Comprehensive compartmental model and calibration algorithm for the study of clinical implications of the population-level spread of COVID-19: a study protocol

IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessf...

Full description

Saved in:
Bibliographic Details
Published inBMJ open Vol. 12; no. 3; p. e052681
Main Authors Robinson, Brandon, Edwards, Jodi D, Kendzerska, Tetyana, Pettit, Chris L, Poirel, Dominique, Daly, John M, Ammi, Mehdi, Khalil, Mohammad, Taillon, Peter J, Sandhu, Rimple, Mills, Shirley, Mulpuru, Sunita, Walker, Thomas, Percival, Valerie, Dolean, Victorita, Sarkar, Abhijit
Format Journal Article
LanguageEnglish
Published England British Medical Journal Publishing Group 10.03.2022
BMJ Publishing Group LTD
BMJ Publishing Group
SeriesProtocol
Subjects
Online AccessGet full text
ISSN2044-6055
2044-6055
DOI10.1136/bmjopen-2021-052681

Cover

Abstract IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.Methods and analysisWe propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Ethics and disseminationApproved by Carleton University’s Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.
AbstractList IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.Methods and analysisWe propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Ethics and disseminationApproved by Carleton University’s Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.
Introduction The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.Methods and analysis We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Ethics and dissemination Approved by Carleton University’s Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.
The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions. We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.
The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.INTRODUCTIONThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.METHODS AND ANALYSISWe propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Approved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.ETHICS AND DISSEMINATIONApproved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.
The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions. We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states. Approved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.
Author Sandhu, Rimple
Sarkar, Abhijit
Kendzerska, Tetyana
Poirel, Dominique
Dolean, Victorita
Taillon, Peter J
Edwards, Jodi D
Daly, John M
Robinson, Brandon
Walker, Thomas
Pettit, Chris L
Ammi, Mehdi
Mills, Shirley
Mulpuru, Sunita
Khalil, Mohammad
Percival, Valerie
AuthorAffiliation 12 National Renewable Energy Laboratory , Golden , Colorado , USA
9 School of Public Policy and Administration , Carleton University , Ottawa , Ontario , Canada
1 Department of Civil and Environmental Engineering , Carleton University , Ottawa , Ontario , Canada
3 ICES , Ottawa , Ontario , Canada
5 Department of Medicine , Faculty of Medicine, Division of Respirology, University of Ottawa , Ottawa , Ontario , Canada
8 Independent Control Systems Engineer , Ottawa , Ontario , Canada
16 Laboratoire J.A. Dieudonné , CNRS, Université Côte d’Azur , Nice , France
10 Sandia National Laboratories , Livermore , California , USA
2 School of Epidemiology and Public Health , University of Ottawa and University of Ottawa Heart Institute , Ottawa , Ontario , Canada
11 Schaffen Research Inc , Ottawa , Ontario , Canada
7 Royal Military College of Canada, Department of Mechanical and Aerospace Engineering , Kingston , Ontario , Canada
13 School of Mathematics and Statistics , Carleton University , Ottawa , Ontari
AuthorAffiliation_xml – name: 14 School of International Affairs , Carleton University , Ottawa , Ontario , Canada
– name: 1 Department of Civil and Environmental Engineering , Carleton University , Ottawa , Ontario , Canada
– name: 12 National Renewable Energy Laboratory , Golden , Colorado , USA
– name: 5 Department of Medicine , Faculty of Medicine, Division of Respirology, University of Ottawa , Ottawa , Ontario , Canada
– name: 7 Royal Military College of Canada, Department of Mechanical and Aerospace Engineering , Kingston , Ontario , Canada
– name: 15 Department of Mathematics and Statistics , University of Strathclyde , Glasgow , Scotland
– name: 4 The Ottawa Hospital Research Institute , Ottawa , Ontario , Canada
– name: 9 School of Public Policy and Administration , Carleton University , Ottawa , Ontario , Canada
– name: 13 School of Mathematics and Statistics , Carleton University , Ottawa , Ontario , Canada
– name: 2 School of Epidemiology and Public Health , University of Ottawa and University of Ottawa Heart Institute , Ottawa , Ontario , Canada
– name: 10 Sandia National Laboratories , Livermore , California , USA
– name: 16 Laboratoire J.A. Dieudonné , CNRS, Université Côte d’Azur , Nice , France
– name: 8 Independent Control Systems Engineer , Ottawa , Ontario , Canada
– name: 6 US Naval Academy, Aerospace Engineering Department , Annapolis , Maryland , USA
– name: 11 Schaffen Research Inc , Ottawa , Ontario , Canada
– name: 3 ICES , Ottawa , Ontario , Canada
Author_xml – sequence: 1
  givenname: Brandon
  surname: Robinson
  fullname: Robinson, Brandon
  organization: Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
– sequence: 2
  givenname: Jodi D
  surname: Edwards
  fullname: Edwards, Jodi D
  organization: ICES, Ottawa, Ontario, Canada
– sequence: 3
  givenname: Tetyana
  surname: Kendzerska
  fullname: Kendzerska, Tetyana
  organization: Department of Medicine, Faculty of Medicine, Division of Respirology, University of Ottawa, Ottawa, Ontario, Canada
– sequence: 4
  givenname: Chris L
  surname: Pettit
  fullname: Pettit, Chris L
  organization: US Naval Academy, Aerospace Engineering Department, Annapolis, Maryland, USA
– sequence: 5
  givenname: Dominique
  surname: Poirel
  fullname: Poirel, Dominique
  organization: Royal Military College of Canada, Department of Mechanical and Aerospace Engineering, Kingston, Ontario, Canada
– sequence: 6
  givenname: John M
  surname: Daly
  fullname: Daly, John M
  organization: Independent Control Systems Engineer, Ottawa, Ontario, Canada
– sequence: 7
  givenname: Mehdi
  surname: Ammi
  fullname: Ammi, Mehdi
  organization: School of Public Policy and Administration, Carleton University, Ottawa, Ontario, Canada
– sequence: 8
  givenname: Mohammad
  surname: Khalil
  fullname: Khalil, Mohammad
  organization: Sandia National Laboratories, Livermore, California, USA
– sequence: 9
  givenname: Peter J
  surname: Taillon
  fullname: Taillon, Peter J
  organization: Schaffen Research Inc, Ottawa, Ontario, Canada
– sequence: 10
  givenname: Rimple
  surname: Sandhu
  fullname: Sandhu, Rimple
  organization: National Renewable Energy Laboratory, Golden, Colorado, USA
– sequence: 11
  givenname: Shirley
  surname: Mills
  fullname: Mills, Shirley
  organization: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
– sequence: 12
  givenname: Sunita
  surname: Mulpuru
  fullname: Mulpuru, Sunita
  organization: Department of Medicine, Faculty of Medicine, Division of Respirology, University of Ottawa, Ottawa, Ontario, Canada
– sequence: 13
  givenname: Thomas
  surname: Walker
  fullname: Walker, Thomas
  organization: Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
– sequence: 14
  givenname: Valerie
  surname: Percival
  fullname: Percival, Valerie
  organization: School of International Affairs, Carleton University, Ottawa, Ontario, Canada
– sequence: 15
  givenname: Victorita
  surname: Dolean
  fullname: Dolean, Victorita
  organization: Laboratoire J.A. Dieudonné, CNRS, Université Côte d’Azur, Nice, France
– sequence: 16
  givenname: Abhijit
  orcidid: 0000-0002-8427-8901
  surname: Sarkar
  fullname: Sarkar, Abhijit
  email: abhijit.sarkar@carleton.ca
  organization: Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35273043$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1856206$$D View this record in Osti.gov
BookMark eNqNUs1u1DAYjFARLaVPgIQsuHAJtZ3YiTlUQsvfSpV6Aa6WYzu7Xjl2sJ2iPg2virNZStsD4It_vpnx-Bs_LY6cd7ooniP4BqGKnnfDzo_alRhiVEKCaYseFScY1nVJISFHd9bHxVmMO5hHTRgh-ElxXBHcVLCuToqfKz-MQW-1i-ZaA5l3IqRBuyQsGLzSFgingBTWdEEk4x0QduODSdsB9D6AtNUgpkndAN8DaY0zGQvMMNq8mPFxLsyo0Y-T3R-VVl9n4ZgvFmour66-rd-XiL0F4iA2Bp-89PZZ8bgXNuqzw3xafP344cvqc3l59Wm9endZdoTSVDZdTauuV7CiUrCOSU1hozCTEmulsKKiJ63ua6JgS6oOkaZqaEUoQrKWMNNOi_Wiq7zY8TGYQYQb7oXh-wMfNjz3xUiruVCMqU4y0Qtdsw6LBlPFFMM9bRDUOGvVi9bkRnHzQ1h7K4ggn-Pjh_j4HB9f4su0i4U2Tt2glcwZBGHveblfcWbLN_6atwzVFWuzwMtFwMdkeJQmabmV3jktE0ctoRjSDHp9uCX475OOiQ8mSm2tcNpPkWNatQ1uISQZ-uoBdOen4HIMexTCBNVz517ctX3r9_cfywC2AGTwMQbd8-xs_w_yK4z9R0-qB9z_6-T5wsrFP57_xvgFHWIMsg
CitedBy_id crossref_primary_10_3934_mbe_2023655
crossref_primary_10_1016_j_idm_2024_04_002
crossref_primary_10_1002_bimj_202100401
crossref_primary_10_1016_j_jsv_2023_118106
Cites_doi 10.1016/j.cma.2017.01.042
10.1016/S1473-3099(20)30120-1
10.1016/j.jsv.2014.10.002
10.1007/s11071-008-9349-z
10.1016/j.aej.2020.09.035
10.1101/2020.07.17.20156034
10.1101/2020.03.18.20037994v3
10.1007/s11071-015-2217-8
10.1098/rspb.2004.2800
10.1016/j.aml.2020.106617
10.1162/neco.1992.4.3.415
10.1016/S2468-2667(20)30157-2
10.1098/rspb.2003.2370
10.1007/BF00178324
10.1007/s00466-020-01888-0
10.1038/s41591-021-01283-z
10.1016/j.cell.2020.07.012
10.1016/j.jcp.2020.109728
10.1101/2020.12.22.20248736
10.1007/s11538-020-00795-y
10.1007/s00466-020-01889-z
10.1007/s002850050079
10.1016/j.jcp.2016.03.006
10.1098/rsif.2009.0386
10.1038/s41598-021-84055-6
10.1016/j.physa.2005.02.057
10.1038/s41598-020-63877-w
10.1016/j.chaos.2020.109841 10.1016/j.chaos.2020.109841
10.1017/S096249291800003X
10.1073/pnas.1517384113
10.1109/TKDE.2009.191
10.1007/s40435-016-0233-2
10.1016/j.cell.2021.03.013
10.1503/cmaj.200476
10.1016/j.jinf.2020.06.073
10.1016/S0025-5564(00)00003-1
10.1101/2021.02.03.21250974
10.1093/aje/kwh092
10.1016/j.cma.2017.09.006
10.1098/rspa.1927.0118
10.1061/ASCE0733-9399
10.1016/j.cma.2014.06.013
10.1016/j.epidem.2021.100505
10.1137/1.9781611974065
10.1016/j.chaos.2020.109841
10.1038/s41598-020-59121-0
10.1007/s11071-020-05743-y
10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A3082
10.1007/s00466-020-01889-z.5
10.1061/(ASCE)0733-9399(2008)134:12(1013)
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022
Copyright_xml – notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022
CorporateAuthor National Renewable Energy Lab. (NREL), Golden, CO (United States)
CorporateAuthor_xml – name: National Renewable Energy Lab. (NREL), Golden, CO (United States)
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88E
88G
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
BTHHO
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
K9-
K9.
KB0
M0R
M0S
M1P
M2M
NAPCQ
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
OIOZB
OTOTI
5PM
ADTOC
UNPAY
DOA
DOI 10.1136/bmjopen-2021-052681
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
BMJ Journals
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Consumer Health Database
Health & Medical Collection (Alumni Edition)
Medical Database
Psychology Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Central Basic
ProQuest Family Health
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 6
  dbid: BENPR
  name: ProQuest One Academic
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2044-6055
ExternalDocumentID oai_doaj_org_article_ad99dbc9afae49b2a726d9d92f6710e2
10.1136/bmjopen-2021-052681
PMC8914398
1856206
35273043
10_1136_bmjopen_2021_052681
bmjopen
Genre Journal Article
GroupedDBID ---
4.4
53G
5VS
7RV
7X7
7~R
88E
8FI
8FJ
9YT
ABUWG
ACGFS
ACMMV
ADBBV
AENEX
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BCNDV
BENPR
BKNYI
BPHCQ
BTFSW
BTHHO
CCPQU
DIK
DWQXO
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HMCUK
HYE
HZ~
K9-
KQ8
M0R
M1P
M2M
M48
M~E
NAPCQ
O9-
OK1
PGMZT
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
RHI
RMJ
RPM
UKHRP
AAYXX
ADRAZ
BVXVI
CITATION
EJD
PHGZM
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
COVID
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
0R~
OIOZB
OTOTI
RHF
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-b566t-7b463bfd036ca9b9ce607d29cc2edd2d6af58ef45d0853b15737635611c4c0d03
IEDL.DBID BENPR
ISSN 2044-6055
IngestDate Tue Oct 14 19:06:35 EDT 2025
Sun Oct 26 03:20:24 EDT 2025
Tue Sep 30 15:27:42 EDT 2025
Thu May 18 22:40:25 EDT 2023
Wed Oct 01 12:46:58 EDT 2025
Tue Oct 07 07:39:16 EDT 2025
Thu Apr 03 07:04:19 EDT 2025
Wed Oct 01 03:27:28 EDT 2025
Thu Apr 24 22:56:37 EDT 2025
Thu Apr 24 22:50:17 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords COVID-19
epidemiology
statistics & research methods
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b566t-7b463bfd036ca9b9ce607d29cc2edd2d6af58ef45d0853b15737635611c4c0d03
Notes Protocol
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
NREL/JA-5000-79768
Natural Sciences and Engineering Research Council
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
AC36-08GO28308
ORCID 0000-0002-8427-8901
0000000284278901
OpenAccessLink https://www.proquest.com/docview/2638125140?pq-origsite=%requestingapplication%&accountid=15518
PMID 35273043
PQID 2638125140
PQPubID 2040975
ParticipantIDs doaj_primary_oai_doaj_org_article_ad99dbc9afae49b2a726d9d92f6710e2
unpaywall_primary_10_1136_bmjopen_2021_052681
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8914398
osti_scitechconnect_1856206
proquest_miscellaneous_2638728005
proquest_journals_2638125140
pubmed_primary_35273043
crossref_citationtrail_10_1136_bmjopen_2021_052681
crossref_primary_10_1136_bmjopen_2021_052681
bmj_journals_10_1136_bmjopen_2021_052681
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-10
PublicationDateYYYYMMDD 2022-03-10
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-10
  day: 10
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: United States
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationSeriesTitle Protocol
PublicationTitle BMJ open
PublicationTitleAbbrev BMJ Open
PublicationTitleAlternate BMJ Open
PublicationYear 2022
Publisher British Medical Journal Publishing Group
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: British Medical Journal Publishing Group
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Kribs-Zaleta, Velasco-Hernández (R26) 2000; 164
He, Peng, Sun (R3) 2020; 100
Perkins, España (R27) 2020; 82
Kermack, McKendrick (R2) 1927; 115
Brunton, Proctor, Kutz (R16) 2016; 113
Longini, Halloran, Nizam (R28) 2004; 159
Viguerie, Lorenzo, Auricchio (R31) 2021; 111
MacKay (R14) 1992; 4
Gousseff, Penot, Gallay (R24) 2020; 81
Li, Wu, Nie (R38) 2020; 182
Kretzschmar, Rozhnova, Bootsma (R21) 2020; 5
Jha, Cao, Oden (R33) 2020; 66
Gandon, Mackinnon, Nee (R25) 2003; 270
Dong, Du, Gardner (R1) 2020; 20
Sandhu, Pettit, Khalil (R42) 2017; 320
Andreasen, Lin, Levin (R37) 1997; 35
Diekmann, Heesterbeek, Metz (R7) 1990; 28
Tuite, Fisman, Greer (R9) 2020; 192
Gibson, Reich, Sheldon (R13) 2020
Zakary, Rachik, Elmouki (R30) 2017; 5
Sandhu, Poirel, Pettit (R46) 2016; 316
Pan, Yang (R51) 2009; 22
Horrocks, Bauch (R18) 2020; 10
Khalil, Sarkar, Adhikari (R45) 2015; 344
Moein, Nickaeen, Roointan (R8) 2021; 11
Sandhu, Khalil, Pettit (R10) 2021; 426
Bisaillon, Sandhu, Khalil (R44) 2015; 82
Tornatore, Maria Buccellato, Vetro (R4) 2005; 354
Viguerie, Veneziani, Lorenzo (R32) 2020; 66
Cramer, Ray, Lopez (R12) 2021
Allenman, Vergeynst, Torfs (R19) 2020
Desai, Khalil, Pettit (R35) 2018; 335
Aguilar, Faust, Westafer (R29) 2020
Gumel, Ruan, Day (R22) 2004; 271
Khalil, Sarkar, Adhikari (R50) 2009; 55
Zhang, Gul, Zeb (R5) 2021; 60
Garcia-Beltran, Lam, St Denis (R39) 2021; 184
Postnikov (R6) 2020; 135
Oden (R15) 2018; 27
Oh, Beck, Yamada (R41) 2008; 134
Sandhu, Khalil, Sarkar (R43) 2014; 282
Diekmann, Heesterbeek, Roberts (R20) 2010; 7
Nalbandian, Sehgal, Gupta (R23) 2021; 27
Tornatore (2022031008551579000_12.3.e052681.4) 2005; 354
Kretzschmar (2022031008551579000_12.3.e052681.21) 2020; 5
2022031008551579000_12.3.e052681.48
2022031008551579000_12.3.e052681.49
Gibson (2022031008551579000_12.3.e052681.13) 2020
Oden (2022031008551579000_12.3.e052681.15) 2018; 27
2022031008551579000_12.3.e052681.47
2022031008551579000_12.3.e052681.40
Khalil (2022031008551579000_12.3.e052681.45) 2015; 344
Sandhu (2022031008551579000_12.3.e052681.43) 2014; 282
2022031008551579000_12.3.e052681.19
2022031008551579000_12.3.e052681.17
2022031008551579000_12.3.e052681.18
Khalil (2022031008551579000_12.3.e052681.50) 2009; 55
Moein (2022031008551579000_12.3.e052681.8) 2021; 11
2022031008551579000_12.3.e052681.11
2022031008551579000_12.3.e052681.12
2022031008551579000_12.3.e052681.10
2022031008551579000_12.3.e052681.16
2022031008551579000_12.3.e052681.14
Kermack (2022031008551579000_12.3.e052681.2) 1927; 115
Zhang (2022031008551579000_12.3.e052681.5) 2021; 60
2022031008551579000_12.3.e052681.51
Garcia-Beltran (2022031008551579000_12.3.e052681.39) 2021; 184
Desai (2022031008551579000_12.3.e052681.35) 2018; 335
2022031008551579000_12.3.e052681.9
2022031008551579000_12.3.e052681.28
2022031008551579000_12.3.e052681.7
2022031008551579000_12.3.e052681.29
2022031008551579000_12.3.e052681.22
2022031008551579000_12.3.e052681.23
2022031008551579000_12.3.e052681.20
2022031008551579000_12.3.e052681.26
2022031008551579000_12.3.e052681.27
2022031008551579000_12.3.e052681.25
Zakary (2022031008551579000_12.3.e052681.30) 2017; 5
Sandhu (2022031008551579000_12.3.e052681.46) 2016; 316
He (2022031008551579000_12.3.e052681.3) 2020; 100
Li (2022031008551579000_12.3.e052681.38) 2020; 182
Sandhu (2022031008551579000_12.3.e052681.42) 2017; 320
Postnikov (2022031008551579000_12.3.e052681.6) 2020; 135
2022031008551579000_12.3.e052681.33
2022031008551579000_12.3.e052681.34
2022031008551579000_12.3.e052681.31
2022031008551579000_12.3.e052681.37
Gousseff (2022031008551579000_12.3.e052681.24) 2020; 81
2022031008551579000_12.3.e052681.36
Oh (2022031008551579000_12.3.e052681.41) 2008; 134
2022031008551579000_12.3.e052681.1
Bisaillon (2022031008551579000_12.3.e052681.44) 2015; 82
Viguerie (2022031008551579000_12.3.e052681.32) 2020; 66
References_xml – volume: 320
  start-page: 237
  year: 2017
  ident: R42
  article-title: Bayesian model selection using automatic relevance determination for nonlinear dynamical systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.01.042
– volume: 20
  start-page: 533
  year: 2020
  ident: R1
  article-title: An interactive web-based dashboard to track COVID-19 in real time
  publication-title: Lancet Infect Dis
  doi: 10.1016/S1473-3099(20)30120-1
– volume: 344
  start-page: 81
  year: 2015
  ident: R45
  article-title: The estimation of time-invariant parameters of noisy nonlinear oscillatory systems
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2014.10.002
– volume: 55
  start-page: 113
  year: 2009
  ident: R50
  article-title: Nonlinear filters for chaotic oscillatory systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-008-9349-z
– volume: 60
  start-page: 565
  year: 2021
  ident: R5
  article-title: Global sensitivity analysis of COVID-19 mathematical model
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.09.035
– year: 2020
  ident: R19
  article-title: A deterministic, age-stratified, extended SEIRD model for investigating the effect of non-pharmaceutical interventions on SARS-CoV-2 spread in Belgium
  publication-title: medRxiv
  doi: 10.1101/2020.07.17.20156034
– year: 2020
  ident: R29
  article-title: Investigating the impact of asymptomatic carriers on COVID-19 transmission
  publication-title: medRxiv
  doi: 10.1101/2020.03.18.20037994v3
– volume: 82
  start-page: 1061
  year: 2015
  ident: R44
  article-title: Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2217-8
– volume: 271
  start-page: 2223
  year: 2004
  ident: R22
  article-title: Modelling strategies for controlling SARS outbreaks
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2004.2800
– volume: 111
  year: 2021
  ident: R31
  article-title: Simulating the spread of COVID-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (SEIRD) model with heterogeneous diffusion
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2020.106617
– volume: 4
  start-page: 415
  year: 1992
  ident: R14
  article-title: Bayesian interpolation
  publication-title: Neural Comput
  doi: 10.1162/neco.1992.4.3.415
– volume: 5
  start-page: e452
  year: 2020
  ident: R21
  article-title: Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(20)30157-2
– volume: 270
  start-page: 1129
  year: 2003
  ident: R25
  article-title: Imperfect vaccination: some epidemiological and evolutionary consequences
  publication-title: Proc Biol Sci
  doi: 10.1098/rspb.2003.2370
– volume: 28
  start-page: 365
  year: 1990
  ident: R7
  article-title: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations
  publication-title: J Math Biol
  doi: 10.1007/BF00178324
– volume: 66
  start-page: 1131
  year: 2020
  ident: R32
  article-title: Diffusion–reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study
  publication-title: Comput Mech
  doi: 10.1007/s00466-020-01888-0
– volume: 27
  start-page: 601
  year: 2021
  ident: R23
  article-title: Post-Acute COVID-19 syndrome
  publication-title: Nat Med
  doi: 10.1038/s41591-021-01283-z
– volume: 182
  start-page: 1284
  year: 2020
  ident: R38
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 426
  year: 2021
  ident: R10
  article-title: Nonlinear sparse Bayesian learning for physics-based models
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2020.109728
– year: 2020
  ident: R13
  article-title: Real-Time mechanistic Bayesian forecasts of COVID-19 mortality
  publication-title: medRxiv
  doi: 10.1101/2020.12.22.20248736
– volume: 82
  start-page: 1
  year: 2020
  ident: R27
  article-title: Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-020-00795-y
– volume: 66
  start-page: 1055
  year: 2020
  ident: R33
  article-title: Bayesian-based predictions of COVID-19 evolution in Texas using multispecies mixture-theoretic continuum models
  publication-title: Comput Mech
  doi: 10.1007/s00466-020-01889-z
– volume: 35
  start-page: 825
  year: 1997
  ident: R37
  article-title: The dynamics of cocirculating influenza strains conferring partial cross-immunity
  publication-title: J Math Biol
  doi: 10.1007/s002850050079
– volume: 316
  start-page: 534
  year: 2016
  ident: R46
  article-title: Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.03.006
– volume: 7
  start-page: 873
  year: 2010
  ident: R20
  article-title: The construction of next-generation matrices for compartmental epidemic models
  publication-title: J R Soc Interface
  doi: 10.1098/rsif.2009.0386
– volume: 100
  start-page: 1667
  year: 2020
  ident: R3
  article-title: SEIR modelling of the COVID-19 and its dynamics
  publication-title: Nonlinear Dyn
– volume: 11
  start-page: pp. 1
  year: 2021
  ident: R8
  article-title: Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-84055-6
– volume: 354
  start-page: 111
  year: 2005
  ident: R4
  article-title: Stability of a stochastic SIR system
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.02.057
– volume: 10
  start-page: 1
  year: 2020
  ident: R18
  article-title: Algorithmic discovery of dynamic models from infectious disease data
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-63877-w
– volume: 135
  start-page: 109841
  year: 2020
  ident: R6
  article-title: Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.109841 10.1016/j.chaos.2020.109841
– volume: 27
  start-page: 353
  year: 2018
  ident: R15
  article-title: Adaptive multiscale predictive modelling
  publication-title: Acta Numerica
  doi: 10.1017/S096249291800003X
– volume: 113
  start-page: 3932
  year: 2016
  ident: R16
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1517384113
– volume: 22
  start-page: 1345
  year: 2009
  ident: R51
  article-title: A survey on transfer learning
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.191
– volume: 5
  start-page: 917
  year: 2017
  ident: R30
  article-title: On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-016-0233-2
– volume: 184
  start-page: 2372
  year: 2021
  ident: R39
  article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.013
– volume: 192
  start-page: E497
  year: 2020
  ident: R9
  article-title: Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada
  publication-title: CMAJ
  doi: 10.1503/cmaj.200476
– volume: 81
  start-page: 816
  year: 2020
  ident: R24
  article-title: Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound?
  publication-title: J Infect
  doi: 10.1016/j.jinf.2020.06.073
– volume: 164
  start-page: 183
  year: 2000
  ident: R26
  article-title: A simple vaccination model with multiple endemic states
  publication-title: Math Biosci
  doi: 10.1016/S0025-5564(00)00003-1
– year: 2021
  ident: R12
  article-title: Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US
  publication-title: medRxiv
  doi: 10.1101/2021.02.03.21250974
– volume: 159
  start-page: 623
  year: 2004
  ident: R28
  article-title: Containing pandemic influenza with antiviral agents
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwh092
– volume: 335
  start-page: 194
  year: 2018
  ident: R35
  article-title: Scalable domain decomposition solvers for stochastic PDEs in high performance computing
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.09.006
– volume: 115
  start-page: 700
  year: 1927
  ident: R2
  article-title: A contribution to the mathematical theory of epidemics proceedings of the Royal Society of London
  publication-title: series a, containing papers of a mathematical and physical character
  doi: 10.1098/rspa.1927.0118
– volume: 134
  start-page: 1013
  year: 2008
  ident: R41
  article-title: Bayesian learning using automatic relevance determination prior with an application to earthquake early warning
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/ASCE0733-9399
– volume: 282
  start-page: 161
  year: 2014
  ident: R43
  article-title: Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.06.013
– ident: 2022031008551579000_12.3.e052681.14
  doi: 10.1162/neco.1992.4.3.415
– ident: 2022031008551579000_12.3.e052681.28
  doi: 10.1093/aje/kwh092
– volume: 354
  start-page: 111
  year: 2005
  ident: 2022031008551579000_12.3.e052681.4
  article-title: Stability of a stochastic SIR system
  publication-title: Physica A
  doi: 10.1016/j.physa.2005.02.057
– volume: 184
  start-page: 2372
  year: 2021
  ident: 2022031008551579000_12.3.e052681.39
  article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.013
– ident: 2022031008551579000_12.3.e052681.19
  doi: 10.1016/j.epidem.2021.100505
– ident: 2022031008551579000_12.3.e052681.34
  doi: 10.1137/1.9781611974065
– volume: 344
  start-page: 81
  year: 2015
  ident: 2022031008551579000_12.3.e052681.45
  article-title: The estimation of time-invariant parameters of noisy nonlinear oscillatory systems
  publication-title: J Sound Vib
  doi: 10.1016/j.jsv.2014.10.002
– ident: 2022031008551579000_12.3.e052681.51
  doi: 10.1109/TKDE.2009.191
– ident: 2022031008551579000_12.3.e052681.11
– year: 2020
  ident: 2022031008551579000_12.3.e052681.13
  article-title: Real-Time mechanistic Bayesian forecasts of COVID-19 mortality
  publication-title: medRxiv
– ident: 2022031008551579000_12.3.e052681.40
– ident: 2022031008551579000_12.3.e052681.12
  doi: 10.1101/2021.02.03.21250974
– volume: 11
  start-page: pp. 1
  year: 2021
  ident: 2022031008551579000_12.3.e052681.8
  article-title: Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-84055-6
– volume: 135
  start-page: 109841
  year: 2020
  ident: 2022031008551579000_12.3.e052681.6
  article-title: Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions?
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2020.109841
– ident: 2022031008551579000_12.3.e052681.1
  doi: 10.1016/S1473-3099(20)30120-1
– volume: 60
  start-page: 565
  year: 2021
  ident: 2022031008551579000_12.3.e052681.5
  article-title: Global sensitivity analysis of COVID-19 mathematical model
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.09.035
– ident: 2022031008551579000_12.3.e052681.9
  doi: 10.1503/cmaj.200476
– ident: 2022031008551579000_12.3.e052681.17
– volume: 27
  start-page: 353
  year: 2018
  ident: 2022031008551579000_12.3.e052681.15
  article-title: Adaptive multiscale predictive modelling
  publication-title: Acta Numerica
  doi: 10.1017/S096249291800003X
– ident: 2022031008551579000_12.3.e052681.18
  doi: 10.1038/s41598-020-59121-0
– volume: 282
  start-page: 161
  year: 2014
  ident: 2022031008551579000_12.3.e052681.43
  article-title: Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2014.06.013
– ident: 2022031008551579000_12.3.e052681.49
– ident: 2022031008551579000_12.3.e052681.7
  doi: 10.1007/BF00178324
– volume: 100
  start-page: 1667
  year: 2020
  ident: 2022031008551579000_12.3.e052681.3
  article-title: SEIR modelling of the COVID-19 and its dynamics
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-020-05743-y
– ident: 2022031008551579000_12.3.e052681.47
  doi: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A3082
– ident: 2022031008551579000_12.3.e052681.22
  doi: 10.1098/rspb.2004.2800
– volume: 335
  start-page: 194
  year: 2018
  ident: 2022031008551579000_12.3.e052681.35
  article-title: Scalable domain decomposition solvers for stochastic PDEs in high performance computing
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.09.006
– volume: 81
  start-page: 816
  year: 2020
  ident: 2022031008551579000_12.3.e052681.24
  article-title: Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound?
  publication-title: J Infect
  doi: 10.1016/j.jinf.2020.06.073
– volume: 115
  start-page: 700
  year: 1927
  ident: 2022031008551579000_12.3.e052681.2
  article-title: A contribution to the mathematical theory of epidemics proceedings of the Royal Society of London
  publication-title: series a, containing papers of a mathematical and physical character
– volume: 82
  start-page: 1061
  year: 2015
  ident: 2022031008551579000_12.3.e052681.44
  article-title: Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-015-2217-8
– volume: 5
  start-page: 917
  year: 2017
  ident: 2022031008551579000_12.3.e052681.30
  article-title: On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach
  publication-title: Int J Dyn Control
  doi: 10.1007/s40435-016-0233-2
– ident: 2022031008551579000_12.3.e052681.26
  doi: 10.1016/S0025-5564(00)00003-1
– volume: 316
  start-page: 534
  year: 2016
  ident: 2022031008551579000_12.3.e052681.46
  article-title: Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2016.03.006
– ident: 2022031008551579000_12.3.e052681.36
– ident: 2022031008551579000_12.3.e052681.16
  doi: 10.1073/pnas.1517384113
– ident: 2022031008551579000_12.3.e052681.23
  doi: 10.1038/s41591-021-01283-z
– ident: 2022031008551579000_12.3.e052681.33
  doi: 10.1007/s00466-020-01889-z.5
– ident: 2022031008551579000_12.3.e052681.27
  doi: 10.1007/s11538-020-00795-y
– ident: 2022031008551579000_12.3.e052681.29
– volume: 5
  start-page: e452
  year: 2020
  ident: 2022031008551579000_12.3.e052681.21
  article-title: Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study
  publication-title: Lancet Public Health
  doi: 10.1016/S2468-2667(20)30157-2
– volume: 66
  start-page: 1131
  year: 2020
  ident: 2022031008551579000_12.3.e052681.32
  article-title: Diffusion–reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study
  publication-title: Comput Mech
  doi: 10.1007/s00466-020-01888-0
– ident: 2022031008551579000_12.3.e052681.48
– volume: 182
  start-page: 1284
  year: 2020
  ident: 2022031008551579000_12.3.e052681.38
  article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.012
– volume: 134
  start-page: 1013
  year: 2008
  ident: 2022031008551579000_12.3.e052681.41
  article-title: Bayesian learning using automatic relevance determination prior with an application to earthquake early warning
  publication-title: Journal of Engineering Mechanics
  doi: 10.1061/(ASCE)0733-9399(2008)134:12(1013)
– ident: 2022031008551579000_12.3.e052681.20
  doi: 10.1098/rsif.2009.0386
– volume: 55
  start-page: 113
  year: 2009
  ident: 2022031008551579000_12.3.e052681.50
  article-title: Nonlinear filters for chaotic oscillatory systems
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-008-9349-z
– volume: 320
  start-page: 237
  year: 2017
  ident: 2022031008551579000_12.3.e052681.42
  article-title: Bayesian model selection using automatic relevance determination for nonlinear dynamical systems
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2017.01.042
– ident: 2022031008551579000_12.3.e052681.31
  doi: 10.1016/j.aml.2020.106617
– ident: 2022031008551579000_12.3.e052681.25
  doi: 10.1098/rspb.2003.2370
– ident: 2022031008551579000_12.3.e052681.10
  doi: 10.1016/j.jcp.2020.109728
– ident: 2022031008551579000_12.3.e052681.37
  doi: 10.1007/s002850050079
SSID ssj0000459552
Score 2.327683
Snippet IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression...
The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult....
Introduction The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease...
SourceID doaj
unpaywall
pubmedcentral
osti
proquest
pubmed
crossref
bmj
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e052681
SubjectTerms Algorithms
Asymptomatic
BASIC BIOLOGICAL SCIENCES
Bayes Theorem
Bayesian inference
Calibration
Comorbidity
Coronaviruses
COVID-19
COVID-19 - epidemiology
COVID-19 - prevention & control
COVID-19 vaccines
Disease transmission
Epidemiological Models
Epidemiology
Humans
Immunization
MATHEMATICS AND COMPUTING
Pandemics
Population
Quarantine
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
sparse learning
statistics & research methods
SummonAdditionalLinks – databaseName: BMJ Open Access Journals
  dbid: 9YT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaIpVeEM8SWpCROHDA3dhJnDU3KFQFqXBpUTlFfqW7KE1W26wQv4a_yozzoCtQ1VOk-JH1zmf7m2T8DSGvPFCEtHRTZq01LBWWM9iGLZOu9LB7aJeHYMyTL_L4LP18np1vED6chTGXPzBt1AFcuxMNqNFUtxMuJsnEB3ESfoBvpjfJHSDXSUha8P10fK0CDEVlIc-OiNOUAVnPeq0hnsihd4CGACc6dLZDthMUIYvx3M4mVFjboIKOP1wamG__46D_hlLeXdUL_eunrqpr-9TRfXKvJ5j0XYeIB2TD1w_J9kn_Cf0R-Y0rwNLPusB12sWgt53EPw15caiuHQXToSONZqO6umiW83Z2SYHhUmCMNIjS0qakw8FKOr8WmY4FWGsxJgdjFcYm0St4sHZYfPj126cPjKu3VPedoWBEA6h8TM6OPp4eHrM-SwMzYOeW5SaViSkdbIVWK6Osl3HuhLJWeOeEk7rMpr5MMwfsLjE8y5Mgise5TW0MzZ6Qrbqp_VNCubDgL3PPnfapFbFJytKBg5kBooQwOiKvwUBFP8uuiuDAJLLozVqgWYvOrBERgxUL26udY9KN6uZGb8ZGi07s4-bq7xEeY1VU6g43muVF0U_8QjulnLFKlzAmZYTOhXTKKVFKIHdeRGQPwVUA4UHVXovhTbYtgEZJEcuI7A-Y-ztsAWsm8tI0jsjLsRiWBfzWo2vfrLo6mHksziKy20F0_J0D3iOSr4F3bSDrJfV8FqTHpwr4tZpGhI0wv80_9ez2htsjOwJPmISQyX2y1S5X_jnwvta8CDP9D_IlU9c
  priority: 102
  providerName: BMJ Publishing Group Ltd
– databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4UL4pvQgozEgQNWYydxYm6lUBWkwoWi3ix_hd0qTVbbrBC_hr_KjJMNuwIVDpxWiu1s7Hn2vFEmbwh5EYAi5LWvmHPOslw4zsANOyZ9HcB7GF_GZMzTj_LkLP9wXpxvlPrCnLBBHnhYuAPjlfLWKVObkCsrTCmkV16JWoJzDPH0TSu1EUzFMzgvVFGIUWaIZ_LAXl5gPSpAhYD4GUVOOLgTuLrlkKJuP_x0sL_-xDl_T528uWoX5vs30zQbfun4Drk9Ekp6OEzkLrkR2ntk93R8ZX6f_MAdvwyzIVGdDjnn_SDpT2MdHGpaT8FUGDijmahpvnbLeT-7pMBoKTBEGkVoaVfT9YeUdL6RiY4N2GsxFQNjDeYi0Sv4Y-Ox-ejTl_dvGVevqRlvhgIRHaDwATk7fvf56ISNVRmYBbv2rLS5zGztwfU5o6xyQaalF8o5EbwXXpq6qEKdFx7YXGZ5UWZRBI9zl7sUhj0kO23XhseEcuEgPuaBe7CtE6nN6tpDQFkAgoSwJiEvwUB63FVXOgYsmdSjLTXaUg-2TIhYW1G7Ud0ci2w01w96NQ1aDOIe13d_g_CYuqIyd7wAeNUjXvXf8JqQPQSXBoKDKr0O05lcr4E2SZHKhOyvMfdr2gLOSOSheZqQ51MzHAP4bse0oVsNfbDSWFok5NEA0ek5MxTZS_MsIeUWeLcmst3SzmdRarxSwKdVlRA2wfxfVurJ_1ipPXJL4LcmMXlyn-z0y1V4Cgywt8_iZv8JuJtcmw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKkYAL4pu0BRkJIQ4YEsdJ1kgIQaEqSAsXFvUW-SvdVmmy3WYF_TX8VWYcb-iKsuK0Umxn48yz5408eUPIUwcUQVR2xIwxmgluEgZu2LDcVg68h7KFT8Ycf8n3J-LzQXawQZYJmeEFnl0a2mE9qcm8fvnz9PwtLPg3oSLJK31yjE1gcA6hMeqXJM9mpwwrS-EJbCizcYVcBe8lsbzDOIQAfrcWmcwyHgSJ_nE7cDxwdcV1eYV_-GlhJV7GTv9Osry-aGbq_Ieq6wsebO8WuRmoJ33XY-U22XDNHXJtHA7X75JfuDfM3bRPaad9dnrXi_9TXzGHqsZSMCqG2GhQqupDmH83PaHAfSlwSerlamlb0eUnl_ToQs46NmCv2VA2jNWYtUTP4I-Vxebdr98_fWCJfE1VuBlKSbSA13tksvfx2-4-C_UbmAYEdKzQIk91ZcFJGiW1NC6PC8ulMdxZy22uqmzkKpFZ4H2pTrIi9XJ5SWKEiWHYfbLZtI17SGjCDUTSiUuscsLwWKdVZSH0zABrnGsVkedgoHIJn9KHNmleBluWaMuyt2VE-NKKpQk66FiOo14_6MUwaNbLgKzv_h7hMXRFDW9_oZ0flmFLKJWV0mojVQVzkpqrgudWWsmrHGif4xHZRnCVQIVQz9dg4pPpSiBYOY_ziOwsMfdn2hx2U2SsIo7Ik6EZNgw8BVKNaxd9H6xJFmcRedBDdHjOFOX4YpFGpFgB78pEVluao6kXJR9JYN5yFBE2wPx_3tTW-mlskxscvzfxCZQ7ZLObL9wjYIGdfuyX8W98UF7i
  priority: 102
  providerName: Scholars Portal
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7oOwgYzEAw-kjZ3EqXkbg2kgbfBA0XiKfMtayJKqTYXgz_BXOcdJwwpoAp4i-dba-uzzneT4O4Q8cUARksKOQ2OMDhNuWAhm2ITCFg6sh7KZD8Y8OhaHk-TNSXrSxebgXRh99gnTRg3h2d5oQI2mqlmXjxgfxSPnRUrYEN9QD-e2uEy2RApUfEC2Jsfv9j5iQrkoSUKg6mmnNMRisR4DgMHBhfZDgEWB0g2b5KX74VHDFvsT7fw9evLqqpqrr19UWZ4zTQc32vyrS69oiBEpn4erRg_Nt1_0Hv971jfJ9Y600r0WZbfIJVfdJleOus_yd8h3PFUWbtoGw9M2rr1p0wZQn2uHqspSgAM65wgFqsrTejFrpmcUWDMFFkq90C2tC7q-rEln56LdsQJbzfuEY2GJ8U50CT-sLFbvv_3w-mXI5HOqusFQhKIGpN8lk4NX7_cPwy7zQ6gBO02Y6UTEurBgXo2SWhonosxyaQx31nIrVJGOXZGkFhhjrFmaxV5ojzGTmAi6bZNBVVfuPqGMG_DBmWNWucTwSMdFYcFpTQGlnGsVkKewynm3c5e5d4pikXdLnyNY8nblA8LXMMlNp6COiTzKizs96zvNWwGRi5u_QPz1TVH92xfUi9O8O0xyZaW02khVwJyk5irjwkoreSGAMDoekB1Ebw4kCpWADYZMmSYHaiZ4JAKyuwb1z2lzOIeR6yZRQB731XDU4PcjVbl61bbBbGZRGpB77R7o_2eMQn5REgck29gdGxPZrKlmUy9nPpbA2eU4IGG_j_5mpR78Y_sdco3j1RUfi7lLBs1i5R4CoWz0o-7Y-AEBL3h4
  priority: 102
  providerName: Unpaywall
Title Comprehensive compartmental model and calibration algorithm for the study of clinical implications of the population-level spread of COVID-19: a study protocol
URI https://bmjopen.bmj.com/content/12/3/e052681.full
https://www.ncbi.nlm.nih.gov/pubmed/35273043
https://www.proquest.com/docview/2638125140
https://www.proquest.com/docview/2638728005
https://www.osti.gov/servlets/purl/1856206
https://pubmed.ncbi.nlm.nih.gov/PMC8914398
https://bmjopen.bmj.com/content/bmjopen/12/3/e052681.full.pdf
https://doaj.org/article/ad99dbc9afae49b2a726d9d92f6710e2
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADZ
  databaseName: BMJ Open Access Journals
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: 9YT
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://journals.bmj.com/
  providerName: BMJ Publishing Group Ltd
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: DIK
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: GX1
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central Free
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: RPM
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: 7X7
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest One Academic
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2044-6055
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2044-6055
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0000459552
  issn: 2044-6055
  databaseCode: M48
  dateStart: 20110701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61iQRcEG-WlshIHDiw6q73FSMhlIaWgpRQoaZKTyu_tilKd0OaCvFr-KvM7KuNQBEXR1rbSbwz9nxjj78BeG0RIoSZ6btaa-WGXPsummHtxiazaD2kScpgzNE4PpqEX6bRdAvGzV0YCqts1sRyoTaFpj3yPY6KQsY49D4sfriUNYpOV5sUGrJOrWDelxRj29DlxIzVge7-wfj4W7vrggBGRBGv6Yf8IN5Tl98pTxVqC0e_mshPfDQz-HTNUJV8_vhR4Lz7Fxb9O6Ty7nW-kL9-yvn8lr06fAD3a6DJBpVmPIQtmz-CO6P6KP0x_KaVYGlnVQA7q2LRVxXVPyvz4zCZG4YiJIeaxMfk_BzfyGp2yRDpMkSOrCSnZUXGmguW7OJWhDpVUKtFmyTMnVOMErvCH5aGqodfTz9_dH3xjsn6y4g4okDtfAKTw4OT4ZFbZ2twFcp75SYqjAOVGTSJWgoltI29xHChNbfGcBPLLOrbLIwMorxA-VESlOR4vq9D7WG3p9DJi9w-B-ZzjX6zb30jbai5p4IsM-hoRqhZnCvpwBsUUFrPtqu0dGSCOK1lmZIs00qWDvBGiqmuWc8p-cZ8c6e3badFRfqxufk-qUfblBi7ywfF8jytF4BUGiGM0kJmOCahuEx4bIQRPIsR5FnuwA4pV4rAh9h7NYU56VWKcCrmXuzAbqNzN8O-mRIOvGqrcXmgMx-Z2-K6akMZyLzIgWeVirb_MyDyPS8MHEjWlHdtIOs1-cWspCDvC8TZou-A26r5_7ypF5uHsQP3ON0uKcMld6GzWl7bl4j5VqoH28k0wVKcnfSgOxiORqe9enL3yn0ULD9NfSxHYR9rJuPjwdkf_RNhLQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVqJ9QdwxLbBIIPGAVXt9yyJViN6U0CYg1KK-mb25aZXaIXFU9Wv4E76NGXvtNgJFvPQpknfX8XrOzpzxzs4Q8sYARQgz3XGVUtINmfJdMMPKjXVmwHoInVTBmP1B3D0OP59EJ0vkd3MWBsMqG51YKWpdKPxGvskAKGiMQ-_j-KeLVaNwd7UpoSFsaQW9VaUYswc7DszVJbhw063eLsj7LWP7e0c7XddWGXAlPGfpJjKMA5lpUOVKcMmVib1EM64UM1ozHYss6pgsjDSwk0D6URJUSd18X4XKg2Fw3ztkJQxCDs7fyvbe4Ou39isPECYeRcymO_KDeFNenGNdLEAnAz8ek634YNbg6pxhrOoHwE8B6_xf3PfvEM7VWT4WV5diNLphH_fvk3uW2NJPNRIfkCWTPyR3-3br_hH5hZpnYoZ1wDytY9_LurQArerxUJFrCpBBBx7hQsXoFCRQDi8oMGsKTJVWyXBpkdHmQCc9uxERjw3Ya9wWJXNHGBNFp_DHQmPzzpfvvV3X5x-osDfDRBUFrIbH5PhW5PaELOdFbp4R6jMFfrpvfC1MqJgngyzT4NhGgGTGpHDIOxBQalf3NK0cpyBOrSxTlGVay9IhrJFiqmyWdSz2MVo86H07aFwnGVncfRvh0XbFDOHVhWJymlqFkwrNuZaKiwzmxCUTCYs115xlMZBKwxyyjuBKgWhhtmCFYVWqTIG-xcyLHbLRYO562tdL0CGv22ZQR7jHJHJTzOo-WPHMixzytIZo-5wBJvvzwsAhyRx45yYy35KfDauU5x0OvJ53HOK2MP-fN_V88TRekdXuUf8wPewNDtbJGsOTLVWo5gZZLicz8wL4Zilf2kVNyY_b1iN_AKlQllY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhUuiDemBRYJJA5YsdevLBJC0BC1lBYOFOXm7stNUWqHxFHVX8P_4Ncx41cbgSIuPUXy7jpez7cz33hnZwBeWKQIYWb6rtZauSHXvotmWLuxySxaD2mSKhhz_yDeOQw_jaLRGvxuz8JQWGWrEytFbQpN38h7HIFCxjj0elkTFvF1MHw3_elSBSnaaW3LadQQ2bPnZ-i-zd_uDlDWLzkffvy2veM2FQZchc9YuokK40BlBtW4lkIJbWMvMVxoza0x3MQyi_o2CyODzCRQfpQEVUI339eh9nAY3vcaXE-CQFA4YTJKuu87SJVEFPEm0ZEfxD11-oMqYiEuOXrwlGbFR4OGV5dMYlU5AH8KXOH_Yr1_B2_eWORTeX4mJ5NLlnF4G241lJa9rzF4B9Zsfhc29ptN-3vwi3TOzI7rUHlWR72XdVEBVlXiYTI3DMFCrjsBhcnJMb7vcnzKkFMz5KisSoPLioy1RznZyaVYeGqgXtOuHJk7oWgoNsc_loaat7983x24vnjDZHMzSlFR4Dq4D4dXIrUHsJ4XuX0EzOcaPXTf-kbaUHNPBVlm0KWNEMOcK-nAKxRQ2qzreVq5TEGcNrJMSZZpLUsHeCvFVDf51anMx2T1oNfdoGmdXmR19w8Ej64r5QavLhSz47RRNak0QhilhcxwTkJxmfDYCCN4FiOdtNyBTQJXihSL8gRrCqjSZYrELeZe7MBWi7mLaV8sPgeed82oiGh3Sea2WNR9qNaZFznwsIZo95wBpfnzwsCBZAm8SxNZbslPxlWy875ARi_6DrgdzP_nTT1ePY1nsIHaI_28e7C3CTc5HWmpYjS3YL2cLewTJJqlelqtaAZHV61C_gCVHpPw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7oOwgYzEAw-kjZ3EqXkbg2kgbfBA0XiKfMtayJKqTYXgz_BXOcdJwwpoAp4i-dba-uzzneT4O4Q8cUARksKOQ2OMDhNuWAhm2ITCFg6sh7KZD8Y8OhaHk-TNSXrSxebgXRh99gnTRg3h2d5oQI2mqlmXjxgfxSPnRUrYEN9QD-e2uEy2RApUfEC2Jsfv9j5iQrkoSUKg6mmnNMRisR4DgMHBhfZDgEWB0g2b5KX74VHDFvsT7fw9evLqqpqrr19UWZ4zTQc32vyrS69oiBEpn4erRg_Nt1_0Hv971jfJ9Y600r0WZbfIJVfdJleOus_yd8h3PFUWbtoGw9M2rr1p0wZQn2uHqspSgAM65wgFqsrTejFrpmcUWDMFFkq90C2tC7q-rEln56LdsQJbzfuEY2GJ8U50CT-sLFbvv_3w-mXI5HOqusFQhKIGpN8lk4NX7_cPwy7zQ6gBO02Y6UTEurBgXo2SWhonosxyaQx31nIrVJGOXZGkFhhjrFmaxV5ojzGTmAi6bZNBVVfuPqGMG_DBmWNWucTwSMdFYcFpTQGlnGsVkKewynm3c5e5d4pikXdLnyNY8nblA8LXMMlNp6COiTzKizs96zvNWwGRi5u_QPz1TVH92xfUi9O8O0xyZaW02khVwJyk5irjwkoreSGAMDoekB1Ebw4kCpWADYZMmSYHaiZ4JAKyuwb1z2lzOIeR6yZRQB731XDU4PcjVbl61bbBbGZRGpB77R7o_2eMQn5REgck29gdGxPZrKlmUy9nPpbA2eU4IGG_j_5mpR78Y_sdco3j1RUfi7lLBs1i5R4CoWz0o-7Y-AEBL3h4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+compartmental+model+and+calibration+algorithm+for+the+study+of+clinical+implications+of+the+population-level+spread+of+COVID-19%3A+a+study+protocol&rft.jtitle=BMJ+open&rft.au=Robinson%2C+Brandon&rft.au=Edwards%2C+Jodi+D&rft.au=Kendzerska%2C+Tetyana&rft.au=Pettit%2C+Chris+L&rft.date=2022-03-10&rft.pub=BMJ+Publishing+Group+LTD&rft.eissn=2044-6055&rft.volume=12&rft.issue=3&rft.spage=e052681&rft_id=info:doi/10.1136%2Fbmjopen-2021-052681&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-6055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-6055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-6055&client=summon