Invertebrate Models of Kallmann Syndrome: Molecular Pathogenesis and New Disease Genes

Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of...

Full description

Saved in:
Bibliographic Details
Published inCurrent genomics Vol. 14; no. 1; pp. 2 - 10
Main Authors Di Schiavi, Elia, Andrenacci, Davide
Format Journal Article
LanguageEnglish
Published United Arab Emirates Bentham Science Publishers Ltd 01.03.2013
Bentham Science Publishers
Subjects
Online AccessGet full text
ISSN1389-2029
1875-5488
DOI10.2174/138920213804999174

Cover

Abstract Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.
AbstractList Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1 . In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster , are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1 -heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The X-linked form of this syndrome is caused by mutations affecting the KAL1 gene that codes for the extracellular protein anosmin-1. Investigation of KAL1 function in mice has been hampered by the fact that the murine ortholog has not been identified. Thus studies performed in other animal models have contributed significantly to an understanding of the function of KAL1. In this review, the main results obtained using the two invertebrate models, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, are illustrated and the contribution provided by them to the elucidation of the molecular pathogenesis of Kallmann Syndrome is discussed in detail. Structure-function dissection studies performed in these two animal models have shown how the different domains of anosmin-1 carry out specific functions, also suggesting a novel intramolecular regulation mechanism among the different domains of the protein. The model that emerges is one in which anosmin-1 plays different roles in different tissues, interacting with different components of the extracellular matrix. We also describe how the genetic approach in C. elegans has allowed the discovery of the genes involved in KAL1-heparan sulfate proteoglycans interactions and the identification of HS6ST1 as a new disease gene.
Author Elia Schiavi
Davide Andrenacci
AuthorAffiliation Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
AuthorAffiliation_xml – name: Institute of Genetics and Biophysics, Consiglio Nazionale delle Ricerche (CNR), Naples, Italy
Author_xml – sequence: 1
  givenname: Elia
  surname: Di Schiavi
  fullname: Di Schiavi, Elia
– sequence: 2
  givenname: Davide
  surname: Andrenacci
  fullname: Andrenacci, Davide
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23997646$$D View this record in MEDLINE/PubMed
BookMark eNqNUctu1DAUjVARfcAPsEBZsgnYsRPbLJBQgbaiPCQeW8txbiYGx05tZ0Zd9s_xaNoRDwmxulfnnnNf57g4cN5BUTzG6FmNGX2OCRc1qnNAVAiRoXvFEeasqRrK-UHOM6HKDHFYHMf4HaEacYYeFIc1EYK1tD0qvl24NYQEXVAJyve-BxtLP5TvlLWTcq78fO364Cd4kYsW9GJVKD-pNPoVOIgmlsr15QfYlK9NBBWhPNviD4v7g7IRHt3Gk-Lr2zdfTs-ry49nF6evLquuaViqFCXAtNC8xQ10bcM400yrOqMtEooRTjsyENC8bzHtQAwMdCeg7XoBgiNyUrzc9Z2XboJeg0tBWTkHM6lwLb0y8veKM6Nc-bUkDUeMtbnB09sGwV8tEJOcTNRgrXLglygxrUVLcI3_g0oopwKhpsnUJ7-utd_n7u-ZUO8IOvgYAwx7CkZya67829ws4n-ItEkqGb89zdh_S2920i7_YVRT1Aachv3UMaVZbjYbCUuAH9nGbHWS2k_Sz-CWYHPuUtbKeZxltj6AVCEZbUGaGN3dTCHX3i4T5L9t8SUnMs5qBfn0n3AX2rs
CitedBy_id crossref_primary_10_1371_journal_pone_0124597
crossref_primary_10_1002_fsn3_1078
crossref_primary_10_3389_fphy_2020_00362
crossref_primary_10_1111_tra_12920
crossref_primary_10_3389_fvets_2023_1136332
crossref_primary_10_1007_s11055_024_01702_x
crossref_primary_10_1111_ejn_13366
crossref_primary_10_3389_fcell_2022_836179
crossref_primary_10_31857_S0235009224010017
ContentType Journal Article
Copyright 2013 Bentham Science Publishers 2013
Copyright_xml – notice: 2013 Bentham Science Publishers 2013
DBID AAYXX
CITATION
NPM
7SS
8FD
FR3
P64
RC3
7X8
5PM
DOI 10.2174/138920213804999174
DatabaseName CrossRef
PubMed
Entomology Abstracts (Full archive)
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Entomology Abstracts
Genetics Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Entomology Abstracts
PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-5488
EndPage 10
ExternalDocumentID PMC3580776
23997646
10_2174_138920213804999174
http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_14_issue_1_spage_2
Genre Journal Article
GroupedDBID ---
.5.
0R~
29F
2WC
4.4
53G
5GY
AAEGP
ABEEF
ABJNI
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
AOIJS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GH2
GX1
HYE
HZ~
IPNFZ
KCGFV
O9-
OK1
P2P
RIG
RPM
TR2
AAYXX
AFHZU
CITATION
NPM
7SS
8FD
FR3
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-b557t-a43e7c9c8615eb65787c7ca23e7609a7384b3f3ec8d614be9f7ecb9e6bd9e9803
ISSN 1389-2029
IngestDate Thu Aug 21 14:08:52 EDT 2025
Fri Jul 11 10:59:33 EDT 2025
Thu Jul 10 20:20:53 EDT 2025
Thu Jan 02 23:11:25 EST 2025
Tue Jul 01 02:59:05 EDT 2025
Thu Apr 24 23:06:09 EDT 2025
Tue Aug 27 15:42:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Morphogenesis
CeKal-1
Extracellular matrix
Animal models
Axon branching
DmKal-1
Language English
License This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b557t-a43e7c9c8615eb65787c7ca23e7609a7384b3f3ec8d614be9f7ecb9e6bd9e9803
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3580776
PMID 23997646
PQID 1348490055
PQPubID 23462
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3580776
proquest_miscellaneous_1429631216
proquest_miscellaneous_1348490055
pubmed_primary_23997646
crossref_primary_10_2174_138920213804999174
crossref_citationtrail_10_2174_138920213804999174
benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_13892029_volume_14_issue_1_spage_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-03-01
PublicationDateYYYYMMDD 2013-03-01
PublicationDate_xml – month: 03
  year: 2013
  text: 2013-03-01
  day: 01
PublicationDecade 2010
PublicationPlace United Arab Emirates
PublicationPlace_xml – name: United Arab Emirates
PublicationTitle Current genomics
PublicationTitleAlternate CG
PublicationYear 2013
Publisher Bentham Science Publishers Ltd
Bentham Science Publishers
Publisher_xml – name: Bentham Science Publishers Ltd
– name: Bentham Science Publishers
References 5652405 - Arch Intern Med. 1968 Jun;121(6):534-8
15365636 - J Mol Med (Berl). 2004 Nov;82(11):725-34
1913827 - Cell. 1991 Oct 18;67(2):423-35
18981235 - J Cell Biol. 2008 Nov 3;183(3):555-66
21497178 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):13-20
8768867 - J Clin Endocrinol Metab. 1996 Aug;81(8):3010-7
1922361 - Nature. 1991 Oct 10;353(6344):529-36
2472693 - Trends Neurosci. 1989 May;12(5):189-95
12757752 - Int J Biochem Cell Biol. 2003 Aug;35(8):1157-62
21664428 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):37-43
16597617 - J Biol Chem. 2006 Jun 9;281(23):15694-700
1080088 - Clin Genet. 1975 May-Jun;7(5):368-81
4042391 - Clin Genet. 1985 Aug;28(2):106-11
1883195 - Annu Rev Biochem. 1991;60:155-90
9730987 - J Cell Sci. 1998 Oct;111 ( Pt 19):2953-65
17191030 - Horm Res. 2007;67(5):231-42
15324302 - Biochem J. 2004 Dec 15;384(Pt 3):495-505
15866045 - Mol Cell Neurosci. 2005 May;29(1):40-55
18559922 - J Clin Endocrinol Metab. 2008 Sep;93(9):3551-9
6881209 - Am J Med Genet. 1983 Jul;15(3):417-35
21700882 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11524-9
11297579 - J Clin Endocrinol Metab. 2001 Apr;86(4):1532-8
11983919 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6346-51
15548653 - J Neurosci. 2004 Nov 17;24(46):10384-92
81275 - J Neurol. 1978 Aug 25;218(4):263-74
8513884 - FEBS Lett. 1993 Jun 28;325(1-2):128-34
2687610 - Brain Res Mol Brain Res. 1989 Dec;6(4):311-26
6955785 - Proc Natl Acad Sci U S A. 1982 Jul;79(13):3987-91
22927827 - PLoS Genet. 2012 Aug;8(8):e1002896
21511493 - Trends Endocrinol Metab. 2011 Jul;22(7):249-58
8832397 - J Cell Sci. 1996 Jul;109 ( Pt 7):1749-57
21059704 - Hum Mol Genet. 2011 Jan 15;20(2):336-44
17054399 - PLoS Genet. 2006 Oct 20;2(10):e175
16805665 - Annu Rev Cell Dev Biol. 2006;22:375-407
15003172 - Neuron. 2004 Mar 4;41(5):723-36
8513320 - Nat Genet. 1993 May;4(1):19-26
21856375 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):74-83
15134634 - Neuron. 2004 May 13;42(3):367-74
14568548 - Dev Biol. 2003 Nov 1;263(1):81-102
3146543 - Horm Res. 1988;29(5-6):202-6
8352153 - AJNR Am J Neuroradiol. 1993 Jul-Aug;14(4):827-38
21903667 - Hum Mol Genet. 2011 Dec 15;20(24):4759-74
20874775 - J Neurochem. 2010 Dec;115(5):1256-65
17034626 - BMC Genet. 2006 Oct 11;7:47
18400083 - BMC Dev Biol. 2008 Apr 09;8:38
4150739 - Proc R Soc Med. 1974 Jan;67(1):33-5
12571102 - Development. 2003 Mar;130(6):1101-11
8460158 - Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2461-5
17953485 - PLoS Genet. 2007 Oct;3(10 ):1867-83
19696444 - J Biol Chem. 2009 Oct 23;284(43):29905-20
12627230 - Nat Genet. 2003 Apr;33(4):463-5
16952059 - Cell Mol Life Sci. 2006 Nov;63(21):2512-26
22416012 - Hum Reprod. 2012 May;27(5):1460-5
18987492 - Sex Dev. 2008;2(4-5):181-93
16677626 - Dev Biol. 2006 Jun 15;294(2):352-65
11893524 - Trends Endocrinol Metab. 2002 Apr;13(3):112-8
18985070 - Eur J Hum Genet. 2009 Feb;17(2):139-46
15001591 - J Clin Endocrinol Metab. 2004 Mar;89(3):1079-88
19920077 - J Cell Sci. 2009 Dec 15;122(Pt 24):4492-504
15533820 - Gene Expr Patterns. 2004 Nov;5(1):67-73
18834967 - Am J Hum Genet. 2008 Oct;83(4):511-9
20117945 - Trends Endocrinol Metab. 2010 Jun;21(6):385-93
16602821 - PLoS Biol. 2006 Apr;4(4):e86
18596921 - J Clin Invest. 2008 Aug;118(8):2822-31
11493519 - Development. 2001 Jun;128(11):1951-69
6896234 - Nucleic Acids Res. 1982 Apr 24;10(8):2677-84
2325096 - J Med Genet. 1990 Mar;27(3):198-9
11874923 - Development. 2002 Mar;129(5):1283-94
References_xml – reference: 5652405 - Arch Intern Med. 1968 Jun;121(6):534-8
– reference: 81275 - J Neurol. 1978 Aug 25;218(4):263-74
– reference: 17191030 - Horm Res. 2007;67(5):231-42
– reference: 18981235 - J Cell Biol. 2008 Nov 3;183(3):555-66
– reference: 14568548 - Dev Biol. 2003 Nov 1;263(1):81-102
– reference: 22416012 - Hum Reprod. 2012 May;27(5):1460-5
– reference: 15365636 - J Mol Med (Berl). 2004 Nov;82(11):725-34
– reference: 22927827 - PLoS Genet. 2012 Aug;8(8):e1002896
– reference: 6955785 - Proc Natl Acad Sci U S A. 1982 Jul;79(13):3987-91
– reference: 11893524 - Trends Endocrinol Metab. 2002 Apr;13(3):112-8
– reference: 1922361 - Nature. 1991 Oct 10;353(6344):529-36
– reference: 18985070 - Eur J Hum Genet. 2009 Feb;17(2):139-46
– reference: 21856375 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):74-83
– reference: 8513884 - FEBS Lett. 1993 Jun 28;325(1-2):128-34
– reference: 17953485 - PLoS Genet. 2007 Oct;3(10 ):1867-83
– reference: 21700882 - Proc Natl Acad Sci U S A. 2011 Jul 12;108(28):11524-9
– reference: 12757752 - Int J Biochem Cell Biol. 2003 Aug;35(8):1157-62
– reference: 18400083 - BMC Dev Biol. 2008 Apr 09;8:38
– reference: 8832397 - J Cell Sci. 1996 Jul;109 ( Pt 7):1749-57
– reference: 21059704 - Hum Mol Genet. 2011 Jan 15;20(2):336-44
– reference: 11493519 - Development. 2001 Jun;128(11):1951-69
– reference: 21497178 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):13-20
– reference: 9730987 - J Cell Sci. 1998 Oct;111 ( Pt 19):2953-65
– reference: 8352153 - AJNR Am J Neuroradiol. 1993 Jul-Aug;14(4):827-38
– reference: 17054399 - PLoS Genet. 2006 Oct 20;2(10):e175
– reference: 1913827 - Cell. 1991 Oct 18;67(2):423-35
– reference: 1883195 - Annu Rev Biochem. 1991;60:155-90
– reference: 6881209 - Am J Med Genet. 1983 Jul;15(3):417-35
– reference: 16805665 - Annu Rev Cell Dev Biol. 2006;22:375-407
– reference: 15001591 - J Clin Endocrinol Metab. 2004 Mar;89(3):1079-88
– reference: 2472693 - Trends Neurosci. 1989 May;12(5):189-95
– reference: 19920077 - J Cell Sci. 2009 Dec 15;122(Pt 24):4492-504
– reference: 15866045 - Mol Cell Neurosci. 2005 May;29(1):40-55
– reference: 20117945 - Trends Endocrinol Metab. 2010 Jun;21(6):385-93
– reference: 12571102 - Development. 2003 Mar;130(6):1101-11
– reference: 16602821 - PLoS Biol. 2006 Apr;4(4):e86
– reference: 2687610 - Brain Res Mol Brain Res. 1989 Dec;6(4):311-26
– reference: 15533820 - Gene Expr Patterns. 2004 Nov;5(1):67-73
– reference: 3146543 - Horm Res. 1988;29(5-6):202-6
– reference: 16677626 - Dev Biol. 2006 Jun 15;294(2):352-65
– reference: 18559922 - J Clin Endocrinol Metab. 2008 Sep;93(9):3551-9
– reference: 18596921 - J Clin Invest. 2008 Aug;118(8):2822-31
– reference: 8460158 - Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2461-5
– reference: 15324302 - Biochem J. 2004 Dec 15;384(Pt 3):495-505
– reference: 4042391 - Clin Genet. 1985 Aug;28(2):106-11
– reference: 12627230 - Nat Genet. 2003 Apr;33(4):463-5
– reference: 17034626 - BMC Genet. 2006 Oct 11;7:47
– reference: 1080088 - Clin Genet. 1975 May-Jun;7(5):368-81
– reference: 20874775 - J Neurochem. 2010 Dec;115(5):1256-65
– reference: 2325096 - J Med Genet. 1990 Mar;27(3):198-9
– reference: 15134634 - Neuron. 2004 May 13;42(3):367-74
– reference: 18987492 - Sex Dev. 2008;2(4-5):181-93
– reference: 21903667 - Hum Mol Genet. 2011 Dec 15;20(24):4759-74
– reference: 11983919 - Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6346-51
– reference: 21511493 - Trends Endocrinol Metab. 2011 Jul;22(7):249-58
– reference: 21664428 - Mol Cell Endocrinol. 2011 Oct 22;346(1-2):37-43
– reference: 16597617 - J Biol Chem. 2006 Jun 9;281(23):15694-700
– reference: 16952059 - Cell Mol Life Sci. 2006 Nov;63(21):2512-26
– reference: 4150739 - Proc R Soc Med. 1974 Jan;67(1):33-5
– reference: 15548653 - J Neurosci. 2004 Nov 17;24(46):10384-92
– reference: 8513320 - Nat Genet. 1993 May;4(1):19-26
– reference: 18834967 - Am J Hum Genet. 2008 Oct;83(4):511-9
– reference: 19696444 - J Biol Chem. 2009 Oct 23;284(43):29905-20
– reference: 8768867 - J Clin Endocrinol Metab. 1996 Aug;81(8):3010-7
– reference: 15003172 - Neuron. 2004 Mar 4;41(5):723-36
– reference: 6896234 - Nucleic Acids Res. 1982 Apr 24;10(8):2677-84
– reference: 11874923 - Development. 2002 Mar;129(5):1283-94
– reference: 11297579 - J Clin Endocrinol Metab. 2001 Apr;86(4):1532-8
SSID ssj0020870
Score 2.0415108
SecondaryResourceType review_article
Snippet Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The...
Kallmann Syndrome is a heritable disorder characterized by congenital anosmia, hypogonadotropic hypogonadism and, less frequently, by other symptoms. The...
SourceID pubmedcentral
proquest
pubmed
crossref
benthamscience
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2
SubjectTerms Caenorhabditis elegans
Drosophila melanogaster
Invertebrata
Nematoda
Title Invertebrate Models of Kallmann Syndrome: Molecular Pathogenesis and New Disease Genes
URI http://www.eurekaselect.com/openurl/content.php?genre=article&issn=13892029&volume=14&issue=1&spage=2
https://www.ncbi.nlm.nih.gov/pubmed/23997646
https://www.proquest.com/docview/1348490055
https://www.proquest.com/docview/1429631216
https://pubmed.ncbi.nlm.nih.gov/PMC3580776
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZgERJIIN6El4zEDQXycOKEGyygFagIiV20N8t2XFrRplWbUrG_nhnbSdMWrWAvaeU6cZr5PJmxZ74h5EVVMZWlvAwjU1Qhy1QWSpZlIbzsea6zRCcKE4UHX_KjE_bpNDvdbBfY7JJGvdJnf80ruYhUoQ3kilmy_yHZ7qLQAN9BvnAECcPxn2SMJBmLBrd-G2Ormjkq5M9yMpnKGiaupyNAt3_Q1sFFVv7R7AfquLEjaMYYx_duo8bSUC_7FmtL4IRkrtNeaPw3DJL-NfahYRIusFlRwOxwqfW4C5o3_cUFLPSQ9hcX3sH1R3La6ZlNqH5PZaYYJxX5dQvj2sALCsEXKrb0LNvDk1eavbevi3Hd1evoN-ESAwwFI8GHddRiV9-nJ-j51Eoa83V5znYotu1L--vgEDd-Oc8vkysJB3urXeHxTnpUcJdZ7v-VS7TCG3i9PzxSSfuxrpMbyj0tb7psGzp73stuEG7Pqjm-RW56d4S-ddi6TS6Z-g656gqU_r5LvvcRRh3C6GxIW4TRFmFvaIcv2scXBXxRwBf1-KIWX_fIyccPx4dHoa_EEaos4w1M39RwXeoC7F-jctTymmuZQGselZKnBVPpMDW6qMDcU6YccqNVaXJVlaYsovQ-OahntXlI6JBHClxY8DJkxcDeLCvcCU8xY6xirNABOdt-jmLuaFdsAppYr9fCrBbmp1zaOlECZq_wheYEZndgber5aC7s1BR-agpEpfDyK4UDJHi9woJRxMICUSQBiVuZCe058rFUy0SAr4wYEPsYCMjL7pz2Vs_r_byFggBFjrtzsjaz1RL6soKVyIl3Th-wHvM0TuI8IA8cfLoxWyAGhG8Bq-uARPLbv9TjkSWU9zPi0YXPfEyubbTHE3LQLFbmKRjrjXpmZ9cfcGzuGA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Invertebrate+Models+of+Kallmann+Syndrome%3A+Molecular+Pathogenesis+and+New+Disease+Genes&rft.jtitle=Current+genomics&rft.au=Schiavi%2C+Elia+Di&rft.au=Andrenacci%2C+Davide&rft.date=2013-03-01&rft.pub=Bentham+Science+Publishers&rft.issn=1389-2029&rft.eissn=1875-5488&rft.volume=14&rft.issue=1&rft.spage=2&rft.epage=10&rft_id=info:doi/10.2174%2F138920213804999174&rft_id=info%3Apmid%2F23997646&rft.externalDocID=PMC3580776
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon