilibrium processes
  publication-title: Molecular Biology and Evolution
– volume: 206
  start-page: 345
  year: 2017
  end-page: 361
  ident: 2021.02.16.431542v1.48
  article-title: Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples
  publication-title: Genetics
– volume: 7
  start-page: 226
  year: 2007
  end-page: 226
  ident: 2021.02.16.431542v1.77
  article-title: Codon usage in twelve species of Drosophila
  publication-title: BMC Evolutionary Biology
– volume: 29
  start-page: 3459
  year: 2012
  end-page: 3473
  ident: 2021.02.16.431542v1.64
  article-title: Estimating divergence dates and substitution rates in the Drosophila phylogeny
  publication-title: Molecular Biology and Evolution
– volume: 415
  start-page: 1022
  year: 2002
  end-page: 1024
  ident: 2021.02.16.431542v1.72
  article-title: Adaptive protein evolution in Drosophila
  publication-title: Nature
– volume: 9
  start-page: e1003527
  year: 2013
  end-page: e1003527
  ident: 2021.02.16.431542v1.51
  article-title: Strong purifying selection at synonymous sites in D. melanogaster
  publication-title: PLOS Genetics
– volume: 4
  start-page: e1000083
  year: 2008
  ident: 2021.02.16.431542v1.12
  article-title: Assessing the evolutionary impact of amino acid mutations in the human genome
  publication-title: PLoS Genet
– volume: 104
  start-page: 17614
  year: 2007
  end-page: 17619
  ident: 2021.02.16.431542v1.26
  article-title: Statistical evaluation of alternative models of human evolution
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– year: 2018
  ident: 2021.02.16.431542v1.76
  publication-title: R: A language and environment for statistical computing
– year: 2020
  ident: 2021.02.16.431542v1.37
  article-title: Biased gene conversion constrains adaptation in Arabidopsis thaliana
  publication-title: Genetics
– volume: 212
  start-page: 1321
  year: 2019
  end-page: 1336
  ident: 2021.02.16.431542v1.11
  article-title: Quantifying gc-biased gene conversion in great ape genomes using polymorphism-aware models
  publication-title: Genetics
– volume: 86
  start-page: 3697
  year: 2014
  end-page: 3702
  ident: 2021.02.16.431542v1.17
  article-title: Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species
  publication-title: Analytical chemistry
– volume: 31
  start-page: 425
  year: 2014
  end-page: 433
  ident: 2021.02.16.431542v1.68
  article-title: Population genomic analysis reveals no evidence for GC-biased gene conversion in Drosophila melanogaster
  publication-title: Molecular Biology and Evolution
– volume: 139
  start-page: 1067
  year: 1995
  end-page: 1076
  ident: 2021.02.16.431542v1.1
  article-title: Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA
  publication-title: Genetics
– volume: 16
  start-page: 875
  year: 2006
  end-page: 884
  ident: 2021.02.16.431542v1.36
  article-title: Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison
  publication-title: Genome Research
– volume: 172
  start-page: 1711
  year: 2006
  end-page: 1726
  ident: 2021.02.16.431542v1.2
  article-title: Molecular evolution in the Drosophila melanogaster species subgroup: Frequent parameter fluctuations on the timescale of molecular divergence
  publication-title: Genetics
– volume: 207
  start-page: 1103
  year: 2017
  end-page: 1119
  ident: 2021.02.16.431542v1.75
  article-title: Inference of distribution of fitness effects and proportion of adaptive substitutions from polymorphism data
  publication-title: Genetics
– volume: 24
  start-page: 1586
  year: 2007
  end-page: 1591
  ident: 2021.02.16.431542v1.81
  article-title: Paml 4: Phylogenetic analysis by maximum likelihood
  publication-title: Molecular Biology and Evolution
– volume: 30
  start-page: 811
  year: 2013
  end-page: 823
  ident: 2021.02.16.431542v1.16
  article-title: Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster
  publication-title: Molecular Biology and Evolution
– volume: 20
  start-page: 1297
  year: 2010
  end-page: 1303
  ident: 2021.02.16.431542v1.59
  article-title: The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Research
– volume: 205
  start-page: 471
  year: 2017
  end-page: 490
  ident: 2021.02.16.431542v1.71
  article-title: DNA repair in Drosophila: Mutagens, models, and missing genes
  publication-title: Genetics
– volume: 8
  start-page: e1003080
  year: 2012
  end-page: e1003080
  ident: 2021.02.16.431542v1.66
  article-title: Population genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture
  publication-title: PLOS Genetics
– volume: 27
  start-page: 1988
  year: 2017
  end-page: 2000
  ident: 2021.02.16.431542v1.5
  article-title: Deep sequencing of natural and experimental populations of Drosophila melanogaster reveals biases in the spectrum of new mutations
  publication-title: Genome Research
– volume: 18
  start-page: 1343
  year: 2001
  end-page: 1352
  ident: 2021.02.16.431542v1.9
  article-title: The frequency distribution of nucleotide variation in Drosophila simulans
  publication-title: Molecular Biology and Evolution
– year: 2007
  ident: 2021.02.16.431542v1.38
  publication-title: Improved pairwise alignment of genomic DNA
– volume: 4
  start-page: 278
  year: 2012
  end-page: 288
  ident: 2021.02.16.431542v1.15
  article-title: Molecular evolution in nonrecombining regions of the Drosophila melanogaster genome
  publication-title: Genome Biology and Evolution
– start-page: 1
  year: 1979
  end-page: 26
  ident: 2021.02.16.431542v1.23
  article-title: Bootstrap methods: Another look at the jackknife
  publication-title: Institute of Mathematical Statistics
– volume: 36
  start-page: 423
  year: 2019
  end-page: 433
  ident: 2021.02.16.431542v1.83
  article-title: Methods for estimating demography and detecting between-locus differences in the effective population size and mutation rate
  publication-title: Molecular Biology and Evolution
– volume: 17
  start-page: 2774
  year: 1997
  end-page: 2780
  ident: 2021.02.16.431542v1.45
  article-title: Pyrimidine tracts between the 5’splice site and branch point facilitate splicing and recognition of a small Drosophila intron
  publication-title: Molecular and Cellular Biology
– start-page: 9
  year: 2017
  ident: 2021.02.16.431542v1.41
  article-title: Variation in the intensity of selection on codon bias over time causes contrasting patterns of base composition evolution in Drosophila
  publication-title: Genome Biology and Evolution
– volume: 24
  start-page: 253
  year: 1938
  ident: 2021.02.16.431542v1.80
  article-title: The distribution of gene frequencies under irreversible mutation
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 24
  start-page: 2196
  year: 2007
  end-page: 2202
  ident: 2021.02.16.431542v1.40
  article-title: Context-dependent mutation rates may cause spurious signatures of a fixation bias favoring higher gc-content in humans
  publication-title: Molecular Biology and Evolution
– volume: 37
  start-page: 2661
  year: 2020
  end-page: 2678
  ident: 2021.02.16.431542v1.42
  article-title: Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses
  publication-title: Molecular Biology and Evolution
– volume: 351
  start-page: 652
  year: 1991
  end-page: 654
  ident: 2021.02.16.431542v1.58
  article-title: Adaptive protein evolution at the adh locus in Drosophila
  publication-title: Nature
– volume: 10
  start-page: 285
  year: 2009
  end-page: 311
  ident: 2021.02.16.431542v1.22
  article-title: Biased gene conversion and the evolution of mammalian genomic landscapes
  publication-title: Annual Review of Genomics and Human Genetics
– volume: 11
  start-page: e1005004
  year: 2015
  end-page: e1005004
  ident: 2021.02.16.431542v1.29
  article-title: Recent selective sweeps in north american Drosophila melanogaster show signatures of soft sweeps
  publication-title: PLoS Genet
– volume: 25
  start-page: 1825
  year: 2008
  end-page: 1834
  ident: 2021.02.16.431542v1.33
  article-title: Positive and negative selection on noncoding DNA in Drosophila simulans
  publication-title: Molecular Biology and Evolution
– volume: 100
  start-page: 11484
  year: 2003
  end-page: 11489
  ident: 2021.02.16.431542v1.46
  article-title: Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 20
  start-page: 671
  year: 1986
  end-page: 708
  ident: 2021.02.16.431542v1.32
  article-title: Pre-mrna splicing
  publication-title: Annual Review of Genetics
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: 2021.02.16.431542v1.52
  article-title: Fast and accurate short read alignment with Burrows-Wheeler transform
  publication-title: Bioinformatics (Oxford, England)
– volume: 16
  start-page: 602
  year: 1999
  end-page: 610
  ident: 2021.02.16.431542v1.6
  article-title: Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome
  publication-title: Molecular Biology and Evolution
– volume: 25
  start-page: 1215
  year: 2015
  end-page: 1228
  ident: 2021.02.16.431542v1.30
  article-title: Quantification of gc-biased gene conversion in the human genome
  publication-title: Genome Research
– volume: 74
  start-page: 145
  year: 1999
  end-page: 158
  ident: 2021.02.16.431542v1.60
  article-title: A population genetic model for the evolution of synonymous codon usage: Patterns and predictions
  publication-title: Genetical Research
– volume: 173
  start-page: 821
  year: 2006
  end-page: 837
  ident: 2021.02.16.431542v1.79
  article-title: Estimating the genomewide rate of adaptive protein evolution in Drosophila
  publication-title: Genetics
– volume: 454
  start-page: 479
  year: 2008
  end-page: 485
  ident: 2021.02.16.431542v1.56
  article-title: High-resolution mapping of meiotic crossovers and non-crossovers in yeast
  publication-title: Nature
– volume: 110
  start-page: 8615
  year: 2013
  end-page: 8620
  ident: 2021.02.16.431542v1.61
  article-title: Frequent adaptation and the McDonald-Kreitman test
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 26
  start-page: 2097
  year: 2009
  end-page: 2108
  ident: 2021.02.16.431542v1.24
  article-title: Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change
  publication-title: Molecular Biology and Evolution
– volume: 209
  start-page: 897
  year: 2018
  end-page: 906
  ident: 2021.02.16.431542v1.44
  article-title: Inferring the probability of the derived vs
  publication-title: the ancestral allelic state at a polymorphic site. Genetics
– volume: 25
  start-page: 1975
  year: 2012
  end-page: 1990
  ident: 2021.02.16.431542v1.19
  article-title: Unconstrained evolution in short introns? - an analysis of genome-wide polymorphism and divergence data from Drosophila
  publication-title: Journal of Evolutionary Biology
– volume: 26
  start-page: 841
  year: 2010
  end-page: 842
  ident: 2021.02.16.431542v1.67
  article-title: Bedtools: A flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
– volume: 18
  start-page: 606
  year: 2001
  end-page: 619
  ident: 2021.02.16.431542v1.73
  article-title: Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes
  publication-title: Molecular Biology and Evolution
– volume: 80
  start-page: 6278
  year: 1983
  end-page: 6281
  ident: 2021.02.16.431542v1.63
  article-title: Evolution of a finite population under gene conversion
  publication-title: Proceedings of the National Academy of Sciences
– volume: 15
  start-page: 790
  year: 2005
  end-page: 799
  ident: 2021.02.16.431542v1.35
  article-title: Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations
  publication-title: Genome Research
– volume: 158
  start-page: 1227
  year: 2001
  end-page: 1234
  ident: 2021.02.16.431542v1.27
  article-title: Positive and negative selection on the human genome
  publication-title: Genetics
– volume: 31
  start-page: 1750
  year: 2014
  end-page: 1766
  ident: 2021.02.16.431542v1.69
  article-title: Landscape of standing variation for tandem duplications in Drosophila yakuba and Drosophila simulans
  publication-title: Molecular Biology and Evolution
– volume: 2
  start-page: 164
  year: 2018
  end-page: 173
  ident: 2021.02.16.431542v1.54
  article-title: Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias
  publication-title: Nature Ecology & Evolution
– volume: 28
  start-page: 117
  year: 2011
  end-page: 129
  ident: 2021.02.16.431542v1.39
  article-title: Biased gene conversion affects patterns of codon usage and amino acid usage in the Saccharomyces sensu stricto group of yeasts
  publication-title: Molecular Biology and Evolution
– volume: 214
  start-page: 511
  year: 2020
  end-page: 528
  ident: 2021.02.16.431542v1.55
  article-title: Pervasive strong selection at the level of codon usage bias in drosophila melanogaster
  publication-title: Genetics
– volume: 129
  start-page: 897
  year: 1991
  end-page: 907
  ident: 2021.02.16.431542v1.14
  article-title: The selection-mutation-drift theory of synonymous codon usage
  publication-title: Genetics
– volume: 217
  start-page: 624
  year: 1968
  end-page: 626
  ident: 2021.02.16.431542v1.49
  article-title: Evolutionary rate at the molecular level
  publication-title: Nature
– volume: 8
  start-page: 82
  year: 2012
  end-page: 85
  ident: 2021.02.16.431542v1.21
  article-title: Selection on codon usage and base composition in Drosophila americana
  publication-title: Biology letters
– volume: 189
  start-page: 1427
  year: 2011
  end-page: 1437
  ident: 2021.02.16.431542v1.70
  article-title: A method for inferring the rate of occurrence and fitness effects of advantageous mutations
  publication-title: Genetics
– start-page: 177
  year: 2007
  ident: 2021.02.16.431542v1.43
  article-title: Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies
  publication-title: Genetics
– volume: 36
  start-page: 42
  year: 2011
  end-page: 47
  ident: 2021.02.16.431542v1.74
  article-title: Gnu parallel-the command-line power tool
  publication-title: The USENIX Magazine
– volume: 8
  start-page: e1002905
  year: 2012
  end-page: e1002905
  ident: 2021.02.16.431542v1.20
  article-title: The many landscapes of recombination in Drosophila melanogaster
  publication-title: PLOS Genetics
– volume: 27
  start-page: 1226
  year: 2010
  end-page: 1234
  ident: 2021.02.16.431542v1.65
  article-title: On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila
  publication-title: Molecular Biology and Evolution
– volume: 437
  start-page: 1149
  year: 2005
  end-page: 1152
  ident: 2021.02.16.431542v1.3
  article-title: Adaptive evolution of non-coding DNA in Drosophila
  publication-title: Nature
– year: 2010
  ident: 2021.02.16.431542v1.18
  publication-title: Elements of Evolutionary Genetics
SSID ssj0002961374
Score 1.6189829
SecondaryResourceType preprint
Snippet Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population...
Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size...
SourceID biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Bias
Drosophila
Gene conversion
Genetics
Genomes
Insects
Mutation
Natural selection
Population genetics
Population studies
Species
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFA26MfDNT5xOieBrtU3TZH0Q8WuK4BCZsLdy86WD2c5tDv333nStPgi-lKaFQm_ac05uknsIOeaoqUEZFTAl4oCjgA1SYXmgjROJi1OA0jrhoS_unvn9MBmukH69F8Yvq6wxsQRqU2ifIz_1VM1jEUt-PnkPvGuUn12tLTSgslYwZ2WJsVXSREhOwgZpXt70H59-si4sRfoqSzMzkSIUsDCppjrx0_SJgLKCZyROkFcTb9_eUqNi-jla_IHqkn9666T5CBM73SArNt8kraWB5NcWGdemoBS1JwV_9OewKMrdh_T2ivolmvRiQGFOZ6-otekoX9reUP9mM2zS62lpZjAaA157-xgje1HIDb0-oW8WW8UL-HIK22TQuxlc3QWVf0KgkHQDlwitbBf1htM8jB0A6yonbCq1TrsWhyLW4WDJhFLpkEFquU2MM6CsBCN1FO-QRl7kdpdQJyBCIFQglOEOVMqEc0pK6SJmQqvb5KiKUzZZFsnIfCyzkGWRyJaxbJNOHcGs-k9m2W-v7v1_e5-s-Sf69dKR7JDGfPphD1AOzNVh1cffSD60OQ
  priority: 102
  providerName: ProQuest
Title Evidence for a force favouring GC over AT at short intronic sites in Drosophila simulans and D. melanogaster
URI https://www.proquest.com/docview/2505436374
https://www.biorxiv.org/content/10.1101/2021.02.16.431542
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kRfDmE6u1rOA1JY_NbnPUPiyCpUiF3sJsdlcDbVLSB_rvnU1SEfTgJWQXksBsdr5vMpP5CLljyKlBKun4kgcOQwLrRFwzJ1GGhyaIAErphOcJH7-yp3k4_yH1ZcsqZZoXH-muzOPbgm30vtXmdj0bq5dNNj3eRegLGXrfJr5ioVVtGM27359X_AhxSrA6j_nnlch46yf98sMluIyOSXMKK12ckAOdnZLDSh3y84ws9oqfFIklBXu057DLy18L6WOf2vpLej-jsKHrdyTSNM0qTRtqk8JrHNJBUSoVpAvAueV2gdBEIVN00KVLjaP8DWyvhHMyGw1n_bFTiyM4EhHVMSFPpO4hmTAJcwMD4Pek4ToSSRL1NMYZ2mAkpFwhE9eHSDMdKqNAagFKJF5wQRpZnulLQg0HD72cBC4VMyAjnxsjhRDG85Wrkxa5re0Ur6oOGLG1Zez6scfjypYt0t5bMK43wTq27IoFHJfh6h-3uCZHds5WRHuiTRqbYqtvEPA3skOaD8PJ9KVTLvEXhPOpLg
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VXVX0xqcoLWAkOKYkjmNvDhWCbsuWtqsKLVJv1virrLRNlt1toT-O_8Y4m8ABiVsvUZxIPoztec_j8TyAN4I4NRpnEm5knggisEkpvUisC7IIeYnYSCecjeXoq_h8UVxswK_uLkxMq-x8YuOoXW1jjPxdhGqRy1yJ9_PvSVSNiqernYQGttIKbr8pMdZe7Djxtz9oC7fcPx7SeL_l_OhwcjBKWpWBxBA0JaGQ1vgBoXKwIs0DIh-YIH2prC0Hngi7D7SlcKkyNuVYeuELFxwar9Apm-XU7T3oixg_6UH_4-H4_MufIA8vCS2bStBcluR5eFq0J6u0EmLcoSkYmsk9gvEiqsVvmmm9-Dm9-QcZGrg7egD9c5z7xUPY8NUj2FzrVd4-hlmnQcqI6jKMz_iON3Vz2ZF9OmAxI5R9mDBcseU3ovZsWq1Vdlg05JKabLhotBOmM6RvV9czAkuGlWPDPXblqVVfYqze8AQmd2HIp9Cr6so_AxYkZuR3DUrjREBTchmCUUqFjLvU22143dpJz9c1OXS0pU65zqRe23IbdjsL6nZZLvXfSfT8_79fwf3R5OxUnx6PT3ZgK_YeU7UztQu91eLavyAmsjIv2_FmoO94hv0GzSTzIA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1pR9psj7K5pxfYw8T9lYuTaKFrRv7Qv97L20ngj74UpoUUrgkd7_LXe5HyA1DTA1SSSeQPHQYAlgn5po5qTI8MmEMUFAnvPR575U9jqLRj7swNq1SZtP5R7Yu4vg2YRu1b7m5Pd_66kWRTZ-7aPoiFrj2mNqdKbNN6rjWmF3Z3ZH7fc4SxGiwBKsCmn8OgdC3-uUvhVxYme4-qQ9gpucHZEvnh2SnpIn8PCLjDfUnRYRJwT7tO6ynxR1Det-mNhGT3g4pLOniHRE1zfKS3Iba6PACm7QzLygLsjFg32Q1RhtFIVe049KJxtb0DWzRhGMy7N4N2z2nYklwJJpWx0Q8lbqFqMKkzAsNQNCShutYpGnc0uhwaIMukfKETL0AYs10pIwCqQUokfrhCanl01yfEmo4-KjuJHCpmAEZB9wYKYQwfqA8nTbIdSWnZFaWwkisLBMvSHyelLJskOZGgkm1GxaJhVks5DgNZ_8Y4orsDjrd5Pmh_3RO9uxnmyXtiyapLecrfYEgYCkvi1n-AjbvrXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+a+force+favouring+GC+over+AT+at+short+intronic+sites+in+Drosophila+simulans+and+D.+melanogaster&rft.jtitle=bioRxiv&rft.au=Jackson%2C+Ben&rft.au=Charlesworth%2C+Brian&rft.date=2021-02-17&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.02.16.431542&rft.externalDocID=2021.02.16.431542v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon