A Brief Survey for MicroRNA Precursor Identification Using Machine Learning Methods

MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and ar...

Full description

Saved in:
Bibliographic Details
Published inCurrent genomics Vol. 21; no. 1; pp. 11 - 25
Main Authors Guan, Zheng-Xing, Li, Shi-Hao, Zhang, Zi-Mei, Zhang, Dan, Yang, Hui, Ding, Hui
Format Journal Article
LanguageEnglish
Published Sharjah Bentham Science Publishers Ltd 01.01.2020
Benham Science Publishers
Bentham Science Publishers
Subjects
Online AccessGet full text
ISSN1389-2029
1875-5488
1875-5488
DOI10.2174/1389202921666200214125102

Cover

Abstract MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as timeconsuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.
AbstractList MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.
MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as timeconsuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.
MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.
Author Dan Zhang
Hui Yang
Zheng-Xing Guan
Zi-Mei Zhang
Shi-Hao Li
Hui Ding
Author_xml – sequence: 1
  givenname: Zheng-Xing
  orcidid: 0000-0003-2172-6161
  surname: Guan
  fullname: Guan, Zheng-Xing
  organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 2
  givenname: Shi-Hao
  orcidid: 0000-0003-0729-7989
  surname: Li
  fullname: Li, Shi-Hao
  organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 3
  givenname: Zi-Mei
  orcidid: 0000-0003-3428-9482
  surname: Zhang
  fullname: Zhang, Zi-Mei
  organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 4
  givenname: Dan
  orcidid: 0000-0002-0520-7655
  surname: Zhang
  fullname: Zhang, Dan
  organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 5
  givenname: Hui
  orcidid: 0000-0001-7122-1212
  surname: Yang
  fullname: Yang, Hui
  organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
– sequence: 6
  givenname: Hui
  orcidid: 0000-0002-9607-9571
  surname: Ding
  fullname: Ding, Hui
  organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China
BookMark eNqVUEtv1DAQjlARfcB_COLCJWA7seNwAC0Vj0pbQJSeR44z2bgkdmonu9ozfxzvbgWiEhKcZjTzPWa-0-TIOotJ8pSSF4yWxUuay4oRVjEqhGCEMFpQxilhD5ITKkue8ULKo9hHXLYDHienIdxEIJEleZQc50xwzqriJLlapG-9wTa9mv0at2nrfHpptHdfPy3SLx717EMcXTRoJ9MarSbjbHodjF2ll0p3xmK6ROXtfoBT55rwOHnYqj7gk7t6lly_f_ft_GO2_Pzh4nyxzOpoPmWNLFrOSqqkzgUVNSlpXecE60IyqSjPW5XLouaiRqqrkrNGlCRvGG-EIqJR-Vny6qA721FtN6rvYfRmUH4LlMAuKfhrUpH8-kAe53rARsf_vPot4JSBPzfWdLByayhzVsiKRIHndwLe3c4YJhhM0Nj3yqKbA7CC5ZwKWdAIfXYPeuNmb2M2wHjJaVEKUkbUmwMqph-Cxxa0mfZ5R3_T_9NP1T2F_8njx4Fbx387NQRt0Gr8pdBN0wibzQZw9vhdBexRT6DdAG5EO_s-9naKXBi7EVZoPYLyk9E9ggnB7q1h5w1r188DxoN2ixmBQhjVKlaa_wSsluFt
CitedBy_id crossref_primary_10_2174_138920292101200305145123
crossref_primary_10_3390_diagnostics12123067
crossref_primary_10_1109_ACCESS_2020_3027481
Cites_doi 10.1016/j.omtn.2019.05.028
10.1093/bioinformatics/btx622
10.1093/nar/gks146
10.1126/science.1064921
10.1155/2016/9565689
10.1039/C6MB00295A
10.1016/j.tcb.2004.02.006
10.1155/2016/5413903
10.1109/TSP.2006.880252
10.7150/ijbs.24174
10.1038/nature01957
10.2174/1574893612666170221152848
10.1038/35002607
10.1371/journal.pone.0121501
10.1093/bib/bbl016
10.1038/s41598-018-36946-4
10.3892/etm.2019.7552
10.1023/A:1010933404324
10.3390/cells8111332
10.1016/j.omtn.2019.04.019
10.1109/TCBB.2017.2776280
10.1007/s00438-015-1078-7
10.1093/bioinformatics/btp107
10.1006/bbrc.1999.1325
10.1093/bioinformatics/btm026
10.1080/07391102.2015.1014422
10.2174/1574893611666160628074537
10.1186/s12958-018-0450-y
10.1098/rsob.190054
10.1261/rna.5167604
10.1038/nature02871
10.1093/bioinformatics/bty140
10.1016/j.cell.2005.10.022
10.1093/bib/bby028
10.1016/j.jtbi.2010.12.024
10.1016/j.csbj.2019.06.024
10.1016/j.ijbiomac.2019.12.009
10.1186/s12864-017-4338-6
10.1093/bioinformatics/btx612
10.1186/gb-2003-4-7-r42
10.1089/cmb.2018.0004
10.1038/srep34820
10.1093/nar/gkh023
10.2174/1574893611666160815150746
10.3389/fgene.2018.00657
10.1142/S1793524517500504
10.1093/bioinformatics/bti562
10.1093/nar/gky1051
10.1093/bioinformatics/btw564
10.1007/978-1-62703-748-8_10
10.1080/01431160110107743
10.1093/nar/gkv698
10.1186/1471-2105-11-438
10.1186/s12859-014-0423-x
10.1371/journal.pone.0145541
10.1016/j.knosys.2018.10.007
10.2174/1389200219666180820112457
10.1093/nar/gku1019
10.1109/TCBB.2017.2666141
10.1093/bioinformatics/btz015
10.2174/1574893613666181113131415
10.1155/2014/623149
10.3389/fgene.2019.00119
10.2174/1574893614666181212102030
10.1261/rna.043612.113
10.1038/s41598-017-16162-2
10.1093/bioinformatics/bty002
10.1093/bioinformatics/bty827
10.3389/fmicb.2018.00476
10.1016/j.omtn.2019.08.011
10.1038/nrd.2016.246
10.1186/1471-2105-11-S1-S29
10.3389/fphar.2018.00276
10.2174/1574893612666171002113742
10.2174/1566523218666180913112751
10.1093/nar/gkt1248
10.3389/fimmu.2018.01783
10.1109/TPAMI.2005.159
10.1126/science.1062039
10.1155/2016/1654623
10.1371/journal.pone.0106542
10.1039/C9MO00098D
10.1109/TCBB.2013.146
10.1093/bioinformatics/btu602
10.1109/ACCESS.2018.2889809
10.1093/nar/gkw459
10.1093/bioinformatics/btw591
10.3390/ijms20092079
10.2174/1574893612666170707095707
10.1093/bib/bbz048
10.1093/bioinformatics/bty1047
10.1039/C7MB00115K
10.18632/oncotarget.23099
10.1093/bib/bby053
10.1186/s12859-016-1405-y
10.1007/s10142-005-0145-2
10.1093/bioinformatics/btr153
10.2174/1574893611666160609081155
10.3390/genes10040321
10.1093/bib/bbx103
10.1109/TCBB.2016.2576459
10.1097/00004424-198903000-00012
10.3389/fgene.2018.00613
10.1080/17460441.2017.1263298
10.1093/nar/gkp818
10.1002/prot.25697
10.3934/mbe.2019123
10.1038/sj.emboj.7600385
10.1007/BF00058655
10.1613/jair.953
10.1021/acs.jcim.8b00368
10.1002/prot.1035
10.1155/2013/567529
10.2217/pgs-2018-0051
10.1145/1961189.1961199
10.1038/nmeth746
10.1093/nar/gky1141
10.1155/2014/286419
10.1093/nar/gkx1067
10.1016/j.ygeno.2018.01.005
10.1101/gr.6597907
10.1093/bioinformatics/bty943
10.2174/1570178614666170419122621
10.1021/acs.jafc.9b00622
10.2174/1574893611666160711162006
10.1126/science.1065062
10.1186/1471-2105-14-83
10.1093/nar/gkg599
10.1093/bioinformatics/bth374
10.1093/bioinformatics/btg388
10.1038/338313a0
10.1093/nar/gkx533
10.1039/C5MB00883B
10.1186/1471-2105-6-310
10.1093/bioinformatics/btz358
10.3390/molecules22101732
10.1093/nar/gkm368
ContentType Journal Article
Copyright Copyright Bentham Science Jan 2020
2020 Bentham Science Publishers.
2020 Bentham Science Publishers 2020
Copyright_xml – notice: Copyright Bentham Science Jan 2020
– notice: 2020 Bentham Science Publishers.
– notice: 2020 Bentham Science Publishers 2020
DBID AAYXX
CITATION
7QL
7QO
7QP
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.2174/1389202921666200214125102
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1875-5488
EndPage 25
ExternalDocumentID oai:pubmedcentral.nih.gov:7324890
PMC7324890
10_2174_1389202921666200214125102
http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_21_issue_1_spage_11
GroupedDBID ---
.5.
0R~
29F
2WC
4.4
53G
5GY
AAEGP
ABEEF
ABJNI
ACGFS
ACIWK
ACPRK
ADBBV
AENEX
AFRAH
AFUQM
AGJNZ
ALMA_UNASSIGNED_HOLDINGS
ANTIV
AOIJS
BAWUL
C1A
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GH2
GX1
HYE
HZ~
IPNFZ
KCGFV
O9-
OK1
P2P
RIG
RPM
TR2
AAYXX
AFHZU
CITATION
7QL
7QO
7QP
7SS
7T7
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-b552t-d84f5271a8c3616b071bb30eb4828a153fa384b56be1c9752d6703d25d6a06da3
IEDL.DBID UNPAY
ISSN 1389-2029
1875-5488
IngestDate Sun Oct 26 04:08:02 EDT 2025
Thu Aug 21 18:11:47 EDT 2025
Thu Jul 10 19:27:53 EDT 2025
Mon Jun 30 12:01:13 EDT 2025
Thu Apr 24 23:01:40 EDT 2025
Tue Jul 01 02:59:06 EDT 2025
Tue Aug 27 15:43:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b552t-d84f5271a8c3616b071bb30eb4828a153fa384b56be1c9752d6703d25d6a06da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-2172-6161
0000-0002-9607-9571
0000-0001-7122-1212
0000-0003-0729-7989
0000-0003-3428-9482
0000-0002-0520-7655
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7324890
PMID 32655294
PQID 2575147607
PQPubID 2048057
PageCount 15
ParticipantIDs unpaywall_primary_10_2174_1389202921666200214125102
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324890
proquest_miscellaneous_2423516841
proquest_journals_2575147607
crossref_citationtrail_10_2174_1389202921666200214125102
crossref_primary_10_2174_1389202921666200214125102
benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_21_issue_1_spage_11
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Sharjah
PublicationPlace_xml – name: Sharjah
PublicationTitle Current genomics
PublicationTitleAlternate CG
PublicationYear 2020
Publisher Bentham Science Publishers Ltd
Benham Science Publishers
Bentham Science Publishers
Publisher_xml – name: Bentham Science Publishers Ltd
– name: Benham Science Publishers
– name: Bentham Science Publishers
References Dao F.Y. (ref=98) 2019; 35
Stephenson N. (ref=54) 2019; 20
Xue J. (ref=21) 2017; 12
Batuwita R. (ref=31) 2009; 25
Peng L. (ref=137) 2018; 13
Ruby J.G. (ref=28) 2007; 17
Wang X. (ref=30) 2005; 21
Manavalan B. (ref=82) 2019; 16
Zheng X. (ref=42) 2019; 9
Saçar M.D. (ref=135) 2014; 1107
Breiman L. (ref=106) 2001; 45
Knight S.W. (ref=8) 2001; 293
Tempel S. (ref=130) 2012; 40
Zhang T. (ref=56) 2017; 45
Metz C.E. (ref=124) 1989; 24
Khan A. (ref=51) 2017; 13
Chou C.H. (ref=64) 2018; 46
Zuo Y. (ref=90) 2017; 33
Patel S. (ref=138) 2017; 12
Yoon B.J. (ref=116) 2006; 54
Feng P. (ref=120) 2019; 111
Feng C.Q. (ref=99) 2019; 35
Xue C. (ref=33) 2005; 6
Manavalan B. (ref=103) 2018; 9
Lv H. (ref=53) 2019
Chen Z. (ref=74) 2018; 34
Manavalan B. (ref=102) 2017; 9
Lai E.C. (ref=29) 2003; 4
Liu B. (ref=40) 2016; 34
Yao Y. (ref=39) 2016; 12
Dao F.Y. (ref=113) 2018; 9
Milone D.H. (ref=115) 2010; 11
Boulesteix A.L. (ref=129) 2007; 8
Peace R.J. (ref=66) 2015; 43
Cheng L. (ref=23) 2018; 34
Stegmayer G. (ref=45) 2017; 14
Liao Z. (ref=18) 2018; 13
Xu Z.C. (ref=67) 2019; 35
Rupaimoole R. (ref=20) 2017; 16
Kozomara A. (ref=62) 2019; 47
Yang H. (ref=87) 2016; 2016
Fu X. (ref=43) 2019; 10
Qu K.Y. (ref=68) 2019; 14
Loh S.K. (ref=72) 2018; 13
Chou K.C. (ref=118) 2011; 273
Lin H. (ref=134) 2014; 42
Zhang Z. (ref=63) 2010; 38
Li J.H. (ref=65) 2014; 42
Tang H. (ref=88) 2016; 12
Ng K.L. (ref=32) 2007; 23
Peng H. (ref=133) 2005; 27
Millar A.A. (ref=10) 2005; 5
Chen W. (ref=121) 2019; 35
Agarwal S. (ref=35) 2010; 11
Breiman L. (ref=107) 1996; 24
Liang Z.Y. (ref=57) 2017; 33
Hofacker I.L. (ref=85) 2004; 20
Chou K.C. (ref=86) 2001; 43
(ref=97) 1998
Basith S. (ref=81) 2019; 18
Manavalan B. (ref=123) 2019; 17
Lee Y. (ref=4) 2004; 23
Tang H. (ref=104) 2017; 10
Manavalan B. (ref=83) 2019; 35
Sun Y. (ref=13) 2019; 18
López-Ruiz B.A. (ref=12) 2019; 20
Pfeffer S. (ref=48) 2005; 2
Cao R. (ref=77) 2017; 22
Zhu X.J. (ref=101) 2019; 163
Lagos-Quintana M. (ref=26) 2001; 294
Feng P.M. (ref=79) 2013; 2013
Hu B. (ref=60) 2019; 9
Long C.S. (ref=80) 2018; 7
Cao R. (ref=140) 2016; 17
Hofacker I.L. (ref=84) 2003; 31
Xue L. (ref=117) 2019; 59
Griffiths-Jones S. (ref=61) 2004; 32
Bonnet E. (ref=96) 2004; 20
Li B.Q. (ref=73) 2018; 13
Xia M.M. (ref=14) 2018; 40
Wei L. (ref=37) 2014; 11
Lau N.C. (ref=27) 2001; 294
Tang H. (ref=70) 2018; 14
Yang W. (ref=52) 2019; 14
Hasan M.M. (ref=111) 2019
Zhao W. (ref=75) 2017; 14
Cheng L. (ref=125) 2018; 19
Ambros V. (ref=1) 2004; 431
Chawla N.V. (ref=128) 2002; 16
Reinhart B.J. (ref=3) 2000; 403
Tan J.X. (ref=119) 2019; 16
Zhang J. (ref=15) 2019; 17
Liu D. (ref=131) 2019; 20
Chen P. (ref=16) 2017; 7
Kavzoglu T. (ref=127) 2002; 23
Chen X.X. (ref=89) 2016; 2016
Long H.X. (ref=139) 2017; 12
Bohnsack M.T. (ref=7) 2004; 10
Cheng L. (ref=126) 2018; 9
Chou K.C. (ref=95) 1999; 264
Kohonen T. (ref=114) 1988
Ruvkun G. (ref=2) 1989; 338
Zuo Y. (ref=91) 2015; 10
Kittelmann S. (ref=11) 2019; 10
Tang W. (ref=19) 2018; 34
Cheng L. (ref=59) 2019; 20
Jiang L. (ref=41) 2016; 2016
Jiang P. (ref=34)
Ding H. (ref=78) 2014; 2014
Chen W. (ref=94) 2015; 31
Lee Y. (ref=5) 2003; 425
Zhang X. (ref=25) 2019; 16
Yuan L.Z. (ref=76) 2017; 12
Chen W. (ref=93) 2014; 2014
Song J. (ref=71) 2019; 20
Chen Z. (ref=17) 2019; 67
Manavalan B. (ref=108) 2014; 9
Lai H.Y. (ref=55) 2018; 18
Lin H. (ref=69) 2019; 16
Meng J. (ref=49) 2014; 15
Yang H. (ref=92) 2018; 25
Yones C. (ref=46) 2018; 34
Manavalan B. (ref=122) 2019; 8
Tav C. (ref=47) 2016; 44
Liu B. (ref=132) 2016; 291
Xuan P. (ref=36) 2011; 27
Liu B. (ref=38) 2015; 10
Hasan M.M. (ref=112) 2019; 15
Zambrano T. (ref=22) 2018; 19
Hou J. (ref=136) 2019; 87
Cheng L. (ref=58) 2019; 47
Lin C-J. (ref=105) 2011; 2
Manavalan B. (ref=109) 2018; 9
Kim V.N. (ref=6) 2004; 14
Lai H.Y. (ref=100) 2019; 17
Gudyś A. (ref=44) 2013; 14
Manavalan B. (ref=110) 2018; 9
Gregory R.I. (ref=9) 2005; 123
Tran V. (ref=50) 2015; 21
Cheng L. (ref=24) 2016; 6
References_xml – volume: 17
  start-page: 337
  year: 2019
  ident: ref=100
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.05.028
– volume: 34
  start-page: 398
  year: 2018
  ident: ref=19
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx622
– volume: 40
  year: 2012
  ident: ref=130
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks146
– year: 1998
  ident: ref=97
  publication-title: Statistical Learning Theory
– volume: 294
  start-page: 853
  year: 2001
  ident: ref=26
  publication-title: Science
  doi: 10.1126/science.1064921
– volume: 2016
  year: 2016
  ident: ref=41
  publication-title: BioMed Res Int
  doi: 10.1155/2016/9565689
– volume: 12
  start-page: 3124
  year: 2016
  ident: ref=39
  publication-title: Mol Biosyst
  doi: 10.1039/C6MB00295A
– volume: 14
  start-page: 156
  year: 2004
  ident: ref=6
  publication-title: Trends Cell Biol
  doi: 10.1016/j.tcb.2004.02.006
– volume: 2016
  year: 2016
  ident: ref=87
  publication-title: BioMed Res Int
  doi: 10.1155/2016/5413903
– volume: 54
  start-page: 4166
  year: 2006
  ident: ref=116
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.880252
– volume: 14
  start-page: 957
  year: 2018
  ident: ref=70
  publication-title: Int J Biol Sci
  doi: 10.7150/ijbs.24174
– volume: 425
  start-page: 415
  year: 2003
  ident: ref=5
  publication-title: Nature
  doi: 10.1038/nature01957
– volume: 12
  start-page: 233
  year: 2017
  ident: ref=139
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666170221152848
– volume: 403
  start-page: 901
  year: 2000
  ident: ref=3
  publication-title: Nature
  doi: 10.1038/35002607
– volume: 10
  year: 2015
  ident: ref=38
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0121501
– volume: 8
  start-page: 32
  year: 2007
  ident: ref=129
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbl016
– volume: 9
  start-page: 628
  year: 2019
  ident: ref=42
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-36946-4
– volume: 18
  start-page: 77
  year: 2019
  ident: ref=13
  publication-title: Exp Ther Med
  doi: 10.3892/etm.2019.7552
– volume: 45
  start-page: 5
  year: 2001
  ident: ref=106
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 8
  start-page: 8
  year: 2019
  ident: ref=122
  publication-title: Cells
  doi: 10.3390/cells8111332
– volume: 16
  start-page: 733
  year: 2019
  ident: ref=82
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.04.019
– volume: 16
  start-page: 283
  year: 2019
  ident: ref=25
  publication-title: IEEE/ACM Trans Comput Biol Bioinformatics
  doi: 10.1109/TCBB.2017.2776280
– volume: 291
  start-page: 473
  year: 2016
  ident: ref=132
  publication-title: Mol Genet Genomics
  doi: 10.1007/s00438-015-1078-7
– volume: 25
  start-page: 989
  year: 2009
  ident: ref=31
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp107
– volume: 264
  start-page: 216
  year: 1999
  ident: ref=95
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.1999.1325
– volume: 23
  start-page: 1321
  year: 2007
  ident: ref=32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm026
– volume: 34
  start-page: 223
  year: 2016
  ident: ref=40
  publication-title: J Biomol Struct Dyn
  doi: 10.1080/07391102.2015.1014422
– volume: 12
  start-page: 52
  year: 2017
  ident: ref=76
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160628074537
– volume: 17
  start-page: 9
  year: 2019
  ident: ref=15
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/s12958-018-0450-y
– volume: 9
  year: 2019
  ident: ref=60
  publication-title: Open Biol
  doi: 10.1098/rsob.190054
– volume: 10
  start-page: 185
  year: 2004
  ident: ref=7
  publication-title: RNA
  doi: 10.1261/rna.5167604
– volume: 431
  start-page: 350
  year: 2004
  ident: ref=1
  publication-title: Nature
  doi: 10.1038/nature02871
– volume: 34
  start-page: 2499
  year: 2018
  ident: ref=74
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty140
– volume: 123
  start-page: 631
  year: 2005
  ident: ref=9
  publication-title: Cell
  doi: 10.1016/j.cell.2005.10.022
– volume: 20
  start-page: 638
  year: 2019
  ident: ref=71
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby028
– volume: 273
  start-page: 236
  year: 2011
  ident: ref=118
  publication-title: J Theor Biol
  doi: 10.1016/j.jtbi.2010.12.024
– volume: 17
  start-page: 972
  year: 2019
  ident: ref=123
  publication-title: Comput Struct Biotechnol J
  doi: 10.1016/j.csbj.2019.06.024
– start-page: S0141-8130(19)38547-2.
  year: 2019
  ident: ref=111
  publication-title: nt J Biol Macromol
  doi: 10.1016/j.ijbiomac.2019.12.009
– volume: 19
  start-page: 919
  year: 2018
  ident: ref=125
  publication-title: BMC Genomics
  doi: 10.1186/s12864-017-4338-6
– volume: 34
  start-page: 541
  year: 2018
  ident: ref=46
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx612
– volume: 4
  start-page: R42
  year: 2003
  ident: ref=29
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-7-r42
– volume: 25
  start-page: 1266
  year: 2018
  ident: ref=92
  publication-title: J Comput Biol
  doi: 10.1089/cmb.2018.0004
– volume: 6
  start-page: 34820
  year: 2016
  ident: ref=24
  publication-title: Sci Rep
  doi: 10.1038/srep34820
– volume: 32
  start-page: D109
  year: 2004
  ident: ref=61
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkh023
– volume: 12
  start-page: 551
  year: 2017
  ident: ref=138
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160815150746
– volume: 9
  start-page: 657
  year: 2018
  ident: ref=126
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00657
– volume: 10
  start-page: 10
  year: 2017
  ident: ref=104
  publication-title: Int J Biomath
  doi: 10.1142/S1793524517500504
– volume: 21
  start-page: 3610
  year: 2005
  ident: ref=30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti562
– volume: 47
  start-page: D140
  year: 2019
  ident: ref=58
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1051
– volume: 33
  start-page: 122
  year: 2017
  ident: ref=90
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw564
– volume: 1107
  start-page: 177
  year: 2014
  ident: ref=135
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-62703-748-8_10
– volume: 23
  start-page: 2919
  year: 2002
  ident: ref=127
  publication-title: Int J Remote Sens
  doi: 10.1080/01431160110107743
– volume: 43
  year: 2015
  ident: ref=66
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkv698
– volume: 11
  start-page: 438
  year: 2010
  ident: ref=115
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-438
– volume: 15
  start-page: 423
  year: 2014
  ident: ref=49
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-014-0423-x
– year: 1988
  ident: ref=114
  publication-title: Self-organized formation of topologically correct feature maps
– volume: 10
  year: 2015
  ident: ref=91
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0145541
– volume: 163
  start-page: 787
  year: 2019
  ident: ref=101
  publication-title: Knowl Base Syst
  doi: 10.1016/j.knosys.2018.10.007
– volume: 20
  start-page: 185
  year: 2019
  ident: ref=54
  publication-title: Curr Drug Metab
  doi: 10.2174/1389200219666180820112457
– volume: 42
  start-page: 12961
  year: 2014
  ident: ref=134
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gku1019
– volume: 16
  start-page: 1316
  year: 2019
  ident: ref=69
  publication-title: IEEE/ACM Trans Comput Biol Bioinformatics
  doi: 10.1109/TCBB.2017.2666141
– volume: 35
  start-page: 2796
  year: 2019
  ident: ref=121
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz015
– volume: 14
  start-page: 234
  year: 2019
  ident: ref=52
  publication-title: Curr Bioinform
  doi: 10.2174/1574893613666181113131415
– volume: 2014
  year: 2014
  ident: ref=93
  publication-title: BioMed Res Int
  doi: 10.1155/2014/623149
– volume: 10
  start-page: 119
  year: 2019
  ident: ref=43
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00119
– volume: 14
  start-page: 246
  year: 2019
  ident: ref=68
  publication-title: Curr Bioinform
  doi: 10.2174/1574893614666181212102030
– volume: 21
  start-page: 775
  year: 2015
  ident: ref=50
  publication-title: RNA
  doi: 10.1261/rna.043612.113
– volume: 7
  start-page: 15915
  year: 2017
  ident: ref=16
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-16162-2
– volume: 34
  start-page: 1953
  year: 2018
  ident: ref=23
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty002
– volume: 35
  start-page: 1469
  year: 2019
  ident: ref=99
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty827
– volume: 9
  start-page: 476
  year: 2018
  ident: ref=103
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2018.00476
– volume: 18
  start-page: 131
  year: 2019
  ident: ref=81
  publication-title: Mol Ther Nucleic Acids
  doi: 10.1016/j.omtn.2019.08.011
– volume: 16
  start-page: 203
  year: 2017
  ident: ref=20
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd.2016.246
– volume: 11
  start-page: S29
  year: 2010
  ident: ref=35
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-S1-S29
– volume: 9
  start-page: 276
  year: 2018
  ident: ref=110
  publication-title: Front Pharmacol
  doi: 10.3389/fphar.2018.00276
– volume: 13
  start-page: 373
  year: 2018
  ident: ref=72
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666171002113742
– volume: 18
  start-page: 257
  year: 2018
  ident: ref=55
  publication-title: Curr Gene Ther
  doi: 10.2174/1566523218666180913112751
– volume: 42
  start-page: D92
  year: 2014
  ident: ref=65
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt1248
– volume: 9
  start-page: 1783
  year: 2018
  ident: ref=109
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2018.01783
– volume: 27
  start-page: 1226
  year: 2005
  ident: ref=133
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– volume: 293
  start-page: 2269
  year: 2001
  ident: ref=8
  publication-title: Science
  doi: 10.1126/science.1062039
– volume: 2016
  year: 2016
  ident: ref=89
  publication-title: BioMed Res Int
  doi: 10.1155/2016/1654623
– volume: 9
  year: 2014
  ident: ref=108
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0106542
– volume: 15
  start-page: 451
  year: 2019
  ident: ref=112
  publication-title: Mol Omics
  doi: 10.1039/C9MO00098D
– volume: 11
  start-page: S29
  year: 2014
  ident: ref=37
  publication-title: BMC Bioinformatics
  doi: 10.1109/TCBB.2013.146
– volume: 31
  start-page: 119
  year: 2015
  ident: ref=94
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu602
– volume: 7
  start-page: 7794
  year: 2018
  ident: ref=80
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2889809
– volume: 44
  start-page: W181
  year: 2016
  ident: ref=47
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkw459
– volume: 33
  start-page: 467
  year: 2017
  ident: ref=57
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw591
– volume: 20
  start-page: 20
  year: 2019
  ident: ref=12
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20092079
– volume: 13
  start-page: 352
  year: 2018
  ident: ref=137
  publication-title: Curr Bioinform
  doi: 10.2174/1574893612666170707095707
– year: 2019
  ident: ref=53
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbz048
– volume: 35
  start-page: 2757
  year: 2019
  ident: ref=83
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty1047
– volume: 13
  start-page: 1640
  year: 2017
  ident: ref=51
  publication-title: Mol Biosyst
  doi: 10.1039/C7MB00115K
– volume: 9
  start-page: 1944
  year: 2017
  ident: ref=102
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23099
– volume: 20
  start-page: 1826
  year: 2019
  ident: ref=131
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bby053
– volume: 17
  start-page: 495
  year: 2016
  ident: ref=140
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-016-1405-y
– volume: 5
  start-page: 129
  year: 2005
  ident: ref=10
  publication-title: Funct Integr Genomics
  doi: 10.1007/s10142-005-0145-2
– volume: 27
  start-page: 1368
  year: 2011
  ident: ref=36
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr153
– volume: 13
  start-page: 57
  year: 2018
  ident: ref=18
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160609081155
– volume: 10
  start-page: 10
  year: 2019
  ident: ref=11
  publication-title: Genes (Basel)
  doi: 10.3390/genes10040321
– volume: 20
  start-page: 203
  year: 2019
  ident: ref=59
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbx103
– volume: 14
  start-page: 1316
  year: 2017
  ident: ref=45
  publication-title: IEEE/ACM Trans Comput Biol Bioinformatics
  doi: 10.1109/TCBB.2016.2576459
– volume: 24
  start-page: 234
  year: 1989
  ident: ref=124
  publication-title: Invest Radiol
  doi: 10.1097/00004424-198903000-00012
– volume: 9
  start-page: 613
  year: 2018
  ident: ref=113
  publication-title: Front Genet
  doi: 10.3389/fgene.2018.00613
– volume: 12
  start-page: 141
  year: 2017
  ident: ref=21
  publication-title: Expert Opin Drug Discov
  doi: 10.1080/17460441.2017.1263298
– volume: 38
  start-page: D806
  year: 2010
  ident: ref=63
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkp818
– volume: 87
  start-page: 1165
  year: 2019
  ident: ref=136
  publication-title: Proteins
  doi: 10.1002/prot.25697
– volume: 16
  start-page: 2466
  year: 2019
  ident: ref=119
  publication-title: Math Biosci Eng
  doi: 10.3934/mbe.2019123
– volume: 23
  start-page: 4051
  year: 2004
  ident: ref=4
  publication-title: EMBO J
  doi: 10.1038/sj.emboj.7600385
– volume: 40
  start-page: 724
  year: 2018
  ident: ref=14
  publication-title: Yi Chuan
– volume: 24
  start-page: 123
  year: 1996
  ident: ref=107
  publication-title: Mach Learn
  doi: 10.1007/BF00058655
– volume: 16
  start-page: 321
  year: 2002
  ident: ref=128
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.953
– volume: 59
  start-page: 615
  year: 2019
  ident: ref=117
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.8b00368
– volume: 43
  start-page: 246
  year: 2001
  ident: ref=86
  publication-title: Proteins
  doi: 10.1002/prot.1035
– volume: 2013
  year: 2013
  ident: ref=79
  publication-title: Comput Math Methods Med
  doi: 10.1155/2013/567529
– volume: 19
  start-page: 748
  year: 2018
  ident: ref=22
  publication-title: Pharmacogenomics
  doi: 10.2217/pgs-2018-0051
– volume: 2
  start-page: 27
  year: 2011
  ident: ref=105
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 2
  start-page: 269
  year: 2005
  ident: ref=48
  publication-title: Nat Methods
  doi: 10.1038/nmeth746
– volume: 47
  start-page: D155
  year: 2019
  ident: ref=62
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1141
– volume: 2014
  year: 2014
  ident: ref=78
  publication-title: BioMed Res Int
  doi: 10.1155/2014/286419
– volume: 46
  start-page: D296
  year: 2018
  ident: ref=64
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1067
– volume: 111
  start-page: 96
  year: 2019
  ident: ref=120
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2018.01.005
– volume: 17
  start-page: 1850
  year: 2007
  ident: ref=28
  publication-title: Genome Res
  doi: 10.1101/gr.6597907
– volume: 35
  start-page: 2075
  year: 2019
  ident: ref=98
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty943
– volume: 14
  start-page: 625
  year: 2017
  ident: ref=75
  publication-title: Lett Org Chem
  doi: 10.2174/1570178614666170419122621
– volume: 67
  start-page: 3981
  year: 2019
  ident: ref=17
  publication-title: J Agric Food Chem
  doi: 10.1021/acs.jafc.9b00622
– volume: 13
  start-page: 14
  year: 2018
  ident: ref=73
  publication-title: Curr Bioinform
  doi: 10.2174/1574893611666160711162006
– volume: 294
  start-page: 858
  year: 2001
  ident: ref=27
  publication-title: Science
  doi: 10.1126/science.1065062
– volume: 14
  start-page: 83
  year: 2013
  ident: ref=44
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-14-83
– volume: 31
  start-page: 3429
  year: 2003
  ident: ref=84
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkg599
– volume: 20
  start-page: 2911
  year: 2004
  ident: ref=96
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth374
– volume: 20
  start-page: 186
  year: 2004
  ident: ref=85
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg388
– volume: 338
  start-page: 313
  year: 1989
  ident: ref=2
  publication-title: Nature
  doi: 10.1038/338313a0
– volume: 45
  start-page: D135
  year: 2017
  ident: ref=56
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx533
– volume: 12
  start-page: 1269
  year: 2016
  ident: ref=88
  publication-title: Mol Biosyst
  doi: 10.1039/C5MB00883B
– volume: 6
  start-page: 310
  year: 2005
  ident: ref=33
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-310
– volume: 35
  start-page: 4922
  year: 2019
  ident: ref=67
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz358
– volume: 22
  start-page: 22
  year: 2017
  ident: ref=77
  publication-title: Molecules
  doi: 10.3390/molecules22101732
– ident: ref=34
  doi: 10.1093/nar/gkm368
SSID ssj0020870
Score 2.2153687
SecondaryResourceType review_article
Snippet MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs....
SourceID unpaywall
pubmedcentral
proquest
crossref
benthamscience
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Algorithms
Artificial intelligence
Computer applications
Experimental methods
Feature extraction
Gene expression
Genomics
Learning algorithms
Machine learning
MicroRNAs
miRNA
Non-coding RNA
Precursors
Research methodology
Title A Brief Survey for MicroRNA Precursor Identification Using Machine Learning Methods
URI http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=21&issue=1&spage=11
https://www.proquest.com/docview/2575147607
https://www.proquest.com/docview/2423516841
https://pubmed.ncbi.nlm.nih.gov/PMC7324890
https://www.ncbi.nlm.nih.gov/pmc/articles/7324890
UnpaywallVersion submittedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1875-5488
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0020870
  issn: 1389-2029
  databaseCode: DIK
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1875-5488
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020870
  issn: 1389-2029
  databaseCode: GX1
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1875-5488
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0020870
  issn: 1389-2029
  databaseCode: RPM
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTvx44DeIwpgyidd0ceLY6WNBjAmp1bRRqTxZduKo09qsahtQEX88d45T6CSkwWscK07y-fzd-fMdwDsiFVksixD_rQh5muOcK00ZFgLJtZUlcgA67zwcidMx_zxJJ3vA2rMwTrSfm8teNZv3qsup01Yu5vlxqxM7lkgBsj566fsiRfrdgf3x6Gzw1TlWpNiJXGUyhjw8RDae3YMjkjsj8T6mdmqOaavMiRM4Le8UUXlo0MRP9dwvO7uL1G_meVM3eb-uFnrzXc9mfyxKJ4_hvH2dRoty1avXppf_uJHp8Z_e9wk88hQ1GDRNT2HPVs_gblO0cvMcLgbBe_Svy-CiXn6zmwBZbzAkWd_5aBCcLSl-v8JLzQng0ocEAydNCIZOumkDn9UVL7gC1qsXMD75-OXDaehLM4QmTeN1WGS8TGPJdJYnggmDRMWYJLKGowen0YqWOsm4SYWxLO_LNC4EmpYiTguhI1Ho5CV0quvKvoIgyqW2Eg1BzjRHdpIZpiXvZyxKeFLapAs_d3-OWjR5ONyJJIUfUNl6aa_0yhUOUjhRla88pkjuT8WKF9OFcvNR-c-qyMIqAoQiRKhmKVAxUw7uiilnz9E_6kLWQkHlPm06Ve-YKXSfCFbqr7DqQrzt2o75Fp0OWrwpb05WKqbdMS5FJLtwtG1GQ0C7O7qy1zXeg8Q4ZSLjOGS5g9PtwymV-G4LIs6lFPcg60KyRfTth_z6v3q9gQcxxS5cOOsAOutlbd8iwVubQ7jzacIO_cT-BQi7Sgc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBYlZT8e9rtj2brhwl6dWLYsOY_ZWCmDhNIu0D0dki2T0sQNSbySsj9-d7KcLYVBt1fLwrL96fTd6dMdYx-JVGSxKkL8tzIUaY5zrjRlWEgk11aVyAHovPNoLE8m4utFerHHeHsWxon2c3PZq2bzXnU5ddrKxTzvtzqxvkIKkA3QS9-XKdLvDtufjE-H351jRYqdyFUm48jDQ2Tj2UN2RHJnJN59aqfmmLbKnDhB0PJOEZUnBk38VM_9srO7SP1mnnd1k4_qaqE3N3o2-2NROn7GztrXabQoV716bXr57Z1Mj__0vs_ZU09Rg2HT9ILt2eole9AUrdy8YufD4BP612VwXi9_2E2ArDcYkazvbDwMTpcUv1_hpeYEcOlDgoGTJgQjJ920gc_qihdcAevVAZscf_n2-ST0pRlCk6bxOiwyUaax4jrLE8mlQaJiTBJZI9CD02hFS51kwqTSWJ4PVBoXEk1LEaeF1JEsdPKadarryr5hQZQrbRUagpxrgewkM1wrMch4lIiktEmX_dz9ObBo8nC4E0mAHxBsvbRXeuUKBwFOVPCVx4Dk_lSseDFdgJuP4D8rkIUFAgQQIqBZCiDm4OAOHJw9R_-oy7IWCpD7tOlUvWMG6D4RrOCvsOqyeNu1HfM9Oh22eANvTlYQ0-6YUDJSXXa0bUZDQLs7urLXNd6DxDjlMhM4ZLWD0-3DKZX4bgsizqUU9yDrsmSL6PsP-e1_9XrHHscUu3DhrEPWWS9r-x4J3tp88FP6F1I7SRY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brief+Survey+for+MicroRNA+Precursor+Identification+Using+Machine+Learning+Methods&rft.jtitle=Current+genomics&rft.au=Guan%2C+Zheng-Xing&rft.au=Li%2C+Shi-Hao&rft.au=Zhang%2C+Zi-Mei&rft.au=Zhang%2C+Dan&rft.date=2020-01-01&rft.issn=1389-2029&rft.volume=21&rft.issue=1&rft.spage=11&rft_id=info:doi/10.2174%2F1389202921666200214125102&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon