Comprehensive compartmental model and calibration algorithm for the study of clinical implications of the population-level spread of COVID-19: a study protocol
IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessf...
        Saved in:
      
    
          | Published in | BMJ open Vol. 12; no. 3; p. e052681 | 
|---|---|
| Main Authors | , , , , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          British Medical Journal Publishing Group
    
        10.03.2022
     BMJ Publishing Group LTD BMJ Publishing Group  | 
| Series | Protocol | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2044-6055 2044-6055  | 
| DOI | 10.1136/bmjopen-2021-052681 | 
Cover
| Abstract | IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.Methods and analysisWe propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Ethics and disseminationApproved by Carleton University’s Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication. | 
    
|---|---|
| AbstractList | IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.Methods and analysisWe propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Ethics and disseminationApproved by Carleton University’s Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication. Introduction The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.Methods and analysis We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model’s predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Ethics and dissemination Approved by Carleton University’s Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication. The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions. We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states. The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.INTRODUCTIONThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions.We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.METHODS AND ANALYSISWe propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states.Approved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.ETHICS AND DISSEMINATIONApproved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication. The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult. Simple mechanistic models with deterministic parameters are useful for short-term predictions but have ultimately been unsuccessful in extrapolating the trajectory of the pandemic because of unmodelled dynamics and the unrealistic level of certainty that is assumed in the predictions. We propose a 22-compartment epidemiological model that includes compartments not previously considered concurrently, to account for the effects of vaccination, asymptomatic individuals, inadequate access to hospital care, post-acute COVID-19 and recovery with long-term health complications. Additionally, new connections between compartments introduce new dynamics to the system and provide a framework to study the sensitivity of model outputs to several concurrent effects, including temporary immunity, vaccination rate and vaccine effectiveness. Subject to data availability for a given region, we discuss a means by which population demographics (age, comorbidity, socioeconomic status, sex and geographical location) and clinically relevant information (different variants, different vaccines) can be incorporated within the 22-compartment framework. Considering a probabilistic interpretation of the parameters allows the model's predictions to reflect the current state of uncertainty about the model parameters and model states. We propose the use of a sparse Bayesian learning algorithm for parameter calibration and model selection. This methodology considers a combination of prescribed parameter prior distributions for parameters that are known to be essential to the modelled dynamics and automatic relevance determination priors for parameters whose relevance is questionable. This is useful as it helps prevent overfitting the available epidemiological data when calibrating the parameters of the proposed model. Population-level administrative health data will serve as partial observations of the model states. Approved by Carleton University's Research Ethics Board-B (clearance ID: 114596). Results will be made available through future publication.  | 
    
| Author | Sandhu, Rimple Sarkar, Abhijit Kendzerska, Tetyana Poirel, Dominique Dolean, Victorita Taillon, Peter J Edwards, Jodi D Daly, John M Robinson, Brandon Walker, Thomas Pettit, Chris L Ammi, Mehdi Mills, Shirley Mulpuru, Sunita Khalil, Mohammad Percival, Valerie  | 
    
| AuthorAffiliation | 12 National Renewable Energy Laboratory , Golden , Colorado , USA 9 School of Public Policy and Administration , Carleton University , Ottawa , Ontario , Canada 1 Department of Civil and Environmental Engineering , Carleton University , Ottawa , Ontario , Canada 3 ICES , Ottawa , Ontario , Canada 5 Department of Medicine , Faculty of Medicine, Division of Respirology, University of Ottawa , Ottawa , Ontario , Canada 8 Independent Control Systems Engineer , Ottawa , Ontario , Canada 16 Laboratoire J.A. Dieudonné , CNRS, Université Côte d’Azur , Nice , France 10 Sandia National Laboratories , Livermore , California , USA 2 School of Epidemiology and Public Health , University of Ottawa and University of Ottawa Heart Institute , Ottawa , Ontario , Canada 11 Schaffen Research Inc , Ottawa , Ontario , Canada 7 Royal Military College of Canada, Department of Mechanical and Aerospace Engineering , Kingston , Ontario , Canada 13 School of Mathematics and Statistics , Carleton University , Ottawa , Ontari  | 
    
| AuthorAffiliation_xml | – name: 14 School of International Affairs , Carleton University , Ottawa , Ontario , Canada – name: 1 Department of Civil and Environmental Engineering , Carleton University , Ottawa , Ontario , Canada – name: 12 National Renewable Energy Laboratory , Golden , Colorado , USA – name: 5 Department of Medicine , Faculty of Medicine, Division of Respirology, University of Ottawa , Ottawa , Ontario , Canada – name: 7 Royal Military College of Canada, Department of Mechanical and Aerospace Engineering , Kingston , Ontario , Canada – name: 15 Department of Mathematics and Statistics , University of Strathclyde , Glasgow , Scotland – name: 4 The Ottawa Hospital Research Institute , Ottawa , Ontario , Canada – name: 9 School of Public Policy and Administration , Carleton University , Ottawa , Ontario , Canada – name: 13 School of Mathematics and Statistics , Carleton University , Ottawa , Ontario , Canada – name: 2 School of Epidemiology and Public Health , University of Ottawa and University of Ottawa Heart Institute , Ottawa , Ontario , Canada – name: 10 Sandia National Laboratories , Livermore , California , USA – name: 16 Laboratoire J.A. Dieudonné , CNRS, Université Côte d’Azur , Nice , France – name: 8 Independent Control Systems Engineer , Ottawa , Ontario , Canada – name: 6 US Naval Academy, Aerospace Engineering Department , Annapolis , Maryland , USA – name: 11 Schaffen Research Inc , Ottawa , Ontario , Canada – name: 3 ICES , Ottawa , Ontario , Canada  | 
    
| Author_xml | – sequence: 1 givenname: Brandon surname: Robinson fullname: Robinson, Brandon organization: Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada – sequence: 2 givenname: Jodi D surname: Edwards fullname: Edwards, Jodi D organization: ICES, Ottawa, Ontario, Canada – sequence: 3 givenname: Tetyana surname: Kendzerska fullname: Kendzerska, Tetyana organization: Department of Medicine, Faculty of Medicine, Division of Respirology, University of Ottawa, Ottawa, Ontario, Canada – sequence: 4 givenname: Chris L surname: Pettit fullname: Pettit, Chris L organization: US Naval Academy, Aerospace Engineering Department, Annapolis, Maryland, USA – sequence: 5 givenname: Dominique surname: Poirel fullname: Poirel, Dominique organization: Royal Military College of Canada, Department of Mechanical and Aerospace Engineering, Kingston, Ontario, Canada – sequence: 6 givenname: John M surname: Daly fullname: Daly, John M organization: Independent Control Systems Engineer, Ottawa, Ontario, Canada – sequence: 7 givenname: Mehdi surname: Ammi fullname: Ammi, Mehdi organization: School of Public Policy and Administration, Carleton University, Ottawa, Ontario, Canada – sequence: 8 givenname: Mohammad surname: Khalil fullname: Khalil, Mohammad organization: Sandia National Laboratories, Livermore, California, USA – sequence: 9 givenname: Peter J surname: Taillon fullname: Taillon, Peter J organization: Schaffen Research Inc, Ottawa, Ontario, Canada – sequence: 10 givenname: Rimple surname: Sandhu fullname: Sandhu, Rimple organization: National Renewable Energy Laboratory, Golden, Colorado, USA – sequence: 11 givenname: Shirley surname: Mills fullname: Mills, Shirley organization: School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada – sequence: 12 givenname: Sunita surname: Mulpuru fullname: Mulpuru, Sunita organization: Department of Medicine, Faculty of Medicine, Division of Respirology, University of Ottawa, Ottawa, Ontario, Canada – sequence: 13 givenname: Thomas surname: Walker fullname: Walker, Thomas organization: Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada – sequence: 14 givenname: Valerie surname: Percival fullname: Percival, Valerie organization: School of International Affairs, Carleton University, Ottawa, Ontario, Canada – sequence: 15 givenname: Victorita surname: Dolean fullname: Dolean, Victorita organization: Laboratoire J.A. Dieudonné, CNRS, Université Côte d’Azur, Nice, France – sequence: 16 givenname: Abhijit orcidid: 0000-0002-8427-8901 surname: Sarkar fullname: Sarkar, Abhijit email: abhijit.sarkar@carleton.ca organization: Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario, Canada  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35273043$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1856206$$D View this record in Osti.gov  | 
    
| BookMark | eNqNUs1u1DAYjFARLaVPgIQsuHAJtZ3YiTlUQsvfSpV6Aa6WYzu7Xjl2sJ2iPg2virNZStsD4It_vpnx-Bs_LY6cd7ooniP4BqGKnnfDzo_alRhiVEKCaYseFScY1nVJISFHd9bHxVmMO5hHTRgh-ElxXBHcVLCuToqfKz-MQW-1i-ZaA5l3IqRBuyQsGLzSFgingBTWdEEk4x0QduODSdsB9D6AtNUgpkndAN8DaY0zGQvMMNq8mPFxLsyo0Y-T3R-VVl9n4ZgvFmour66-rd-XiL0F4iA2Bp-89PZZ8bgXNuqzw3xafP344cvqc3l59Wm9endZdoTSVDZdTauuV7CiUrCOSU1hozCTEmulsKKiJ63ua6JgS6oOkaZqaEUoQrKWMNNOi_Wiq7zY8TGYQYQb7oXh-wMfNjz3xUiruVCMqU4y0Qtdsw6LBlPFFMM9bRDUOGvVi9bkRnHzQ1h7K4ggn-Pjh_j4HB9f4su0i4U2Tt2glcwZBGHveblfcWbLN_6atwzVFWuzwMtFwMdkeJQmabmV3jktE0ctoRjSDHp9uCX475OOiQ8mSm2tcNpPkWNatQ1uISQZ-uoBdOen4HIMexTCBNVz517ctX3r9_cfywC2AGTwMQbd8-xs_w_yK4z9R0-qB9z_6-T5wsrFP57_xvgFHWIMsg | 
    
| CitedBy_id | crossref_primary_10_3934_mbe_2023655 crossref_primary_10_1016_j_idm_2024_04_002 crossref_primary_10_1002_bimj_202100401 crossref_primary_10_1016_j_jsv_2023_118106  | 
    
| Cites_doi | 10.1016/j.cma.2017.01.042 10.1016/S1473-3099(20)30120-1 10.1016/j.jsv.2014.10.002 10.1007/s11071-008-9349-z 10.1016/j.aej.2020.09.035 10.1101/2020.07.17.20156034 10.1101/2020.03.18.20037994v3 10.1007/s11071-015-2217-8 10.1098/rspb.2004.2800 10.1016/j.aml.2020.106617 10.1162/neco.1992.4.3.415 10.1016/S2468-2667(20)30157-2 10.1098/rspb.2003.2370 10.1007/BF00178324 10.1007/s00466-020-01888-0 10.1038/s41591-021-01283-z 10.1016/j.cell.2020.07.012 10.1016/j.jcp.2020.109728 10.1101/2020.12.22.20248736 10.1007/s11538-020-00795-y 10.1007/s00466-020-01889-z 10.1007/s002850050079 10.1016/j.jcp.2016.03.006 10.1098/rsif.2009.0386 10.1038/s41598-021-84055-6 10.1016/j.physa.2005.02.057 10.1038/s41598-020-63877-w 10.1016/j.chaos.2020.109841 10.1016/j.chaos.2020.109841 10.1017/S096249291800003X 10.1073/pnas.1517384113 10.1109/TKDE.2009.191 10.1007/s40435-016-0233-2 10.1016/j.cell.2021.03.013 10.1503/cmaj.200476 10.1016/j.jinf.2020.06.073 10.1016/S0025-5564(00)00003-1 10.1101/2021.02.03.21250974 10.1093/aje/kwh092 10.1016/j.cma.2017.09.006 10.1098/rspa.1927.0118 10.1061/ASCE0733-9399 10.1016/j.cma.2014.06.013 10.1016/j.epidem.2021.100505 10.1137/1.9781611974065 10.1016/j.chaos.2020.109841 10.1038/s41598-020-59121-0 10.1007/s11071-020-05743-y 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A3082 10.1007/s00466-020-01889-z.5 10.1061/(ASCE)0733-9399(2008)134:12(1013)  | 
    
| ContentType | Journal Article | 
    
| Copyright | Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022  | 
    
| Copyright_xml | – notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022  | 
    
| CorporateAuthor | National Renewable Energy Lab. (NREL), Golden, CO (United States) | 
    
| CorporateAuthor_xml | – name: National Renewable Energy Lab. (NREL), Golden, CO (United States) | 
    
| DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR BTHHO CCPQU COVID DWQXO FYUFA GHDGH GNUQQ K9- K9. KB0 M0R M0S M1P M2M NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 OIOZB OTOTI 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1136/bmjopen-2021-052681 | 
    
| DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central BMJ Journals ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Consumer Health Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Consumer Health Database Health & Medical Collection (Alumni Edition) Medical Database Psychology Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Family Health (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest Family Health ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition BMJ Journals ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest One Academic url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 2044-6055 | 
    
| ExternalDocumentID | oai_doaj_org_article_ad99dbc9afae49b2a726d9d92f6710e2 10.1136/bmjopen-2021-052681 PMC8914398 1856206 35273043 10_1136_bmjopen_2021_052681 bmjopen  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- 4.4 53G 5VS 7RV 7X7 7~R 88E 8FI 8FJ 9YT ABUWG ACGFS ACMMV ADBBV AENEX AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BKNYI BPHCQ BTFSW BTHHO CCPQU DIK DWQXO EBS FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HMCUK HYE HZ~ K9- KQ8 M0R M1P M2M M48 M~E NAPCQ O9- OK1 PGMZT PHGZT PIMPY PQQKQ PROAC PSQYO PSYQQ RHI RMJ RPM UKHRP AAYXX ADRAZ BVXVI CITATION EJD PHGZM PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 0R~ OIOZB OTOTI RHF 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-b566t-7b463bfd036ca9b9ce607d29cc2edd2d6af58ef45d0853b15737635611c4c0d03 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2044-6055 | 
    
| IngestDate | Tue Oct 14 19:06:35 EDT 2025 Sun Oct 26 03:20:24 EDT 2025 Tue Sep 30 15:27:42 EDT 2025 Thu May 18 22:40:25 EDT 2023 Wed Oct 01 12:46:58 EDT 2025 Tue Oct 07 07:39:16 EDT 2025 Thu Apr 03 07:04:19 EDT 2025 Wed Oct 01 03:27:28 EDT 2025 Thu Apr 24 22:56:37 EDT 2025 Thu Apr 24 22:50:17 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | COVID-19 epidemiology statistics & research methods  | 
    
| Language | English | 
    
| License | This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. cc-by-nc  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-b566t-7b463bfd036ca9b9ce607d29cc2edd2d6af58ef45d0853b15737635611c4c0d03 | 
    
| Notes | Protocol ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 NREL/JA-5000-79768 Natural Sciences and Engineering Research Council USDOE Office of Energy Efficiency and Renewable Energy (EERE) AC36-08GO28308  | 
    
| ORCID | 0000-0002-8427-8901 0000000284278901  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2638125140?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PMID | 35273043 | 
    
| PQID | 2638125140 | 
    
| PQPubID | 2040975 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ad99dbc9afae49b2a726d9d92f6710e2 unpaywall_primary_10_1136_bmjopen_2021_052681 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8914398 osti_scitechconnect_1856206 proquest_miscellaneous_2638728005 proquest_journals_2638125140 pubmed_primary_35273043 crossref_citationtrail_10_1136_bmjopen_2021_052681 crossref_primary_10_1136_bmjopen_2021_052681 bmj_journals_10_1136_bmjopen_2021_052681  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-03-10 | 
    
| PublicationDateYYYYMMDD | 2022-03-10 | 
    
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-10 day: 10  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: London – name: United States – name: BMA House, Tavistock Square, London, WC1H 9JR  | 
    
| PublicationSeriesTitle | Protocol | 
    
| PublicationTitle | BMJ open | 
    
| PublicationTitleAbbrev | BMJ Open | 
    
| PublicationTitleAlternate | BMJ Open | 
    
| PublicationYear | 2022 | 
    
| Publisher | British Medical Journal Publishing Group BMJ Publishing Group LTD BMJ Publishing Group  | 
    
| Publisher_xml | – name: British Medical Journal Publishing Group – name: BMJ Publishing Group LTD – name: BMJ Publishing Group  | 
    
| References | Kribs-Zaleta, Velasco-Hernández (R26) 2000; 164 He, Peng, Sun (R3) 2020; 100 Perkins, España (R27) 2020; 82 Kermack, McKendrick (R2) 1927; 115 Brunton, Proctor, Kutz (R16) 2016; 113 Longini, Halloran, Nizam (R28) 2004; 159 Viguerie, Lorenzo, Auricchio (R31) 2021; 111 MacKay (R14) 1992; 4 Gousseff, Penot, Gallay (R24) 2020; 81 Li, Wu, Nie (R38) 2020; 182 Kretzschmar, Rozhnova, Bootsma (R21) 2020; 5 Jha, Cao, Oden (R33) 2020; 66 Gandon, Mackinnon, Nee (R25) 2003; 270 Dong, Du, Gardner (R1) 2020; 20 Sandhu, Pettit, Khalil (R42) 2017; 320 Andreasen, Lin, Levin (R37) 1997; 35 Diekmann, Heesterbeek, Metz (R7) 1990; 28 Tuite, Fisman, Greer (R9) 2020; 192 Gibson, Reich, Sheldon (R13) 2020 Zakary, Rachik, Elmouki (R30) 2017; 5 Sandhu, Poirel, Pettit (R46) 2016; 316 Pan, Yang (R51) 2009; 22 Horrocks, Bauch (R18) 2020; 10 Khalil, Sarkar, Adhikari (R45) 2015; 344 Moein, Nickaeen, Roointan (R8) 2021; 11 Sandhu, Khalil, Pettit (R10) 2021; 426 Bisaillon, Sandhu, Khalil (R44) 2015; 82 Tornatore, Maria Buccellato, Vetro (R4) 2005; 354 Viguerie, Veneziani, Lorenzo (R32) 2020; 66 Cramer, Ray, Lopez (R12) 2021 Allenman, Vergeynst, Torfs (R19) 2020 Desai, Khalil, Pettit (R35) 2018; 335 Aguilar, Faust, Westafer (R29) 2020 Gumel, Ruan, Day (R22) 2004; 271 Khalil, Sarkar, Adhikari (R50) 2009; 55 Zhang, Gul, Zeb (R5) 2021; 60 Garcia-Beltran, Lam, St Denis (R39) 2021; 184 Postnikov (R6) 2020; 135 Oden (R15) 2018; 27 Oh, Beck, Yamada (R41) 2008; 134 Sandhu, Khalil, Sarkar (R43) 2014; 282 Diekmann, Heesterbeek, Roberts (R20) 2010; 7 Nalbandian, Sehgal, Gupta (R23) 2021; 27 Tornatore (2022031008551579000_12.3.e052681.4) 2005; 354 Kretzschmar (2022031008551579000_12.3.e052681.21) 2020; 5 2022031008551579000_12.3.e052681.48 2022031008551579000_12.3.e052681.49 Gibson (2022031008551579000_12.3.e052681.13) 2020 Oden (2022031008551579000_12.3.e052681.15) 2018; 27 2022031008551579000_12.3.e052681.47 2022031008551579000_12.3.e052681.40 Khalil (2022031008551579000_12.3.e052681.45) 2015; 344 Sandhu (2022031008551579000_12.3.e052681.43) 2014; 282 2022031008551579000_12.3.e052681.19 2022031008551579000_12.3.e052681.17 2022031008551579000_12.3.e052681.18 Khalil (2022031008551579000_12.3.e052681.50) 2009; 55 Moein (2022031008551579000_12.3.e052681.8) 2021; 11 2022031008551579000_12.3.e052681.11 2022031008551579000_12.3.e052681.12 2022031008551579000_12.3.e052681.10 2022031008551579000_12.3.e052681.16 2022031008551579000_12.3.e052681.14 Kermack (2022031008551579000_12.3.e052681.2) 1927; 115 Zhang (2022031008551579000_12.3.e052681.5) 2021; 60 2022031008551579000_12.3.e052681.51 Garcia-Beltran (2022031008551579000_12.3.e052681.39) 2021; 184 Desai (2022031008551579000_12.3.e052681.35) 2018; 335 2022031008551579000_12.3.e052681.9 2022031008551579000_12.3.e052681.28 2022031008551579000_12.3.e052681.7 2022031008551579000_12.3.e052681.29 2022031008551579000_12.3.e052681.22 2022031008551579000_12.3.e052681.23 2022031008551579000_12.3.e052681.20 2022031008551579000_12.3.e052681.26 2022031008551579000_12.3.e052681.27 2022031008551579000_12.3.e052681.25 Zakary (2022031008551579000_12.3.e052681.30) 2017; 5 Sandhu (2022031008551579000_12.3.e052681.46) 2016; 316 He (2022031008551579000_12.3.e052681.3) 2020; 100 Li (2022031008551579000_12.3.e052681.38) 2020; 182 Sandhu (2022031008551579000_12.3.e052681.42) 2017; 320 Postnikov (2022031008551579000_12.3.e052681.6) 2020; 135 2022031008551579000_12.3.e052681.33 2022031008551579000_12.3.e052681.34 2022031008551579000_12.3.e052681.31 2022031008551579000_12.3.e052681.37 Gousseff (2022031008551579000_12.3.e052681.24) 2020; 81 2022031008551579000_12.3.e052681.36 Oh (2022031008551579000_12.3.e052681.41) 2008; 134 2022031008551579000_12.3.e052681.1 Bisaillon (2022031008551579000_12.3.e052681.44) 2015; 82 Viguerie (2022031008551579000_12.3.e052681.32) 2020; 66  | 
    
| References_xml | – volume: 320 start-page: 237 year: 2017 ident: R42 article-title: Bayesian model selection using automatic relevance determination for nonlinear dynamical systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.01.042 – volume: 20 start-page: 533 year: 2020 ident: R1 article-title: An interactive web-based dashboard to track COVID-19 in real time publication-title: Lancet Infect Dis doi: 10.1016/S1473-3099(20)30120-1 – volume: 344 start-page: 81 year: 2015 ident: R45 article-title: The estimation of time-invariant parameters of noisy nonlinear oscillatory systems publication-title: J Sound Vib doi: 10.1016/j.jsv.2014.10.002 – volume: 55 start-page: 113 year: 2009 ident: R50 article-title: Nonlinear filters for chaotic oscillatory systems publication-title: Nonlinear Dyn doi: 10.1007/s11071-008-9349-z – volume: 60 start-page: 565 year: 2021 ident: R5 article-title: Global sensitivity analysis of COVID-19 mathematical model publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.09.035 – year: 2020 ident: R19 article-title: A deterministic, age-stratified, extended SEIRD model for investigating the effect of non-pharmaceutical interventions on SARS-CoV-2 spread in Belgium publication-title: medRxiv doi: 10.1101/2020.07.17.20156034 – year: 2020 ident: R29 article-title: Investigating the impact of asymptomatic carriers on COVID-19 transmission publication-title: medRxiv doi: 10.1101/2020.03.18.20037994v3 – volume: 82 start-page: 1061 year: 2015 ident: R44 article-title: Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2217-8 – volume: 271 start-page: 2223 year: 2004 ident: R22 article-title: Modelling strategies for controlling SARS outbreaks publication-title: Proc Biol Sci doi: 10.1098/rspb.2004.2800 – volume: 111 year: 2021 ident: R31 article-title: Simulating the spread of COVID-19 via a spatially-resolved susceptible–exposed–infected–recovered–deceased (SEIRD) model with heterogeneous diffusion publication-title: Appl Math Lett doi: 10.1016/j.aml.2020.106617 – volume: 4 start-page: 415 year: 1992 ident: R14 article-title: Bayesian interpolation publication-title: Neural Comput doi: 10.1162/neco.1992.4.3.415 – volume: 5 start-page: e452 year: 2020 ident: R21 article-title: Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study publication-title: Lancet Public Health doi: 10.1016/S2468-2667(20)30157-2 – volume: 270 start-page: 1129 year: 2003 ident: R25 article-title: Imperfect vaccination: some epidemiological and evolutionary consequences publication-title: Proc Biol Sci doi: 10.1098/rspb.2003.2370 – volume: 28 start-page: 365 year: 1990 ident: R7 article-title: On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations publication-title: J Math Biol doi: 10.1007/BF00178324 – volume: 66 start-page: 1131 year: 2020 ident: R32 article-title: Diffusion–reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study publication-title: Comput Mech doi: 10.1007/s00466-020-01888-0 – volume: 27 start-page: 601 year: 2021 ident: R23 article-title: Post-Acute COVID-19 syndrome publication-title: Nat Med doi: 10.1038/s41591-021-01283-z – volume: 182 start-page: 1284 year: 2020 ident: R38 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 426 year: 2021 ident: R10 article-title: Nonlinear sparse Bayesian learning for physics-based models publication-title: J Comput Phys doi: 10.1016/j.jcp.2020.109728 – year: 2020 ident: R13 article-title: Real-Time mechanistic Bayesian forecasts of COVID-19 mortality publication-title: medRxiv doi: 10.1101/2020.12.22.20248736 – volume: 82 start-page: 1 year: 2020 ident: R27 article-title: Optimal control of the COVID-19 pandemic with non-pharmaceutical interventions publication-title: Bull Math Biol doi: 10.1007/s11538-020-00795-y – volume: 66 start-page: 1055 year: 2020 ident: R33 article-title: Bayesian-based predictions of COVID-19 evolution in Texas using multispecies mixture-theoretic continuum models publication-title: Comput Mech doi: 10.1007/s00466-020-01889-z – volume: 35 start-page: 825 year: 1997 ident: R37 article-title: The dynamics of cocirculating influenza strains conferring partial cross-immunity publication-title: J Math Biol doi: 10.1007/s002850050079 – volume: 316 start-page: 534 year: 2016 ident: R46 article-title: Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.03.006 – volume: 7 start-page: 873 year: 2010 ident: R20 article-title: The construction of next-generation matrices for compartmental epidemic models publication-title: J R Soc Interface doi: 10.1098/rsif.2009.0386 – volume: 100 start-page: 1667 year: 2020 ident: R3 article-title: SEIR modelling of the COVID-19 and its dynamics publication-title: Nonlinear Dyn – volume: 11 start-page: pp. 1 year: 2021 ident: R8 article-title: Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan publication-title: Sci Rep doi: 10.1038/s41598-021-84055-6 – volume: 354 start-page: 111 year: 2005 ident: R4 article-title: Stability of a stochastic SIR system publication-title: Physica A doi: 10.1016/j.physa.2005.02.057 – volume: 10 start-page: 1 year: 2020 ident: R18 article-title: Algorithmic discovery of dynamic models from infectious disease data publication-title: Sci Rep doi: 10.1038/s41598-020-63877-w – volume: 135 start-page: 109841 year: 2020 ident: R6 article-title: Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions? publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109841 10.1016/j.chaos.2020.109841 – volume: 27 start-page: 353 year: 2018 ident: R15 article-title: Adaptive multiscale predictive modelling publication-title: Acta Numerica doi: 10.1017/S096249291800003X – volume: 113 start-page: 3932 year: 2016 ident: R16 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1517384113 – volume: 22 start-page: 1345 year: 2009 ident: R51 article-title: A survey on transfer learning publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.191 – volume: 5 start-page: 917 year: 2017 ident: R30 article-title: On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach publication-title: Int J Dyn Control doi: 10.1007/s40435-016-0233-2 – volume: 184 start-page: 2372 year: 2021 ident: R39 article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity publication-title: Cell doi: 10.1016/j.cell.2021.03.013 – volume: 192 start-page: E497 year: 2020 ident: R9 article-title: Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada publication-title: CMAJ doi: 10.1503/cmaj.200476 – volume: 81 start-page: 816 year: 2020 ident: R24 article-title: Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound? publication-title: J Infect doi: 10.1016/j.jinf.2020.06.073 – volume: 164 start-page: 183 year: 2000 ident: R26 article-title: A simple vaccination model with multiple endemic states publication-title: Math Biosci doi: 10.1016/S0025-5564(00)00003-1 – year: 2021 ident: R12 article-title: Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the US publication-title: medRxiv doi: 10.1101/2021.02.03.21250974 – volume: 159 start-page: 623 year: 2004 ident: R28 article-title: Containing pandemic influenza with antiviral agents publication-title: Am J Epidemiol doi: 10.1093/aje/kwh092 – volume: 335 start-page: 194 year: 2018 ident: R35 article-title: Scalable domain decomposition solvers for stochastic PDEs in high performance computing publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.09.006 – volume: 115 start-page: 700 year: 1927 ident: R2 article-title: A contribution to the mathematical theory of epidemics proceedings of the Royal Society of London publication-title: series a, containing papers of a mathematical and physical character doi: 10.1098/rspa.1927.0118 – volume: 134 start-page: 1013 year: 2008 ident: R41 article-title: Bayesian learning using automatic relevance determination prior with an application to earthquake early warning publication-title: Journal of Engineering Mechanics doi: 10.1061/ASCE0733-9399 – volume: 282 start-page: 161 year: 2014 ident: R43 article-title: Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.06.013 – ident: 2022031008551579000_12.3.e052681.14 doi: 10.1162/neco.1992.4.3.415 – ident: 2022031008551579000_12.3.e052681.28 doi: 10.1093/aje/kwh092 – volume: 354 start-page: 111 year: 2005 ident: 2022031008551579000_12.3.e052681.4 article-title: Stability of a stochastic SIR system publication-title: Physica A doi: 10.1016/j.physa.2005.02.057 – volume: 184 start-page: 2372 year: 2021 ident: 2022031008551579000_12.3.e052681.39 article-title: Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity publication-title: Cell doi: 10.1016/j.cell.2021.03.013 – ident: 2022031008551579000_12.3.e052681.19 doi: 10.1016/j.epidem.2021.100505 – ident: 2022031008551579000_12.3.e052681.34 doi: 10.1137/1.9781611974065 – volume: 344 start-page: 81 year: 2015 ident: 2022031008551579000_12.3.e052681.45 article-title: The estimation of time-invariant parameters of noisy nonlinear oscillatory systems publication-title: J Sound Vib doi: 10.1016/j.jsv.2014.10.002 – ident: 2022031008551579000_12.3.e052681.51 doi: 10.1109/TKDE.2009.191 – ident: 2022031008551579000_12.3.e052681.11 – year: 2020 ident: 2022031008551579000_12.3.e052681.13 article-title: Real-Time mechanistic Bayesian forecasts of COVID-19 mortality publication-title: medRxiv – ident: 2022031008551579000_12.3.e052681.40 – ident: 2022031008551579000_12.3.e052681.12 doi: 10.1101/2021.02.03.21250974 – volume: 11 start-page: pp. 1 year: 2021 ident: 2022031008551579000_12.3.e052681.8 article-title: Inefficiency of SIR models in forecasting COVID-19 epidemic: a case study of Isfahan publication-title: Sci Rep doi: 10.1038/s41598-021-84055-6 – volume: 135 start-page: 109841 year: 2020 ident: 2022031008551579000_12.3.e052681.6 article-title: Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR model provide quantitative parameters and predictions? publication-title: Chaos, Solitons & Fractals doi: 10.1016/j.chaos.2020.109841 – ident: 2022031008551579000_12.3.e052681.1 doi: 10.1016/S1473-3099(20)30120-1 – volume: 60 start-page: 565 year: 2021 ident: 2022031008551579000_12.3.e052681.5 article-title: Global sensitivity analysis of COVID-19 mathematical model publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.09.035 – ident: 2022031008551579000_12.3.e052681.9 doi: 10.1503/cmaj.200476 – ident: 2022031008551579000_12.3.e052681.17 – volume: 27 start-page: 353 year: 2018 ident: 2022031008551579000_12.3.e052681.15 article-title: Adaptive multiscale predictive modelling publication-title: Acta Numerica doi: 10.1017/S096249291800003X – ident: 2022031008551579000_12.3.e052681.18 doi: 10.1038/s41598-020-59121-0 – volume: 282 start-page: 161 year: 2014 ident: 2022031008551579000_12.3.e052681.43 article-title: Bayesian model selection for nonlinear aeroelastic systems using wind-tunnel data publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2014.06.013 – ident: 2022031008551579000_12.3.e052681.49 – ident: 2022031008551579000_12.3.e052681.7 doi: 10.1007/BF00178324 – volume: 100 start-page: 1667 year: 2020 ident: 2022031008551579000_12.3.e052681.3 article-title: SEIR modelling of the COVID-19 and its dynamics publication-title: Nonlinear Dyn doi: 10.1007/s11071-020-05743-y – ident: 2022031008551579000_12.3.e052681.47 doi: 10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A3082 – ident: 2022031008551579000_12.3.e052681.22 doi: 10.1098/rspb.2004.2800 – volume: 335 start-page: 194 year: 2018 ident: 2022031008551579000_12.3.e052681.35 article-title: Scalable domain decomposition solvers for stochastic PDEs in high performance computing publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.09.006 – volume: 81 start-page: 816 year: 2020 ident: 2022031008551579000_12.3.e052681.24 article-title: Clinical recurrences of COVID-19 symptoms after recovery: viral relapse, reinfection or inflammatory rebound? publication-title: J Infect doi: 10.1016/j.jinf.2020.06.073 – volume: 115 start-page: 700 year: 1927 ident: 2022031008551579000_12.3.e052681.2 article-title: A contribution to the mathematical theory of epidemics proceedings of the Royal Society of London publication-title: series a, containing papers of a mathematical and physical character – volume: 82 start-page: 1061 year: 2015 ident: 2022031008551579000_12.3.e052681.44 article-title: Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems publication-title: Nonlinear Dyn doi: 10.1007/s11071-015-2217-8 – volume: 5 start-page: 917 year: 2017 ident: 2022031008551579000_12.3.e052681.30 article-title: On the analysis of a multi-regions discrete SIR epidemic model: an optimal control approach publication-title: Int J Dyn Control doi: 10.1007/s40435-016-0233-2 – ident: 2022031008551579000_12.3.e052681.26 doi: 10.1016/S0025-5564(00)00003-1 – volume: 316 start-page: 534 year: 2016 ident: 2022031008551579000_12.3.e052681.46 article-title: Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations publication-title: J Comput Phys doi: 10.1016/j.jcp.2016.03.006 – ident: 2022031008551579000_12.3.e052681.36 – ident: 2022031008551579000_12.3.e052681.16 doi: 10.1073/pnas.1517384113 – ident: 2022031008551579000_12.3.e052681.23 doi: 10.1038/s41591-021-01283-z – ident: 2022031008551579000_12.3.e052681.33 doi: 10.1007/s00466-020-01889-z.5 – ident: 2022031008551579000_12.3.e052681.27 doi: 10.1007/s11538-020-00795-y – ident: 2022031008551579000_12.3.e052681.29 – volume: 5 start-page: e452 year: 2020 ident: 2022031008551579000_12.3.e052681.21 article-title: Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study publication-title: Lancet Public Health doi: 10.1016/S2468-2667(20)30157-2 – volume: 66 start-page: 1131 year: 2020 ident: 2022031008551579000_12.3.e052681.32 article-title: Diffusion–reaction compartmental models formulated in a continuum mechanics framework: application to COVID-19, mathematical analysis, and numerical study publication-title: Comput Mech doi: 10.1007/s00466-020-01888-0 – ident: 2022031008551579000_12.3.e052681.48 – volume: 182 start-page: 1284 year: 2020 ident: 2022031008551579000_12.3.e052681.38 article-title: The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity publication-title: Cell doi: 10.1016/j.cell.2020.07.012 – volume: 134 start-page: 1013 year: 2008 ident: 2022031008551579000_12.3.e052681.41 article-title: Bayesian learning using automatic relevance determination prior with an application to earthquake early warning publication-title: Journal of Engineering Mechanics doi: 10.1061/(ASCE)0733-9399(2008)134:12(1013) – ident: 2022031008551579000_12.3.e052681.20 doi: 10.1098/rsif.2009.0386 – volume: 55 start-page: 113 year: 2009 ident: 2022031008551579000_12.3.e052681.50 article-title: Nonlinear filters for chaotic oscillatory systems publication-title: Nonlinear Dyn doi: 10.1007/s11071-008-9349-z – volume: 320 start-page: 237 year: 2017 ident: 2022031008551579000_12.3.e052681.42 article-title: Bayesian model selection using automatic relevance determination for nonlinear dynamical systems publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2017.01.042 – ident: 2022031008551579000_12.3.e052681.31 doi: 10.1016/j.aml.2020.106617 – ident: 2022031008551579000_12.3.e052681.25 doi: 10.1098/rspb.2003.2370 – ident: 2022031008551579000_12.3.e052681.10 doi: 10.1016/j.jcp.2020.109728 – ident: 2022031008551579000_12.3.e052681.37 doi: 10.1007/s002850050079  | 
    
| SSID | ssj0000459552 | 
    
| Score | 2.327683 | 
    
| Snippet | IntroductionThe complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression... The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease progression difficult.... Introduction The complex dynamics of the coronavirus disease 2019 (COVID-19) pandemic has made obtaining reliable long-term forecasts of the disease...  | 
    
| SourceID | doaj unpaywall pubmedcentral osti proquest pubmed crossref bmj  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e052681 | 
    
| SubjectTerms | Algorithms Asymptomatic BASIC BIOLOGICAL SCIENCES Bayes Theorem Bayesian inference Calibration Comorbidity Coronaviruses COVID-19 COVID-19 - epidemiology COVID-19 - prevention & control COVID-19 vaccines Disease transmission Epidemiological Models Epidemiology Humans Immunization MATHEMATICS AND COMPUTING Pandemics Population Quarantine SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 sparse learning statistics & research methods  | 
    
| SummonAdditionalLinks | – databaseName: BMJ Open Access Journals dbid: 9YT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbaIpVeEM8SWpCROHDA3dhJnDU3KFQFqXBpUTlFfqW7KE1W26wQv4a_yozzoCtQ1VOk-JH1zmf7m2T8DSGvPFCEtHRTZq01LBWWM9iGLZOu9LB7aJeHYMyTL_L4LP18np1vED6chTGXPzBt1AFcuxMNqNFUtxMuJsnEB3ESfoBvpjfJHSDXSUha8P10fK0CDEVlIc-OiNOUAVnPeq0hnsihd4CGACc6dLZDthMUIYvx3M4mVFjboIKOP1wamG__46D_hlLeXdUL_eunrqpr-9TRfXKvJ5j0XYeIB2TD1w_J9kn_Cf0R-Y0rwNLPusB12sWgt53EPw15caiuHQXToSONZqO6umiW83Z2SYHhUmCMNIjS0qakw8FKOr8WmY4FWGsxJgdjFcYm0St4sHZYfPj126cPjKu3VPedoWBEA6h8TM6OPp4eHrM-SwMzYOeW5SaViSkdbIVWK6Osl3HuhLJWeOeEk7rMpr5MMwfsLjE8y5Mgise5TW0MzZ6Qrbqp_VNCubDgL3PPnfapFbFJytKBg5kBooQwOiKvwUBFP8uuiuDAJLLozVqgWYvOrBERgxUL26udY9KN6uZGb8ZGi07s4-bq7xEeY1VU6g43muVF0U_8QjulnLFKlzAmZYTOhXTKKVFKIHdeRGQPwVUA4UHVXovhTbYtgEZJEcuI7A-Y-ztsAWsm8tI0jsjLsRiWBfzWo2vfrLo6mHksziKy20F0_J0D3iOSr4F3bSDrJfV8FqTHpwr4tZpGhI0wv80_9ez2htsjOwJPmISQyX2y1S5X_jnwvta8CDP9D_IlU9c priority: 102 providerName: BMJ Publishing Group Ltd – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4UL4pvQgozEgQNWYydxYm6lUBWkwoWi3ix_hd0qTVbbrBC_hr_KjJMNuwIVDpxWiu1s7Hn2vFEmbwh5EYAi5LWvmHPOslw4zsANOyZ9HcB7GF_GZMzTj_LkLP9wXpxvlPrCnLBBHnhYuAPjlfLWKVObkCsrTCmkV16JWoJzDPH0TSu1EUzFMzgvVFGIUWaIZ_LAXl5gPSpAhYD4GUVOOLgTuLrlkKJuP_x0sL_-xDl_T528uWoX5vs30zQbfun4Drk9Ekp6OEzkLrkR2ntk93R8ZX6f_MAdvwyzIVGdDjnn_SDpT2MdHGpaT8FUGDijmahpvnbLeT-7pMBoKTBEGkVoaVfT9YeUdL6RiY4N2GsxFQNjDeYi0Sv4Y-Ox-ejTl_dvGVevqRlvhgIRHaDwATk7fvf56ISNVRmYBbv2rLS5zGztwfU5o6xyQaalF8o5EbwXXpq6qEKdFx7YXGZ5UWZRBI9zl7sUhj0kO23XhseEcuEgPuaBe7CtE6nN6tpDQFkAgoSwJiEvwUB63FVXOgYsmdSjLTXaUg-2TIhYW1G7Ud0ci2w01w96NQ1aDOIe13d_g_CYuqIyd7wAeNUjXvXf8JqQPQSXBoKDKr0O05lcr4E2SZHKhOyvMfdr2gLOSOSheZqQ51MzHAP4bse0oVsNfbDSWFok5NEA0ek5MxTZS_MsIeUWeLcmst3SzmdRarxSwKdVlRA2wfxfVurJ_1ipPXJL4LcmMXlyn-z0y1V4Cgywt8_iZv8JuJtcmw priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKkYAL4pu0BRkJIQ4YEsdJ1kgIQaEqSAsXFvUW-SvdVmmy3WYF_TX8VWYcb-iKsuK0Umxn48yz5408eUPIUwcUQVR2xIwxmgluEgZu2LDcVg68h7KFT8Ycf8n3J-LzQXawQZYJmeEFnl0a2mE9qcm8fvnz9PwtLPg3oSLJK31yjE1gcA6hMeqXJM9mpwwrS-EJbCizcYVcBe8lsbzDOIQAfrcWmcwyHgSJ_nE7cDxwdcV1eYV_-GlhJV7GTv9Osry-aGbq_Ieq6wsebO8WuRmoJ33XY-U22XDNHXJtHA7X75JfuDfM3bRPaad9dnrXi_9TXzGHqsZSMCqG2GhQqupDmH83PaHAfSlwSerlamlb0eUnl_ToQs46NmCv2VA2jNWYtUTP4I-Vxebdr98_fWCJfE1VuBlKSbSA13tksvfx2-4-C_UbmAYEdKzQIk91ZcFJGiW1NC6PC8ulMdxZy22uqmzkKpFZ4H2pTrIi9XJ5SWKEiWHYfbLZtI17SGjCDUTSiUuscsLwWKdVZSH0zABrnGsVkedgoHIJn9KHNmleBluWaMuyt2VE-NKKpQk66FiOo14_6MUwaNbLgKzv_h7hMXRFDW9_oZ0flmFLKJWV0mojVQVzkpqrgudWWsmrHGif4xHZRnCVQIVQz9dg4pPpSiBYOY_ziOwsMfdn2hx2U2SsIo7Ik6EZNgw8BVKNaxd9H6xJFmcRedBDdHjOFOX4YpFGpFgB78pEVluao6kXJR9JYN5yFBE2wPx_3tTW-mlskxscvzfxCZQ7ZLObL9wjYIGdfuyX8W98UF7i priority: 102 providerName: Scholars Portal – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7oOwgYzEAw-kjZ3EqXkbg2kgbfBA0XiKfMtayJKqTYXgz_BXOcdJwwpoAp4i-dba-uzzneT4O4Q8cUARksKOQ2OMDhNuWAhm2ITCFg6sh7KZD8Y8OhaHk-TNSXrSxebgXRh99gnTRg3h2d5oQI2mqlmXjxgfxSPnRUrYEN9QD-e2uEy2RApUfEC2Jsfv9j5iQrkoSUKg6mmnNMRisR4DgMHBhfZDgEWB0g2b5KX74VHDFvsT7fw9evLqqpqrr19UWZ4zTQc32vyrS69oiBEpn4erRg_Nt1_0Hv971jfJ9Y600r0WZbfIJVfdJleOus_yd8h3PFUWbtoGw9M2rr1p0wZQn2uHqspSgAM65wgFqsrTejFrpmcUWDMFFkq90C2tC7q-rEln56LdsQJbzfuEY2GJ8U50CT-sLFbvv_3w-mXI5HOqusFQhKIGpN8lk4NX7_cPwy7zQ6gBO02Y6UTEurBgXo2SWhonosxyaQx31nIrVJGOXZGkFhhjrFmaxV5ojzGTmAi6bZNBVVfuPqGMG_DBmWNWucTwSMdFYcFpTQGlnGsVkKewynm3c5e5d4pikXdLnyNY8nblA8LXMMlNp6COiTzKizs96zvNWwGRi5u_QPz1TVH92xfUi9O8O0xyZaW02khVwJyk5irjwkoreSGAMDoekB1Ebw4kCpWADYZMmSYHaiZ4JAKyuwb1z2lzOIeR6yZRQB731XDU4PcjVbl61bbBbGZRGpB77R7o_2eMQn5REgck29gdGxPZrKlmUy9nPpbA2eU4IGG_j_5mpR78Y_sdco3j1RUfi7lLBs1i5R4CoWz0o-7Y-AEBL3h4 priority: 102 providerName: Unpaywall  | 
    
| Title | Comprehensive compartmental model and calibration algorithm for the study of clinical implications of the population-level spread of COVID-19: a study protocol | 
    
| URI | https://bmjopen.bmj.com/content/12/3/e052681.full https://www.ncbi.nlm.nih.gov/pubmed/35273043 https://www.proquest.com/docview/2638125140 https://www.proquest.com/docview/2638728005 https://www.osti.gov/servlets/purl/1856206 https://pubmed.ncbi.nlm.nih.gov/PMC8914398 https://bmjopen.bmj.com/content/bmjopen/12/3/e052681.full.pdf https://doaj.org/article/ad99dbc9afae49b2a726d9d92f6710e2  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 12 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADZ databaseName: BMJ Open Access Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: 9YT dateStart: 20110101 isFulltext: true titleUrlDefault: https://journals.bmj.com/ providerName: BMJ Publishing Group Ltd – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: GX1 dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest One Academic customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2044-6055 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: M48 dateStart: 20110701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxEB61iQRcEG-WlshIHDiw6q73FSMhlIaWgpRQoaZKTyu_tilKd0OaCvFr-KvM7KuNQBEXR1rbSbwz9nxjj78BeG0RIoSZ6btaa-WGXPsummHtxiazaD2kScpgzNE4PpqEX6bRdAvGzV0YCqts1sRyoTaFpj3yPY6KQsY49D4sfriUNYpOV5sUGrJOrWDelxRj29DlxIzVge7-wfj4W7vrggBGRBGv6Yf8IN5Tl98pTxVqC0e_mshPfDQz-HTNUJV8_vhR4Lz7Fxb9O6Ty7nW-kL9-yvn8lr06fAD3a6DJBpVmPIQtmz-CO6P6KP0x_KaVYGlnVQA7q2LRVxXVPyvz4zCZG4YiJIeaxMfk_BzfyGp2yRDpMkSOrCSnZUXGmguW7OJWhDpVUKtFmyTMnVOMErvCH5aGqodfTz9_dH3xjsn6y4g4okDtfAKTw4OT4ZFbZ2twFcp75SYqjAOVGTSJWgoltI29xHChNbfGcBPLLOrbLIwMorxA-VESlOR4vq9D7WG3p9DJi9w-B-ZzjX6zb30jbai5p4IsM-hoRqhZnCvpwBsUUFrPtqu0dGSCOK1lmZIs00qWDvBGiqmuWc8p-cZ8c6e3badFRfqxufk-qUfblBi7ywfF8jytF4BUGiGM0kJmOCahuEx4bIQRPIsR5FnuwA4pV4rAh9h7NYU56VWKcCrmXuzAbqNzN8O-mRIOvGqrcXmgMx-Z2-K6akMZyLzIgWeVirb_MyDyPS8MHEjWlHdtIOs1-cWspCDvC8TZou-A26r5_7ypF5uHsQP3ON0uKcMld6GzWl7bl4j5VqoH28k0wVKcnfSgOxiORqe9enL3yn0ULD9NfSxHYR9rJuPjwdkf_RNhLQ | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VVqJ9QdwxLbBIIPGAVXt9yyJViN6U0CYg1KK-mb25aZXaIXFU9Wv4E76NGXvtNgJFvPQpknfX8XrOzpzxzs4Q8sYARQgz3XGVUtINmfJdMMPKjXVmwHoInVTBmP1B3D0OP59EJ0vkd3MWBsMqG51YKWpdKPxGvskAKGiMQ-_j-KeLVaNwd7UpoSFsaQW9VaUYswc7DszVJbhw063eLsj7LWP7e0c7XddWGXAlPGfpJjKMA5lpUOVKcMmVib1EM64UM1ozHYss6pgsjDSwk0D6URJUSd18X4XKg2Fw3ztkJQxCDs7fyvbe4Ou39isPECYeRcymO_KDeFNenGNdLEAnAz8ek634YNbg6pxhrOoHwE8B6_xf3PfvEM7VWT4WV5diNLphH_fvk3uW2NJPNRIfkCWTPyR3-3br_hH5hZpnYoZ1wDytY9_LurQArerxUJFrCpBBBx7hQsXoFCRQDi8oMGsKTJVWyXBpkdHmQCc9uxERjw3Ya9wWJXNHGBNFp_DHQmPzzpfvvV3X5x-osDfDRBUFrIbH5PhW5PaELOdFbp4R6jMFfrpvfC1MqJgngyzT4NhGgGTGpHDIOxBQalf3NK0cpyBOrSxTlGVay9IhrJFiqmyWdSz2MVo86H07aFwnGVncfRvh0XbFDOHVhWJymlqFkwrNuZaKiwzmxCUTCYs115xlMZBKwxyyjuBKgWhhtmCFYVWqTIG-xcyLHbLRYO562tdL0CGv22ZQR7jHJHJTzOo-WPHMixzytIZo-5wBJvvzwsAhyRx45yYy35KfDauU5x0OvJ53HOK2MP-fN_V88TRekdXuUf8wPewNDtbJGsOTLVWo5gZZLicz8wL4Zilf2kVNyY_b1iN_AKlQllY | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIhUuiDemBRYJJA5YsdevLBJC0BC1lBYOFOXm7stNUWqHxFHVX8P_4Ncx41cbgSIuPUXy7jpez7cz33hnZwBeWKQIYWb6rtZauSHXvotmWLuxySxaD2mSKhhz_yDeOQw_jaLRGvxuz8JQWGWrEytFbQpN38h7HIFCxjj0elkTFvF1MHw3_elSBSnaaW3LadQQ2bPnZ-i-zd_uDlDWLzkffvy2veM2FQZchc9YuokK40BlBtW4lkIJbWMvMVxoza0x3MQyi_o2CyODzCRQfpQEVUI339eh9nAY3vcaXE-CQFA4YTJKuu87SJVEFPEm0ZEfxD11-oMqYiEuOXrwlGbFR4OGV5dMYlU5AH8KXOH_Yr1_B2_eWORTeX4mJ5NLlnF4G241lJa9rzF4B9Zsfhc29ptN-3vwi3TOzI7rUHlWR72XdVEBVlXiYTI3DMFCrjsBhcnJMb7vcnzKkFMz5KisSoPLioy1RznZyaVYeGqgXtOuHJk7oWgoNsc_loaat7983x24vnjDZHMzSlFR4Dq4D4dXIrUHsJ4XuX0EzOcaPXTf-kbaUHNPBVlm0KWNEMOcK-nAKxRQ2qzreVq5TEGcNrJMSZZpLUsHeCvFVDf51anMx2T1oNfdoGmdXmR19w8Ej64r5QavLhSz47RRNak0QhilhcxwTkJxmfDYCCN4FiOdtNyBTQJXihSL8gRrCqjSZYrELeZe7MBWi7mLaV8sPgeed82oiGh3Sea2WNR9qNaZFznwsIZo95wBpfnzwsCBZAm8SxNZbslPxlWy875ARi_6DrgdzP_nTT1ePY1nsIHaI_28e7C3CTc5HWmpYjS3YL2cLewTJJqlelqtaAZHV61C_gCVHpPw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLagk4AX7oOwgYzEAw-kjZ3EqXkbg2kgbfBA0XiKfMtayJKqTYXgz_BXOcdJwwpoAp4i-dba-uzzneT4O4Q8cUARksKOQ2OMDhNuWAhm2ITCFg6sh7KZD8Y8OhaHk-TNSXrSxebgXRh99gnTRg3h2d5oQI2mqlmXjxgfxSPnRUrYEN9QD-e2uEy2RApUfEC2Jsfv9j5iQrkoSUKg6mmnNMRisR4DgMHBhfZDgEWB0g2b5KX74VHDFvsT7fw9evLqqpqrr19UWZ4zTQc32vyrS69oiBEpn4erRg_Nt1_0Hv971jfJ9Y600r0WZbfIJVfdJleOus_yd8h3PFUWbtoGw9M2rr1p0wZQn2uHqspSgAM65wgFqsrTejFrpmcUWDMFFkq90C2tC7q-rEln56LdsQJbzfuEY2GJ8U50CT-sLFbvv_3w-mXI5HOqusFQhKIGpN8lk4NX7_cPwy7zQ6gBO02Y6UTEurBgXo2SWhonosxyaQx31nIrVJGOXZGkFhhjrFmaxV5ojzGTmAi6bZNBVVfuPqGMG_DBmWNWucTwSMdFYcFpTQGlnGsVkKewynm3c5e5d4pikXdLnyNY8nblA8LXMMlNp6COiTzKizs96zvNWwGRi5u_QPz1TVH92xfUi9O8O0xyZaW02khVwJyk5irjwkoreSGAMDoekB1Ebw4kCpWADYZMmSYHaiZ4JAKyuwb1z2lzOIeR6yZRQB731XDU4PcjVbl61bbBbGZRGpB77R7o_2eMQn5REgck29gdGxPZrKlmUy9nPpbA2eU4IGG_j_5mpR78Y_sdco3j1RUfi7lLBs1i5R4CoWz0o-7Y-AEBL3h4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+compartmental+model+and+calibration+algorithm+for+the+study+of+clinical+implications+of+the+population-level+spread+of+COVID-19%3A+a+study+protocol&rft.jtitle=BMJ+open&rft.au=Robinson%2C+Brandon&rft.au=Edwards%2C+Jodi+D&rft.au=Kendzerska%2C+Tetyana&rft.au=Pettit%2C+Chris+L&rft.date=2022-03-10&rft.pub=BMJ+Publishing+Group+LTD&rft.eissn=2044-6055&rft.volume=12&rft.issue=3&rft.spage=e052681&rft_id=info:doi/10.1136%2Fbmjopen-2021-052681&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-6055&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-6055&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-6055&client=summon |