Invertebrate Models of Kallmann Syndrome: Molecular Pathogenesis and New Disease Genes
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of...
Saved in:
Published in | Current genomics Vol. 14; no. 1; pp. 2 - 10 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United Arab Emirates
Bentham Science Publishers Ltd
01.03.2013
Bentham Science Publishers |
Subjects | |
Online Access | Get full text |
ISSN | 1389-2029 1875-5488 |
DOI | 10.2174/138920213804999174 |
Cover
Abstract | Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism
and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the
KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered
by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed
significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate
models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated
and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed
in detail. Structure-function dissection studies performed in these two animal models have shown how the different
domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among
the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different
tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C.
elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification
of HS6ST1 as a new disease gene. |
---|---|
AbstractList | Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene. Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1 . In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster , are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1 -heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene. Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene. Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene. |
Author | Elia Schiavi Davide Andrenacci |
AuthorAffiliation | Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy |
AuthorAffiliation_xml | – name: Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy |
Author_xml | – sequence: 1 givenname: Elia surname: Di Schiavi fullname: Di Schiavi, Elia – sequence: 2 givenname: Davide surname: Andrenacci fullname: Andrenacci, Davide |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23997646$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUctu1DAUjVARfcAPsEBZsgnYsRPbLJBQgbaiPCQeW8txbiYGx05tZ0Zd9s_xaNoRDwmxulfnnnNf57g4cN5BUTzG6FmNGX2OCRc1qnNAVAiRoXvFEeasqRrK-UHOM6HKDHFYHMf4HaEacYYeFIc1EYK1tD0qvl24NYQEXVAJyve-BxtLP5TvlLWTcq78fO364Cd4kYsW9GJVKD-pNPoVOIgmlsr15QfYlK9NBBWhPNviD4v7g7IRHt3Gk-Lr2zdfTs-ry49nF6evLquuaViqFCXAtNC8xQ10bcM400yrOqMtEooRTjsyENC8bzHtQAwMdCeg7XoBgiNyUrzc9Z2XboJeg0tBWTkHM6lwLb0y8veKM6Nc-bUkDUeMtbnB09sGwV8tEJOcTNRgrXLglygxrUVLcI3_g0oopwKhpsnUJ7-utd_n7u-ZUO8IOvgYAwx7CkZya67829ws4n-ItEkqGb89zdh_S2920i7_YVRT1Aachv3UMaVZbjYbCUuAH9nGbHWS2k_Sz-CWYHPuUtbKeZxltj6AVCEZbUGaGN3dTCHX3i4T5L9t8SUnMs5qBfn0n3AX2rs |
CitedBy_id | crossref_primary_10_1371_journal_pone_0124597 crossref_primary_10_1002_fsn3_1078 crossref_primary_10_3389_fphy_2020_00362 crossref_primary_10_1111_tra_12920 crossref_primary_10_3389_fvets_2023_1136332 crossref_primary_10_1007_s11055_024_01702_x crossref_primary_10_1111_ejn_13366 crossref_primary_10_3389_fcell_2022_836179 crossref_primary_10_31857_S0235009224010017 |
ContentType | Journal Article |
Copyright | 2013 Bentham Science Publishers 2013 |
Copyright_xml | – notice: 2013 Bentham Science Publishers 2013 |
DBID | AAYXX CITATION NPM 7SS 8FD FR3 P64 RC3 7X8 5PM |
DOI | 10.2174/138920213804999174 |
DatabaseName | CrossRef PubMed Entomology Abstracts (Full archive) Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Entomology Abstracts Genetics Abstracts Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Entomology Abstracts PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1875-5488 |
EndPage | 10 |
ExternalDocumentID | PMC3580776 23997646 10_2174_138920213804999174 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_14_issue_1_spage_2 |
Genre | Journal Article |
GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION NPM 7SS 8FD FR3 P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-b557t-a43e7c9c8615eb65787c7ca23e7609a7384b3f3ec8d614be9f7ecb9e6bd9e9803 |
ISSN | 1389-2029 |
IngestDate | Thu Aug 21 14:08:52 EDT 2025 Fri Jul 11 10:59:33 EDT 2025 Thu Jul 10 20:20:53 EDT 2025 Thu Jan 02 23:11:25 EST 2025 Tue Jul 01 02:59:05 EDT 2025 Thu Apr 24 23:06:09 EDT 2025 Tue Aug 27 15:42:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Morphogenesis CeKal-1 Extracellular matrix Animal models Axon branching DmKal-1 |
Language | English |
License | This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-b557t-a43e7c9c8615eb65787c7ca23e7609a7384b3f3ec8d614be9f7ecb9e6bd9e9803 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3580776 |
PMID | 23997646 |
PQID | 1348490055 |
PQPubID | 23462 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3580776 proquest_miscellaneous_1429631216 proquest_miscellaneous_1348490055 pubmed_primary_23997646 crossref_primary_10_2174_138920213804999174 crossref_citationtrail_10_2174_138920213804999174 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_14_issue_1_spage_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-03-01 |
PublicationDateYYYYMMDD | 2013-03-01 |
PublicationDate_xml | – month: 03 year: 2013 text: 2013-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United Arab Emirates |
PublicationPlace_xml | – name: United Arab Emirates |
PublicationTitle | Current genomics |
PublicationTitleAlternate | CG |
PublicationYear | 2013 |
Publisher | Bentham Science Publishers Ltd Bentham Science Publishers |
Publisher_xml | – name: Bentham Science Publishers Ltd – name: Bentham Science Publishers |
References | 5652405 - Arch Intern Med. 1968 Jun;121(6):534-8 15365636 - J Mol Med (Berl). 2004 Nov;82(11):725-34 1913827 - Cell. 1991 Oct 18;67(2):423-35 18981235 - J Cell Biol. 2008 Nov 3;183(3):555-66 21497178 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):13-20 8768867 - J Clin Endocrinol Metab. 1996 Aug;81(8):3010-7 1922361 - Nature. 1991 Oct 10;353(6344):529-36 2472693 - Trends Neurosci. 1989 May;12(5):189-95 12757752 - Int J Biochem Cell Biol. 2003 Aug;35(8):1157-62 21664428 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):37-43 16597617 - J Biol Chem. 2006 Jun 9;281(23):15694-700 1080088 - Clin Genet. 1975 May-Jun;7(5):368-81 4042391 - Clin Genet. 1985 Aug;28(2):106-11 1883195 - Annu Rev Biochem. 1991;60:155-90 9730987 - J Cell Sci. 1998 Oct;111 ( Pt 19):2953-65 17191030 - Horm Res. 2007;67(5):231-42 15324302 - Biochem J. 2004 Dec 15;384(Pt 3):495-505 15866045 - Mol Cell Neurosci. 2005 May;29(1):40-55 18559922 - J Clin Endocrinol Metab. 2008 Sep;93(9):3551-9 6881209 - Am J Med Genet. 1983 Jul;15(3):417-35 21700882 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11524-9 11297579 - J Clin Endocrinol Metab. 2001 Apr;86(4):1532-8 11983919 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6346-51 15548653 - J Neurosci. 2004 Nov 17;24(46):10384-92 81275 - J Neurol. 1978 Aug 25;218(4):263-74 8513884 - FEBS Lett. 1993 Jun 28;325(1-2):128-34 2687610 - Brain Res Mol Brain Res. 1989 Dec;6(4):311-26 6955785 - Proc Natl Acad Sci U S A. 1982 Jul;79(13):3987-91 22927827 - PLoS Genet. 2012 Aug;8(8):e1002896 21511493 - Trends Endocrinol Metab. 2011 Jul;22(7):249-58 8832397 - J Cell Sci. 1996 Jul;109 ( Pt 7):1749-57 21059704 - Hum Mol Genet. 2011 Jan 15;20(2):336-44 17054399 - PLoS Genet. 2006 Oct 20;2(10):e175 16805665 - Annu Rev Cell Dev Biol. 2006;22:375-407 15003172 - Neuron. 2004 Mar 4;41(5):723-36 8513320 - Nat Genet. 1993 May;4(1):19-26 21856375 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):74-83 15134634 - Neuron. 2004 May 13;42(3):367-74 14568548 - Dev Biol. 2003 Nov 1;263(1):81-102 3146543 - Horm Res. 1988;29(5-6):202-6 8352153 - AJNR Am J Neuroradiol. 1993 Jul-Aug;14(4):827-38 21903667 - Hum Mol Genet. 2011 Dec 15;20(24):4759-74 20874775 - J Neurochem. 2010 Dec;115(5):1256-65 17034626 - BMC Genet. 2006 Oct 11;7:47 18400083 - BMC Dev Biol. 2008 Apr 09;8:38 4150739 - Proc R Soc Med. 1974 Jan;67(1):33-5 12571102 - Development. 2003 Mar;130(6):1101-11 8460158 - Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2461-5 17953485 - PLoS Genet. 2007 Oct;3(10 ):1867-83 19696444 - J Biol Chem. 2009 Oct 23;284(43):29905-20 12627230 - Nat Genet. 2003 Apr;33(4):463-5 16952059 - Cell Mol Life Sci. 2006 Nov;63(21):2512-26 22416012 - Hum Reprod. 2012 May;27(5):1460-5 18987492 - Sex Dev. 2008;2(4-5):181-93 16677626 - Dev Biol. 2006 Jun 15;294(2):352-65 11893524 - Trends Endocrinol Metab. 2002 Apr;13(3):112-8 18985070 - Eur J Hum Genet. 2009 Feb;17(2):139-46 15001591 - J Clin Endocrinol Metab. 2004 Mar;89(3):1079-88 19920077 - J Cell Sci. 2009 Dec 15;122(Pt 24):4492-504 15533820 - Gene Expr Patterns. 2004 Nov;5(1):67-73 18834967 - Am J Hum Genet. 2008 Oct;83(4):511-9 20117945 - Trends Endocrinol Metab. 2010 Jun;21(6):385-93 16602821 - PLoS Biol. 2006 Apr;4(4):e86 18596921 - J Clin Invest. 2008 Aug;118(8):2822-31 11493519 - Development. 2001 Jun;128(11):1951-69 6896234 - Nucleic Acids Res. 1982 Apr 24;10(8):2677-84 2325096 - J Med Genet. 1990 Mar;27(3):198-9 11874923 - Development. 2002 Mar;129(5):1283-94 |
References_xml | – reference: 5652405 - Arch Intern Med. 1968 Jun;121(6):534-8 – reference: 81275 - J Neurol. 1978 Aug 25;218(4):263-74 – reference: 17191030 - Horm Res. 2007;67(5):231-42 – reference: 18981235 - J Cell Biol. 2008 Nov 3;183(3):555-66 – reference: 14568548 - Dev Biol. 2003 Nov 1;263(1):81-102 – reference: 22416012 - Hum Reprod. 2012 May;27(5):1460-5 – reference: 15365636 - J Mol Med (Berl). 2004 Nov;82(11):725-34 – reference: 22927827 - PLoS Genet. 2012 Aug;8(8):e1002896 – reference: 6955785 - Proc Natl Acad Sci U S A. 1982 Jul;79(13):3987-91 – reference: 11893524 - Trends Endocrinol Metab. 2002 Apr;13(3):112-8 – reference: 1922361 - Nature. 1991 Oct 10;353(6344):529-36 – reference: 18985070 - Eur J Hum Genet. 2009 Feb;17(2):139-46 – reference: 21856375 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):74-83 – reference: 8513884 - FEBS Lett. 1993 Jun 28;325(1-2):128-34 – reference: 17953485 - PLoS Genet. 2007 Oct;3(10 ):1867-83 – reference: 21700882 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11524-9 – reference: 12757752 - Int J Biochem Cell Biol. 2003 Aug;35(8):1157-62 – reference: 18400083 - BMC Dev Biol. 2008 Apr 09;8:38 – reference: 8832397 - J Cell Sci. 1996 Jul;109 ( Pt 7):1749-57 – reference: 21059704 - Hum Mol Genet. 2011 Jan 15;20(2):336-44 – reference: 11493519 - Development. 2001 Jun;128(11):1951-69 – reference: 21497178 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):13-20 – reference: 9730987 - J Cell Sci. 1998 Oct;111 ( Pt 19):2953-65 – reference: 8352153 - AJNR Am J Neuroradiol. 1993 Jul-Aug;14(4):827-38 – reference: 17054399 - PLoS Genet. 2006 Oct 20;2(10):e175 – reference: 1913827 - Cell. 1991 Oct 18;67(2):423-35 – reference: 1883195 - Annu Rev Biochem. 1991;60:155-90 – reference: 6881209 - Am J Med Genet. 1983 Jul;15(3):417-35 – reference: 16805665 - Annu Rev Cell Dev Biol. 2006;22:375-407 – reference: 15001591 - J Clin Endocrinol Metab. 2004 Mar;89(3):1079-88 – reference: 2472693 - Trends Neurosci. 1989 May;12(5):189-95 – reference: 19920077 - J Cell Sci. 2009 Dec 15;122(Pt 24):4492-504 – reference: 15866045 - Mol Cell Neurosci. 2005 May;29(1):40-55 – reference: 20117945 - Trends Endocrinol Metab. 2010 Jun;21(6):385-93 – reference: 12571102 - Development. 2003 Mar;130(6):1101-11 – reference: 16602821 - PLoS Biol. 2006 Apr;4(4):e86 – reference: 2687610 - Brain Res Mol Brain Res. 1989 Dec;6(4):311-26 – reference: 15533820 - Gene Expr Patterns. 2004 Nov;5(1):67-73 – reference: 3146543 - Horm Res. 1988;29(5-6):202-6 – reference: 16677626 - Dev Biol. 2006 Jun 15;294(2):352-65 – reference: 18559922 - J Clin Endocrinol Metab. 2008 Sep;93(9):3551-9 – reference: 18596921 - J Clin Invest. 2008 Aug;118(8):2822-31 – reference: 8460158 - Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2461-5 – reference: 15324302 - Biochem J. 2004 Dec 15;384(Pt 3):495-505 – reference: 4042391 - Clin Genet. 1985 Aug;28(2):106-11 – reference: 12627230 - Nat Genet. 2003 Apr;33(4):463-5 – reference: 17034626 - BMC Genet. 2006 Oct 11;7:47 – reference: 1080088 - Clin Genet. 1975 May-Jun;7(5):368-81 – reference: 20874775 - J Neurochem. 2010 Dec;115(5):1256-65 – reference: 2325096 - J Med Genet. 1990 Mar;27(3):198-9 – reference: 15134634 - Neuron. 2004 May 13;42(3):367-74 – reference: 18987492 - Sex Dev. 2008;2(4-5):181-93 – reference: 21903667 - Hum Mol Genet. 2011 Dec 15;20(24):4759-74 – reference: 11983919 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6346-51 – reference: 21511493 - Trends Endocrinol Metab. 2011 Jul;22(7):249-58 – reference: 21664428 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):37-43 – reference: 16597617 - J Biol Chem. 2006 Jun 9;281(23):15694-700 – reference: 16952059 - Cell Mol Life Sci. 2006 Nov;63(21):2512-26 – reference: 4150739 - Proc R Soc Med. 1974 Jan;67(1):33-5 – reference: 15548653 - J Neurosci. 2004 Nov 17;24(46):10384-92 – reference: 8513320 - Nat Genet. 1993 May;4(1):19-26 – reference: 18834967 - Am J Hum Genet. 2008 Oct;83(4):511-9 – reference: 19696444 - J Biol Chem. 2009 Oct 23;284(43):29905-20 – reference: 8768867 - J Clin Endocrinol Metab. 1996 Aug;81(8):3010-7 – reference: 15003172 - Neuron. 2004 Mar 4;41(5):723-36 – reference: 6896234 - Nucleic Acids Res. 1982 Apr 24;10(8):2677-84 – reference: 11874923 - Development. 2002 Mar;129(5):1283-94 – reference: 11297579 - J Clin Endocrinol Metab. 2001 Apr;86(4):1532-8 |
SSID | ssj0020870 |
Score | 2.0415108 |
SecondaryResourceType | review_article |
Snippet | Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism
and, less frequently, by other symptoms. The... Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The... |
SourceID | pubmedcentral proquest pubmed crossref benthamscience |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2 |
SubjectTerms | Caenorhabditis elegans Drosophila melanogaster Invertebrata Nematoda |
Title | Invertebrate Models of Kallmann Syndrome: Molecular Pathogenesis and New Disease Genes |
URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=13892029&volume=14&issue=1&spage=2 https://www.ncbi.nlm.nih.gov/pubmed/23997646 https://www.proquest.com/docview/1348490055 https://www.proquest.com/docview/1429631216 https://pubmed.ncbi.nlm.nih.gov/PMC3580776 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERJIIN6El4zEDQXycOKEGyygFagIiV20N8t2XFrRplWbUrG_nhnbSdMWrWAvaeU6cZr5PJmxZ74h5EVVMZWlvAwjU1Qhy1QWSpZlIbzsea6zRCcKE4UHX_KjE_bpNDvdbBfY7JJGvdJnf80ruYhUoQ3kilmy_yHZ7qLQAN9BvnAECcPxn2SMJBmLBrd-G2Ormjkq5M9yMpnKGiaupyNAt3_Q1sFFVv7R7AfquLEjaMYYx_duo8bSUC_7FmtL4IRkrtNeaPw3DJL-NfahYRIusFlRwOxwqfW4C5o3_cUFLPSQ9hcX3sH1R3La6ZlNqH5PZaYYJxX5dQvj2sALCsEXKrb0LNvDk1eavbevi3Hd1evoN-ESAwwFI8GHddRiV9-nJ-j51Eoa83V5znYotu1L--vgEDd-Oc8vkysJB3urXeHxTnpUcJdZ7v-VS7TCG3i9PzxSSfuxrpMbyj0tb7psGzp73stuEG7Pqjm-RW56d4S-ddi6TS6Z-g656gqU_r5LvvcRRh3C6GxIW4TRFmFvaIcv2scXBXxRwBf1-KIWX_fIyccPx4dHoa_EEaos4w1M39RwXeoC7F-jctTymmuZQGselZKnBVPpMDW6qMDcU6YccqNVaXJVlaYsovQ-OahntXlI6JBHClxY8DJkxcDeLCvcCU8xY6xirNABOdt-jmLuaFdsAppYr9fCrBbmp1zaOlECZq_wheYEZndgber5aC7s1BR-agpEpfDyK4UDJHi9woJRxMICUSQBiVuZCe058rFUy0SAr4wYEPsYCMjL7pz2Vs_r_byFggBFjrtzsjaz1RL6soKVyIl3Th-wHvM0TuI8IA8cfLoxWyAGhG8Bq-uARPLbv9TjkSWU9zPi0YXPfEyubbTHE3LQLFbmKRjrjXpmZ9cfcGzuGA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invertebrate+Models+of+Kallmann+Syndrome%3A+Molecular+Pathogenesis+and+New+Disease+Genes&rft.jtitle=Current+genomics&rft.au=Schiavi%2C+Elia+Di&rft.au=Andrenacci%2C+Davide&rft.date=2013-03-01&rft.pub=Bentham+Science+Publishers&rft.issn=1389-2029&rft.eissn=1875-5488&rft.volume=14&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.2174%2F138920213804999174&rft_id=info%3Apmid%2F23997646&rft.externalDocID=PMC3580776 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |