Evidence for a force favouring GC over AT at short intronic sites in Drosophila simulans and D. melanogaster
Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , |
Format | Paper |
Language | English |
Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
17.02.2021
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2021.02.16.431542 |
Cover
Abstract | Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favouring GC in both species, which is stronger in D. simulans. Some homologous short intronic sites have diverged in GC content between the two species, which may have been caused by lineage-specific changes in the extent to which different regions of the genome are subject to a GC (or AT)-favouring force. |
---|---|
AbstractList | Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favouring GC in both species, which is stronger in D. simulans. Some homologous short intronic sites have diverged in GC content between the two species, which may have been caused by lineage-specific changes in the extent to which different regions of the genome are subject to a GC (or AT)-favouring force. Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size changes or natural selection at other sites. If such neutral sites can be identified, they offer the opportunity to avoid any confounding effects of selection. Here we investigate evolution at putatively neutrally evolving short intronic sites in natural populations of Drosophila melanogaster and D. simulans, in order to understand the properties of spontaneous mutations and the extent of GC-biased gene conversion in these species. Use of data on the genetics of natural populations is advantageous because it integrates information from large numbers of individuals over long timescales. In agreement with direct evidence from observations of spontaneous mutations in Drosophila, we find a bias in the spectrum of mutations towards AT basepairs. In addition, we find that this bias is stronger in the D. melanogaster lineage than the D. simulans lineage. The evidence for GC-biased gene conversion in Drosophila has been equivocal. Here we provide evidence for a weak force favouring GC in both species, which is stronger in D. simulans. Some homologous short intronic sites have diverged in GC content between the two species, which may have been caused by lineage-specific changes in the extent to which different regions of the genome are subject to a GC (or AT)-favouring force. |
Author | Charlesworth, Brian Jackson, Ben |
Author_xml | – sequence: 1 givenname: Ben surname: Jackson fullname: Jackson, Ben – sequence: 2 givenname: Brian surname: Charlesworth fullname: Charlesworth, Brian |
BookMark | eNpNkDFPwzAQhS0EEqX0B7BZYmFJsB3HTsaqLQWpEkt3y3HOravULnYawb8nVRlY7t47PZ3uvgd064MHhJ4oySkl9JURRnPCcipyXtCSsxs0YaJmWcVIeftP36NZSgdCCKsFLSSfoG41uBa8AWxDxPpSL1oP4Ryd3-H1AocBIp5vse5x2ofYY-f7GLwzOLke0mjxMoYUTnvX6XF2PHfaJ6x9i5c5PsLowk6nHuIjurO6SzD761O0fVttF-_Z5nP9sZhvskZQntlSmAaqWgprOCms1qxqrIBaGlNXQCUHSwVviWwMYboGDmVrW92A1K00tJiil-vaxoX47QZ1iu6o44-6cFKEKSrUldMYfb5GTzF8nSH16jA-7sfjFCtJyQsxUip-AWk_aoY |
ContentType | Paper |
Copyright | 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021, Posted by Cold Spring Harbor Laboratory |
DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. |
DOI | 10.1101/2021.02.16.431542 |
DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv |
DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2021.02.16.431542v1 |
Genre | Working Paper/Pre-Print |
GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. |
ID | FETCH-LOGICAL-b614-f56cbe8976fc403faa28bf6e97cc98e174ef164d07bc02a9e4e5dfdabe7ad7c13 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 19:00:12 EST 2025 Fri Jul 25 09:23:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | GC-biased gene conversion Evolution Mutation |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b614-f56cbe8976fc403faa28bf6e97cc98e174ef164d07bc02a9e4e5dfdabe7ad7c13 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
ORCID | 0000-0002-9981-0649 0000-0002-2706-355X |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2021.02.16.431542 |
PQID | 2505436374 |
PQPubID | 2050091 |
PageCount | 48 |
ParticipantIDs | biorxiv_primary_2021_02_16_431542 proquest_journals_2505436374 |
PublicationCentury | 2000 |
PublicationDate | 20210217 |
PublicationDateYYYYMMDD | 2021-02-17 |
PublicationDate_xml | – month: 02 year: 2021 text: 20210217 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Cold Spring Harbor |
PublicationPlace_xml | – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationYear | 2021 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Assaf, Tilk, Park, Siegal, Petrov (2021.02.16.431542v1.5) 2017; 27 Capuano, Mülleder, Kok, Blom, Ralser (2021.02.16.431542v1.17) 2014; 86 Pool, Corbett-Detig, Sugino, Stevens, Cardeno, Crepeau, Duchen, Emerson, Saelao, Begun (2021.02.16.431542v1.66) 2012; 8 Campos, Zeng, Parker, Charlesworth, Haddrill (2021.02.16.431542v1.16) 2013; 30 Jackson, Campos, Haddrill, Charlesworth, Zeng (2021.02.16.431542v1.41) 2017 Robinson, Stone, Singh (2021.02.16.431542v1.68) 2014; 31 Kimura (2021.02.16.431542v1.49) 1968; 217 Li, Durbin (2021.02.16.431542v1.52) 2009; 25 Campos, Charlesworth, Haddrill (2021.02.16.431542v1.15) 2012; 4 Kapun, Barrón, Staubach, Obbard, Wiberg, Vieira, Goubert, Rota-Stabelli, Kankare, Bogaerts-Márquez (2021.02.16.431542v1.42) 2020; 37 Kim, Huber, Lohmueller (2021.02.16.431542v1.48) 2017; 206 Keightley, Eyre-Walker (2021.02.16.431542v1.43) 2007 Kennedy, Berget (2021.02.16.431542v1.45) 1997; 17 Boyko, Williamson, Indap, Degenhardt, Hernandez, Lohmueller, Adams, Schmidt, Sninsky, Sunyaev (2021.02.16.431542v1.12) 2008; 4 Eyre-Walker, Woolfit, Phelps (2021.02.16.431542v1.25) 2006; 173 Sekelsky (2021.02.16.431542v1.71) 2017; 205 Halligan, Keightley (2021.02.16.431542v1.36) 2006; 16 Comeron, Ratnappan, Bailin (2021.02.16.431542v1.20) 2012; 8 Mount, Burks, Herts, Stormo, White, Fields (2021.02.16.431542v1.62) 1992; 20 Becher, Jackson, Charlesworth (2021.02.16.431542v1.8) 2020; 30 Webb, Berg, Jeffreys (2021.02.16.431542v1.78) 2008; 105 Bachtrog, Weiss, Zangerl, Brem, Schlötterer (2021.02.16.431542v1.6) 1999; 16 Fagundes, Ray, Beaumont, Neuenschwander, Salzano, Bonatto, Excoffier (2021.02.16.431542v1.26) 2007; 104 Akashi (2021.02.16.431542v1.1) 1995; 139 Charlesworth, Charlesworth (2021.02.16.431542v1.18) 2010 Smith, Eyre-Walker (2021.02.16.431542v1.72) 2002; 415 Wright (2021.02.16.431542v1.80) 1938; 24 Machado, Lawrie, Petrov (2021.02.16.431542v1.55) 2020; 214 Matsumoto, Akashi, Yang (2021.02.16.431542v1.57) 2015; 200 Kent, Baertsch, Hinrichs, Miller, Haussler (2021.02.16.431542v1.46) 2003; 100 Zeng, Charlesworth (2021.02.16.431542v1.82) 2010; 70 Arbeithuber, Betancourt, Ebner, Tiemann-Boege (2021.02.16.431542v1.4) 2015; 112 Barton, Zeng (2021.02.16.431542v1.7) 2018; 35 Nagylaki (2021.02.16.431542v1.63) 1983; 80 Haddrill, Bachtrog, Andolfatto (2021.02.16.431542v1.33) 2008; 25 Efron (2021.02.16.431542v1.23) 1979 Duret, Galtier (2021.02.16.431542v1.22) 2009; 10 Clemente, Vogl (2021.02.16.431542v1.19) 2012; 25 McKenna, Hanna, Banks, Sivachenko, Cibulskis, Kernytsky, Garimella, Altshuler, Gabriel, Daly (2021.02.16.431542v1.59) 2010; 20 Vicario, Moriyama, Powell (2021.02.16.431542v1.77) 2007; 7 Haddrill, Charlesworth (2021.02.16.431542v1.34) 2008; 4 Harris (2021.02.16.431542v1.38) 2007 Borges, Szöllősi, Kosiol (2021.02.16.431542v1.11) 2019; 212 Takano-Shimizu (2021.02.16.431542v1.73) 2001; 18 Glémin, Arndt, Messer, Petrov, Galtier, Duret (2021.02.16.431542v1.30) 2015; 25 Tange (2021.02.16.431542v1.74) 2011; 36 de Procé, Zeng, Betancourt, Charlesworth (2021.02.16.431542v1.21) 2012; 8 Bulmer (2021.02.16.431542v1.14) 1991; 129 Keightley, Jackson (2021.02.16.431542v1.44) 2018; 209 Schneider, Charlesworth, Eyre-Walker, Keightley (2021.02.16.431542v1.70) 2011; 189 Harrison, Charlesworth (2021.02.16.431542v1.39) 2011; 28 Lack, Cardeno, Crepeau, Taylor, Corbett-Detig, Stevens, Langley, Pool (2021.02.16.431542v1.50) 2015; 199 McDonald, Kreitman (2021.02.16.431542v1.58) 1991; 351 Hernandez, Williamson, Zhu, Bustamante (2021.02.16.431542v1.40) 2007; 24 Yang (2021.02.16.431542v1.81) 2007; 24 Parsch, Novozhilov, Saminadin-Peter, Wong, Andolfatto (2021.02.16.431542v1.65) 2010; 27 Quinlan, Hall (2021.02.16.431542v1.67) 2010; 26 Andolfatto (2021.02.16.431542v1.3) 2005; 437 (2021.02.16.431542v1.76) 2018 Eyre-Walker, Keightley (2021.02.16.431542v1.24) 2009; 26 Fay, Wyckoff, Wu (2021.02.16.431542v1.27) 2001; 158 Akashi, Ko, Piao, John, Goel, Lin, Vitins (2021.02.16.431542v1.2) 2006; 172 Hämälä, Tiffin (2021.02.16.431542v1.37) 2020 Welch (2021.02.16.431542v1.79) 2006; 173 Li (2021.02.16.431542v1.53) 1987; 24 Begun (2021.02.16.431542v1.9) 2001; 18 Rogers, Cridland, Shao, Hu, Andolfatto, Thornton (2021.02.16.431542v1.69) 2014; 31 Mancera, Bourgon, Brozzi, Huber, Steinmetz (2021.02.16.431542v1.56) 2008; 454 McVean, Charlesworth (2021.02.16.431542v1.60) 1999; 74 Lawrie, Messer, Hershberg, Petrov (2021.02.16.431542v1.51) 2013; 9 Green (2021.02.16.431542v1.32) 1986; 20 Liu, Huang, Sun, Li, Hu, Yu, Liti, Tian, Hurst, Yang (2021.02.16.431542v1.54) 2018; 2 Haddrill, Thornton, Charlesworth, Andolfatto (2021.02.16.431542v1.35) 2005; 15 Garud, Messer, Buzbas, Petrov (2021.02.16.431542v1.29) 2015; 11 Obbard, Maclennan, Kim, Rambaut, O’Grady, Jiggins (2021.02.16.431542v1.64) 2012; 29 Brown, Jiricny (2021.02.16.431542v1.13) 1987; 50 Galtier (2021.02.16.431542v1.28) 2016 Kern, Begun (2021.02.16.431542v1.47) 2005; 22 Blanchette, Kent, Riemer, Elnitski, Smit, Roskin, Baertsch, Rosenbloom, Clawson, Green (2021.02.16.431542v1.10) 2004; 14 Gowher, Leismann, Jeltsch (2021.02.16.431542v1.31) 2000; 19 Tataru, Mollion, Glémin, Bataillon (2021.02.16.431542v1.75) 2017; 207 Messer, Petrov (2021.02.16.431542v1.61) 2013; 110 Zeng, Jackson, Barton (2021.02.16.431542v1.83) 2019; 36 |
References_xml | – volume: 24 start-page: 337 year: 1987 end-page: 345 ident: 2021.02.16.431542v1.53 article-title: Models of nearly neutral mutations with particular implications for nonrandom usage of synonymous codons publication-title: Journal of Molecular Evolution – volume: 30 start-page: 94 year: 2020 end-page: 100 ident: 2021.02.16.431542v1.8 article-title: Patterns of genetic variability in genomic regions with low rates of recombination publication-title: Curr Biol – volume: 50 start-page: 945 year: 1987 end-page: 950 ident: 2021.02.16.431542v1.13 article-title: A specific mismatch repair event protects mammalian cells from loss of 5-methylcytosine publication-title: Cell – volume: 20 start-page: 4255 year: 1992 end-page: 4262 ident: 2021.02.16.431542v1.62 article-title: Splicing signals in Drosophila: Intron size, information content, and consensus sequences publication-title: Nucleic Acids Research – volume: 105 start-page: 10471 year: 2008 end-page: 10476 ident: 2021.02.16.431542v1.78 article-title: Sperm cross-over activity in regions of the human genome showing extreme breakdown of marker association publication-title: Proceedings of the National Academy of Sciences – start-page: 12 year: 2016 ident: 2021.02.16.431542v1.28 article-title: Adaptive protein evolution in animals and the effective population size hypothesis publication-title: PLOS Genetics – volume: 199 start-page: 1229 year: 2015 end-page: 1241 ident: 2021.02.16.431542v1.50 article-title: The drosophila genome nexus: A population genomic resource of 623 Drosophila melanogaster genomes, including 197 from a single ancestral range population publication-title: Genetics – volume: 4 start-page: 438 year: 2008 end-page: 441 ident: 2021.02.16.431542v1.34 article-title: Non-neutral processes drive the nucleotide composition of non-coding sequences in Drosophila publication-title: Biology letters – volume: 70 start-page: 116 year: 2010 end-page: 128 ident: 2021.02.16.431542v1.82 article-title: Studying patterns of recent evolution at synonymous sites and intronic sites in Drosophila melanogaster publication-title: Journal of Molecular Evolution – volume: 112 start-page: 2109 year: 2015 end-page: 2114 ident: 2021.02.16.431542v1.4 article-title: Crossovers are associated with mutation and biased gene conversion at recombination hotspots publication-title: Proceedings of the National Academy of Sciences – volume: 14 start-page: 708 year: 2004 end-page: 715 ident: 2021.02.16.431542v1.10 article-title: Aligning multiple genomic sequences with the threaded blockset aligner publication-title: Genome Research – volume: 173 start-page: 891 year: 2006 end-page: 900 ident: 2021.02.16.431542v1.25 article-title: The distribution of fitness effects of new deleterious amino acid mutations in humans publication-title: Genetics – volume: 200 start-page: 873 year: 2015 end-page: 890 ident: 2021.02.16.431542v1.57 article-title: Evaluation of ancestral sequence reconstruction methods to infer nonstationary patterns of nucleotide substitution publication-title: Genetics – volume: 19 start-page: 6918 year: 2000 end-page: 6923 ident: 2021.02.16.431542v1.31 article-title: DNA of Drosophila melanogaster contains 5-methylcytosine publication-title: The EMBO journal – volume: 35 start-page: 1536 year: 2018 end-page: 1546 ident: 2021.02.16.431542v1.7 article-title: New methods for inferring the distribution of fitness effects for indels and snps publication-title: Molecular Biology and Evolution – volume: 22 start-page: 51 year: 2005 end-page: 62 ident: 2021.02.16.431542v1.47 article-title: Patterns of polymorphism and divergence from noncoding sequences of Drosophila melanogaster and D. simulans: Evidence for nonequilibrium processes publication-title: Molecular Biology and Evolution – volume: 206 start-page: 345 year: 2017 end-page: 361 ident: 2021.02.16.431542v1.48 article-title: Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples publication-title: Genetics – volume: 7 start-page: 226 year: 2007 end-page: 226 ident: 2021.02.16.431542v1.77 article-title: Codon usage in twelve species of Drosophila publication-title: BMC Evolutionary Biology – volume: 29 start-page: 3459 year: 2012 end-page: 3473 ident: 2021.02.16.431542v1.64 article-title: Estimating divergence dates and substitution rates in the Drosophila phylogeny publication-title: Molecular Biology and Evolution – volume: 415 start-page: 1022 year: 2002 end-page: 1024 ident: 2021.02.16.431542v1.72 article-title: Adaptive protein evolution in Drosophila publication-title: Nature – volume: 9 start-page: e1003527 year: 2013 end-page: e1003527 ident: 2021.02.16.431542v1.51 article-title: Strong purifying selection at synonymous sites in D. melanogaster publication-title: PLOS Genetics – volume: 4 start-page: e1000083 year: 2008 ident: 2021.02.16.431542v1.12 article-title: Assessing the evolutionary impact of amino acid mutations in the human genome publication-title: PLoS Genet – volume: 104 start-page: 17614 year: 2007 end-page: 17619 ident: 2021.02.16.431542v1.26 article-title: Statistical evaluation of alternative models of human evolution publication-title: Proceedings of the National Academy of Sciences of the United States of America – year: 2018 ident: 2021.02.16.431542v1.76 publication-title: R: A language and environment for statistical computing – year: 2020 ident: 2021.02.16.431542v1.37 article-title: Biased gene conversion constrains adaptation in Arabidopsis thaliana publication-title: Genetics – volume: 212 start-page: 1321 year: 2019 end-page: 1336 ident: 2021.02.16.431542v1.11 article-title: Quantifying gc-biased gene conversion in great ape genomes using polymorphism-aware models publication-title: Genetics – volume: 86 start-page: 3697 year: 2014 end-page: 3702 ident: 2021.02.16.431542v1.17 article-title: Cytosine DNA methylation is found in Drosophila melanogaster but absent in Saccharomyces cerevisiae, Schizosaccharomyces pombe, and other yeast species publication-title: Analytical chemistry – volume: 31 start-page: 425 year: 2014 end-page: 433 ident: 2021.02.16.431542v1.68 article-title: Population genomic analysis reveals no evidence for GC-biased gene conversion in Drosophila melanogaster publication-title: Molecular Biology and Evolution – volume: 139 start-page: 1067 year: 1995 end-page: 1076 ident: 2021.02.16.431542v1.1 article-title: Inferring weak selection from patterns of polymorphism and divergence at “silent” sites in Drosophila DNA publication-title: Genetics – volume: 16 start-page: 875 year: 2006 end-page: 884 ident: 2021.02.16.431542v1.36 article-title: Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison publication-title: Genome Research – volume: 172 start-page: 1711 year: 2006 end-page: 1726 ident: 2021.02.16.431542v1.2 article-title: Molecular evolution in the Drosophila melanogaster species subgroup: Frequent parameter fluctuations on the timescale of molecular divergence publication-title: Genetics – volume: 207 start-page: 1103 year: 2017 end-page: 1119 ident: 2021.02.16.431542v1.75 article-title: Inference of distribution of fitness effects and proportion of adaptive substitutions from polymorphism data publication-title: Genetics – volume: 24 start-page: 1586 year: 2007 end-page: 1591 ident: 2021.02.16.431542v1.81 article-title: Paml 4: Phylogenetic analysis by maximum likelihood publication-title: Molecular Biology and Evolution – volume: 30 start-page: 811 year: 2013 end-page: 823 ident: 2021.02.16.431542v1.16 article-title: Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster publication-title: Molecular Biology and Evolution – volume: 20 start-page: 1297 year: 2010 end-page: 1303 ident: 2021.02.16.431542v1.59 article-title: The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data publication-title: Genome Research – volume: 205 start-page: 471 year: 2017 end-page: 490 ident: 2021.02.16.431542v1.71 article-title: DNA repair in Drosophila: Mutagens, models, and missing genes publication-title: Genetics – volume: 8 start-page: e1003080 year: 2012 end-page: e1003080 ident: 2021.02.16.431542v1.66 article-title: Population genomics of sub-saharan Drosophila melanogaster: African diversity and non-African admixture publication-title: PLOS Genetics – volume: 27 start-page: 1988 year: 2017 end-page: 2000 ident: 2021.02.16.431542v1.5 article-title: Deep sequencing of natural and experimental populations of Drosophila melanogaster reveals biases in the spectrum of new mutations publication-title: Genome Research – volume: 18 start-page: 1343 year: 2001 end-page: 1352 ident: 2021.02.16.431542v1.9 article-title: The frequency distribution of nucleotide variation in Drosophila simulans publication-title: Molecular Biology and Evolution – year: 2007 ident: 2021.02.16.431542v1.38 publication-title: Improved pairwise alignment of genomic DNA – volume: 4 start-page: 278 year: 2012 end-page: 288 ident: 2021.02.16.431542v1.15 article-title: Molecular evolution in nonrecombining regions of the Drosophila melanogaster genome publication-title: Genome Biology and Evolution – start-page: 1 year: 1979 end-page: 26 ident: 2021.02.16.431542v1.23 article-title: Bootstrap methods: Another look at the jackknife publication-title: Institute of Mathematical Statistics – volume: 36 start-page: 423 year: 2019 end-page: 433 ident: 2021.02.16.431542v1.83 article-title: Methods for estimating demography and detecting between-locus differences in the effective population size and mutation rate publication-title: Molecular Biology and Evolution – volume: 17 start-page: 2774 year: 1997 end-page: 2780 ident: 2021.02.16.431542v1.45 article-title: Pyrimidine tracts between the 5’splice site and branch point facilitate splicing and recognition of a small Drosophila intron publication-title: Molecular and Cellular Biology – start-page: 9 year: 2017 ident: 2021.02.16.431542v1.41 article-title: Variation in the intensity of selection on codon bias over time causes contrasting patterns of base composition evolution in Drosophila publication-title: Genome Biology and Evolution – volume: 24 start-page: 253 year: 1938 ident: 2021.02.16.431542v1.80 article-title: The distribution of gene frequencies under irreversible mutation publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 24 start-page: 2196 year: 2007 end-page: 2202 ident: 2021.02.16.431542v1.40 article-title: Context-dependent mutation rates may cause spurious signatures of a fixation bias favoring higher gc-content in humans publication-title: Molecular Biology and Evolution – volume: 37 start-page: 2661 year: 2020 end-page: 2678 ident: 2021.02.16.431542v1.42 article-title: Genomic analysis of European Drosophila melanogaster populations reveals longitudinal structure, continent-wide selection, and previously unknown DNA viruses publication-title: Molecular Biology and Evolution – volume: 351 start-page: 652 year: 1991 end-page: 654 ident: 2021.02.16.431542v1.58 article-title: Adaptive protein evolution at the adh locus in Drosophila publication-title: Nature – volume: 10 start-page: 285 year: 2009 end-page: 311 ident: 2021.02.16.431542v1.22 article-title: Biased gene conversion and the evolution of mammalian genomic landscapes publication-title: Annual Review of Genomics and Human Genetics – volume: 11 start-page: e1005004 year: 2015 end-page: e1005004 ident: 2021.02.16.431542v1.29 article-title: Recent selective sweeps in north american Drosophila melanogaster show signatures of soft sweeps publication-title: PLoS Genet – volume: 25 start-page: 1825 year: 2008 end-page: 1834 ident: 2021.02.16.431542v1.33 article-title: Positive and negative selection on noncoding DNA in Drosophila simulans publication-title: Molecular Biology and Evolution – volume: 100 start-page: 11484 year: 2003 end-page: 11489 ident: 2021.02.16.431542v1.46 article-title: Evolution’s cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 20 start-page: 671 year: 1986 end-page: 708 ident: 2021.02.16.431542v1.32 article-title: Pre-mrna splicing publication-title: Annual Review of Genetics – volume: 25 start-page: 1754 year: 2009 end-page: 1760 ident: 2021.02.16.431542v1.52 article-title: Fast and accurate short read alignment with Burrows-Wheeler transform publication-title: Bioinformatics (Oxford, England) – volume: 16 start-page: 602 year: 1999 end-page: 610 ident: 2021.02.16.431542v1.6 article-title: Distribution of dinucleotide microsatellites in the Drosophila melanogaster genome publication-title: Molecular Biology and Evolution – volume: 25 start-page: 1215 year: 2015 end-page: 1228 ident: 2021.02.16.431542v1.30 article-title: Quantification of gc-biased gene conversion in the human genome publication-title: Genome Research – volume: 74 start-page: 145 year: 1999 end-page: 158 ident: 2021.02.16.431542v1.60 article-title: A population genetic model for the evolution of synonymous codon usage: Patterns and predictions publication-title: Genetical Research – volume: 173 start-page: 821 year: 2006 end-page: 837 ident: 2021.02.16.431542v1.79 article-title: Estimating the genomewide rate of adaptive protein evolution in Drosophila publication-title: Genetics – volume: 454 start-page: 479 year: 2008 end-page: 485 ident: 2021.02.16.431542v1.56 article-title: High-resolution mapping of meiotic crossovers and non-crossovers in yeast publication-title: Nature – volume: 110 start-page: 8615 year: 2013 end-page: 8620 ident: 2021.02.16.431542v1.61 article-title: Frequent adaptation and the McDonald-Kreitman test publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 26 start-page: 2097 year: 2009 end-page: 2108 ident: 2021.02.16.431542v1.24 article-title: Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change publication-title: Molecular Biology and Evolution – volume: 209 start-page: 897 year: 2018 end-page: 906 ident: 2021.02.16.431542v1.44 article-title: Inferring the probability of the derived vs publication-title: the ancestral allelic state at a polymorphic site. Genetics – volume: 25 start-page: 1975 year: 2012 end-page: 1990 ident: 2021.02.16.431542v1.19 article-title: Unconstrained evolution in short introns? - an analysis of genome-wide polymorphism and divergence data from Drosophila publication-title: Journal of Evolutionary Biology – volume: 26 start-page: 841 year: 2010 end-page: 842 ident: 2021.02.16.431542v1.67 article-title: Bedtools: A flexible suite of utilities for comparing genomic features publication-title: Bioinformatics – volume: 18 start-page: 606 year: 2001 end-page: 619 ident: 2021.02.16.431542v1.73 article-title: Local changes in GC/AT substitution biases and in crossover frequencies on Drosophila chromosomes publication-title: Molecular Biology and Evolution – volume: 80 start-page: 6278 year: 1983 end-page: 6281 ident: 2021.02.16.431542v1.63 article-title: Evolution of a finite population under gene conversion publication-title: Proceedings of the National Academy of Sciences – volume: 15 start-page: 790 year: 2005 end-page: 799 ident: 2021.02.16.431542v1.35 article-title: Multilocus patterns of nucleotide variability and the demographic and selection history of Drosophila melanogaster populations publication-title: Genome Research – volume: 158 start-page: 1227 year: 2001 end-page: 1234 ident: 2021.02.16.431542v1.27 article-title: Positive and negative selection on the human genome publication-title: Genetics – volume: 31 start-page: 1750 year: 2014 end-page: 1766 ident: 2021.02.16.431542v1.69 article-title: Landscape of standing variation for tandem duplications in Drosophila yakuba and Drosophila simulans publication-title: Molecular Biology and Evolution – volume: 2 start-page: 164 year: 2018 end-page: 173 ident: 2021.02.16.431542v1.54 article-title: Tetrad analysis in plants and fungi finds large differences in gene conversion rates but no GC bias publication-title: Nature Ecology & Evolution – volume: 28 start-page: 117 year: 2011 end-page: 129 ident: 2021.02.16.431542v1.39 article-title: Biased gene conversion affects patterns of codon usage and amino acid usage in the Saccharomyces sensu stricto group of yeasts publication-title: Molecular Biology and Evolution – volume: 214 start-page: 511 year: 2020 end-page: 528 ident: 2021.02.16.431542v1.55 article-title: Pervasive strong selection at the level of codon usage bias in drosophila melanogaster publication-title: Genetics – volume: 129 start-page: 897 year: 1991 end-page: 907 ident: 2021.02.16.431542v1.14 article-title: The selection-mutation-drift theory of synonymous codon usage publication-title: Genetics – volume: 217 start-page: 624 year: 1968 end-page: 626 ident: 2021.02.16.431542v1.49 article-title: Evolutionary rate at the molecular level publication-title: Nature – volume: 8 start-page: 82 year: 2012 end-page: 85 ident: 2021.02.16.431542v1.21 article-title: Selection on codon usage and base composition in Drosophila americana publication-title: Biology letters – volume: 189 start-page: 1427 year: 2011 end-page: 1437 ident: 2021.02.16.431542v1.70 article-title: A method for inferring the rate of occurrence and fitness effects of advantageous mutations publication-title: Genetics – start-page: 177 year: 2007 ident: 2021.02.16.431542v1.43 article-title: Joint inference of the distribution of fitness effects of deleterious mutations and population demography based on nucleotide polymorphism frequencies publication-title: Genetics – volume: 36 start-page: 42 year: 2011 end-page: 47 ident: 2021.02.16.431542v1.74 article-title: Gnu parallel-the command-line power tool publication-title: The USENIX Magazine – volume: 8 start-page: e1002905 year: 2012 end-page: e1002905 ident: 2021.02.16.431542v1.20 article-title: The many landscapes of recombination in Drosophila melanogaster publication-title: PLOS Genetics – volume: 27 start-page: 1226 year: 2010 end-page: 1234 ident: 2021.02.16.431542v1.65 article-title: On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila publication-title: Molecular Biology and Evolution – volume: 437 start-page: 1149 year: 2005 end-page: 1152 ident: 2021.02.16.431542v1.3 article-title: Adaptive evolution of non-coding DNA in Drosophila publication-title: Nature – year: 2010 ident: 2021.02.16.431542v1.18 publication-title: Elements of Evolutionary Genetics |
SSID | ssj0002961374 |
Score | 1.6189829 |
SecondaryResourceType | preprint |
Snippet | Abstract Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population... Population genetics studies often make use of a class of nucleotide site free from selective pressures in order to make inferences about population size... |
SourceID | biorxiv proquest |
SourceType | Open Access Repository Aggregation Database |
SubjectTerms | Bias Drosophila Gene conversion Genetics Genomes Insects Mutation Natural selection Population genetics Population studies Species |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1dS8MwFA26MfDNT5xOieBrtU3TZH0Q8WuK4BCZsLdy86WD2c5tDv333nStPgi-lKaFQm_ac05uknsIOeaoqUEZFTAl4oCjgA1SYXmgjROJi1OA0jrhoS_unvn9MBmukH69F8Yvq6wxsQRqU2ifIz_1VM1jEUt-PnkPvGuUn12tLTSgslYwZ2WJsVXSREhOwgZpXt70H59-si4sRfoqSzMzkSIUsDCppjrx0_SJgLKCZyROkFcTb9_eUqNi-jla_IHqkn9666T5CBM73SArNt8kraWB5NcWGdemoBS1JwV_9OewKMrdh_T2ivolmvRiQGFOZ6-otekoX9reUP9mM2zS62lpZjAaA157-xgje1HIDb0-oW8WW8UL-HIK22TQuxlc3QWVf0KgkHQDlwitbBf1htM8jB0A6yonbCq1TrsWhyLW4WDJhFLpkEFquU2MM6CsBCN1FO-QRl7kdpdQJyBCIFQglOEOVMqEc0pK6SJmQqvb5KiKUzZZFsnIfCyzkGWRyJaxbJNOHcGs-k9m2W-v7v1_e5-s-Sf69dKR7JDGfPphD1AOzNVh1cffSD60OQ priority: 102 providerName: ProQuest |
Title | Evidence for a force favouring GC over AT at short intronic sites in Drosophila simulans and D. melanogaster |
URI | https://www.proquest.com/docview/2505436374 https://www.biorxiv.org/content/10.1101/2021.02.16.431542 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kRfDmE6u1rOA1JY_NbnPUPiyCpUiF3sJsdlcDbVLSB_rvnU1SEfTgJWQXksBsdr5vMpP5CLljyKlBKun4kgcOQwLrRFwzJ1GGhyaIAErphOcJH7-yp3k4_yH1ZcsqZZoXH-muzOPbgm30vtXmdj0bq5dNNj3eRegLGXrfJr5ioVVtGM27359X_AhxSrA6j_nnlch46yf98sMluIyOSXMKK12ckAOdnZLDSh3y84ws9oqfFIklBXu057DLy18L6WOf2vpLej-jsKHrdyTSNM0qTRtqk8JrHNJBUSoVpAvAueV2gdBEIVN00KVLjaP8DWyvhHMyGw1n_bFTiyM4EhHVMSFPpO4hmTAJcwMD4Pek4ToSSRL1NMYZ2mAkpFwhE9eHSDMdKqNAagFKJF5wQRpZnulLQg0HD72cBC4VMyAjnxsjhRDG85Wrkxa5re0Ur6oOGLG1Zez6scfjypYt0t5bMK43wTq27IoFHJfh6h-3uCZHds5WRHuiTRqbYqtvEPA3skOaD8PJ9KVTLvEXhPOpLg |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VXVX0xqcoLWAkOKYkjmNvDhWCbsuWtqsKLVJv1virrLRNlt1toT-O_8Y4m8ABiVsvUZxIPoztec_j8TyAN4I4NRpnEm5knggisEkpvUisC7IIeYnYSCecjeXoq_h8UVxswK_uLkxMq-x8YuOoXW1jjPxdhGqRy1yJ9_PvSVSNiqernYQGttIKbr8pMdZe7Djxtz9oC7fcPx7SeL_l_OhwcjBKWpWBxBA0JaGQ1vgBoXKwIs0DIh-YIH2prC0Hngi7D7SlcKkyNuVYeuELFxwar9Apm-XU7T3oixg_6UH_4-H4_MufIA8vCS2bStBcluR5eFq0J6u0EmLcoSkYmsk9gvEiqsVvmmm9-Dm9-QcZGrg7egD9c5z7xUPY8NUj2FzrVd4-hlmnQcqI6jKMz_iON3Vz2ZF9OmAxI5R9mDBcseU3ovZsWq1Vdlg05JKabLhotBOmM6RvV9czAkuGlWPDPXblqVVfYqze8AQmd2HIp9Cr6so_AxYkZuR3DUrjREBTchmCUUqFjLvU22143dpJz9c1OXS0pU65zqRe23IbdjsL6nZZLvXfSfT8_79fwf3R5OxUnx6PT3ZgK_YeU7UztQu91eLavyAmsjIv2_FmoO94hv0GzSTzIA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6ofjmJ06nRvC1pR9psj7K5pxfYw8T9lYuTaKFrRv7Qv97L20ngj74UpoUUrgkd7_LXe5HyA1DTA1SSSeQPHQYAlgn5po5qTI8MmEMUFAnvPR575U9jqLRj7swNq1SZtP5R7Yu4vg2YRu1b7m5Pd_66kWRTZ-7aPoiFrj2mNqdKbNN6rjWmF3Z3ZH7fc4SxGiwBKsCmn8OgdC3-uUvhVxYme4-qQ9gpucHZEvnh2SnpIn8PCLjDfUnRYRJwT7tO6ynxR1Det-mNhGT3g4pLOniHRE1zfKS3Iba6PACm7QzLygLsjFg32Q1RhtFIVe049KJxtb0DWzRhGMy7N4N2z2nYklwJJpWx0Q8lbqFqMKkzAsNQNCShutYpGnc0uhwaIMukfKETL0AYs10pIwCqQUokfrhCanl01yfEmo4-KjuJHCpmAEZB9wYKYQwfqA8nTbIdSWnZFaWwkisLBMvSHyelLJskOZGgkm1GxaJhVks5DgNZ_8Y4orsDjrd5Pmh_3RO9uxnmyXtiyapLecrfYEgYCkvi1n-AjbvrXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+for+a+force+favouring+GC+over+AT+at+short+intronic+sites+in+Drosophila+simulans+and+D.+melanogaster&rft.jtitle=bioRxiv&rft.au=Jackson%2C+Ben&rft.au=Charlesworth%2C+Brian&rft.date=2021-02-17&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2021.02.16.431542&rft.externalDocID=2021.02.16.431542v1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |