A Brief Survey for MicroRNA Precursor Identification Using Machine Learning Methods
MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and ar...
Saved in:
| Published in | Current genomics Vol. 21; no. 1; pp. 11 - 25 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Sharjah
Bentham Science Publishers Ltd
01.01.2020
Benham Science Publishers Bentham Science Publishers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1389-2029 1875-5488 1875-5488 |
| DOI | 10.2174/1389202921666200214125102 |
Cover
| Abstract | MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as timeconsuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field. |
|---|---|
| AbstractList | MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field.MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field. MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as timeconsuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field. MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs. Therefore, accurate identification of miRNA precursors is necessary. In the past 10 years, experimental methods, comparative genomics methods, and artificial intelligence methods have been used to identify pre-miRNAs. However, experimental methods and comparative genomics methods have their disadvantages, such as time-consuming. In contrast, machine learning-based method is a better choice. Therefore, the review summarizes the current advances in pre-miRNA recognition based on computational methods, including the construction of benchmark datasets, feature extraction methods, prediction algorithms, and the results of the models. And we also provide valid information about the predictors currently available. Finally, we give the future perspectives on the identification of pre-miRNAs. The review provides scholars with a whole background of pre-miRNA identification by using machine learning methods, which can help researchers have a clear understanding of progress of the research in this field. |
| Author | Dan Zhang Hui Yang Zheng-Xing Guan Zi-Mei Zhang Shi-Hao Li Hui Ding |
| Author_xml | – sequence: 1 givenname: Zheng-Xing orcidid: 0000-0003-2172-6161 surname: Guan fullname: Guan, Zheng-Xing organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 2 givenname: Shi-Hao orcidid: 0000-0003-0729-7989 surname: Li fullname: Li, Shi-Hao organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 3 givenname: Zi-Mei orcidid: 0000-0003-3428-9482 surname: Zhang fullname: Zhang, Zi-Mei organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 4 givenname: Dan orcidid: 0000-0002-0520-7655 surname: Zhang fullname: Zhang, Dan organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 5 givenname: Hui orcidid: 0000-0001-7122-1212 surname: Yang fullname: Yang, Hui organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China – sequence: 6 givenname: Hui orcidid: 0000-0002-9607-9571 surname: Ding fullname: Ding, Hui organization: Key Laboratory for Neuro-Information of Ministry of Education, School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 610054, China |
| BookMark | eNqVUEtv1DAQjlARfcB_COLCJWA7seNwAC0Vj0pbQJSeR44z2bgkdmonu9ozfxzvbgWiEhKcZjTzPWa-0-TIOotJ8pSSF4yWxUuay4oRVjEqhGCEMFpQxilhD5ITKkue8ULKo9hHXLYDHienIdxEIJEleZQc50xwzqriJLlapG-9wTa9mv0at2nrfHpptHdfPy3SLx717EMcXTRoJ9MarSbjbHodjF2ll0p3xmK6ROXtfoBT55rwOHnYqj7gk7t6lly_f_ft_GO2_Pzh4nyxzOpoPmWNLFrOSqqkzgUVNSlpXecE60IyqSjPW5XLouaiRqqrkrNGlCRvGG-EIqJR-Vny6qA721FtN6rvYfRmUH4LlMAuKfhrUpH8-kAe53rARsf_vPot4JSBPzfWdLByayhzVsiKRIHndwLe3c4YJhhM0Nj3yqKbA7CC5ZwKWdAIfXYPeuNmb2M2wHjJaVEKUkbUmwMqph-Cxxa0mfZ5R3_T_9NP1T2F_8njx4Fbx387NQRt0Gr8pdBN0wibzQZw9vhdBexRT6DdAG5EO_s-9naKXBi7EVZoPYLyk9E9ggnB7q1h5w1r188DxoN2ixmBQhjVKlaa_wSsluFt |
| CitedBy_id | crossref_primary_10_2174_138920292101200305145123 crossref_primary_10_3390_diagnostics12123067 crossref_primary_10_1109_ACCESS_2020_3027481 |
| Cites_doi | 10.1016/j.omtn.2019.05.028 10.1093/bioinformatics/btx622 10.1093/nar/gks146 10.1126/science.1064921 10.1155/2016/9565689 10.1039/C6MB00295A 10.1016/j.tcb.2004.02.006 10.1155/2016/5413903 10.1109/TSP.2006.880252 10.7150/ijbs.24174 10.1038/nature01957 10.2174/1574893612666170221152848 10.1038/35002607 10.1371/journal.pone.0121501 10.1093/bib/bbl016 10.1038/s41598-018-36946-4 10.3892/etm.2019.7552 10.1023/A:1010933404324 10.3390/cells8111332 10.1016/j.omtn.2019.04.019 10.1109/TCBB.2017.2776280 10.1007/s00438-015-1078-7 10.1093/bioinformatics/btp107 10.1006/bbrc.1999.1325 10.1093/bioinformatics/btm026 10.1080/07391102.2015.1014422 10.2174/1574893611666160628074537 10.1186/s12958-018-0450-y 10.1098/rsob.190054 10.1261/rna.5167604 10.1038/nature02871 10.1093/bioinformatics/bty140 10.1016/j.cell.2005.10.022 10.1093/bib/bby028 10.1016/j.jtbi.2010.12.024 10.1016/j.csbj.2019.06.024 10.1016/j.ijbiomac.2019.12.009 10.1186/s12864-017-4338-6 10.1093/bioinformatics/btx612 10.1186/gb-2003-4-7-r42 10.1089/cmb.2018.0004 10.1038/srep34820 10.1093/nar/gkh023 10.2174/1574893611666160815150746 10.3389/fgene.2018.00657 10.1142/S1793524517500504 10.1093/bioinformatics/bti562 10.1093/nar/gky1051 10.1093/bioinformatics/btw564 10.1007/978-1-62703-748-8_10 10.1080/01431160110107743 10.1093/nar/gkv698 10.1186/1471-2105-11-438 10.1186/s12859-014-0423-x 10.1371/journal.pone.0145541 10.1016/j.knosys.2018.10.007 10.2174/1389200219666180820112457 10.1093/nar/gku1019 10.1109/TCBB.2017.2666141 10.1093/bioinformatics/btz015 10.2174/1574893613666181113131415 10.1155/2014/623149 10.3389/fgene.2019.00119 10.2174/1574893614666181212102030 10.1261/rna.043612.113 10.1038/s41598-017-16162-2 10.1093/bioinformatics/bty002 10.1093/bioinformatics/bty827 10.3389/fmicb.2018.00476 10.1016/j.omtn.2019.08.011 10.1038/nrd.2016.246 10.1186/1471-2105-11-S1-S29 10.3389/fphar.2018.00276 10.2174/1574893612666171002113742 10.2174/1566523218666180913112751 10.1093/nar/gkt1248 10.3389/fimmu.2018.01783 10.1109/TPAMI.2005.159 10.1126/science.1062039 10.1155/2016/1654623 10.1371/journal.pone.0106542 10.1039/C9MO00098D 10.1109/TCBB.2013.146 10.1093/bioinformatics/btu602 10.1109/ACCESS.2018.2889809 10.1093/nar/gkw459 10.1093/bioinformatics/btw591 10.3390/ijms20092079 10.2174/1574893612666170707095707 10.1093/bib/bbz048 10.1093/bioinformatics/bty1047 10.1039/C7MB00115K 10.18632/oncotarget.23099 10.1093/bib/bby053 10.1186/s12859-016-1405-y 10.1007/s10142-005-0145-2 10.1093/bioinformatics/btr153 10.2174/1574893611666160609081155 10.3390/genes10040321 10.1093/bib/bbx103 10.1109/TCBB.2016.2576459 10.1097/00004424-198903000-00012 10.3389/fgene.2018.00613 10.1080/17460441.2017.1263298 10.1093/nar/gkp818 10.1002/prot.25697 10.3934/mbe.2019123 10.1038/sj.emboj.7600385 10.1007/BF00058655 10.1613/jair.953 10.1021/acs.jcim.8b00368 10.1002/prot.1035 10.1155/2013/567529 10.2217/pgs-2018-0051 10.1145/1961189.1961199 10.1038/nmeth746 10.1093/nar/gky1141 10.1155/2014/286419 10.1093/nar/gkx1067 10.1016/j.ygeno.2018.01.005 10.1101/gr.6597907 10.1093/bioinformatics/bty943 10.2174/1570178614666170419122621 10.1021/acs.jafc.9b00622 10.2174/1574893611666160711162006 10.1126/science.1065062 10.1186/1471-2105-14-83 10.1093/nar/gkg599 10.1093/bioinformatics/bth374 10.1093/bioinformatics/btg388 10.1038/338313a0 10.1093/nar/gkx533 10.1039/C5MB00883B 10.1186/1471-2105-6-310 10.1093/bioinformatics/btz358 10.3390/molecules22101732 10.1093/nar/gkm368 |
| ContentType | Journal Article |
| Copyright | Copyright Bentham Science Jan 2020 2020 Bentham Science Publishers. 2020 Bentham Science Publishers 2020 |
| Copyright_xml | – notice: Copyright Bentham Science Jan 2020 – notice: 2020 Bentham Science Publishers. – notice: 2020 Bentham Science Publishers 2020 |
| DBID | AAYXX CITATION 7QL 7QO 7QP 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.2174/1389202921666200214125102 |
| DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Virology and AIDS Abstracts Technology Research Database Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1875-5488 |
| EndPage | 25 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:7324890 PMC7324890 10_2174_1389202921666200214125102 http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_21_issue_1_spage_11 |
| GroupedDBID | --- .5. 0R~ 29F 2WC 4.4 53G 5GY AAEGP ABEEF ABJNI ACGFS ACIWK ACPRK ADBBV AENEX AFRAH AFUQM AGJNZ ALMA_UNASSIGNED_HOLDINGS ANTIV AOIJS BAWUL C1A CS3 DIK DU5 E3Z EBS EJD F5P GH2 GX1 HYE HZ~ IPNFZ KCGFV O9- OK1 P2P RIG RPM TR2 AAYXX AFHZU CITATION 7QL 7QO 7QP 7SS 7T7 7TK 7TM 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-b552t-d84f5271a8c3616b071bb30eb4828a153fa384b56be1c9752d6703d25d6a06da3 |
| IEDL.DBID | UNPAY |
| ISSN | 1389-2029 1875-5488 |
| IngestDate | Sun Oct 26 04:08:02 EDT 2025 Thu Aug 21 18:11:47 EDT 2025 Thu Jul 10 19:27:53 EDT 2025 Mon Jun 30 12:01:13 EDT 2025 Thu Apr 24 23:01:40 EDT 2025 Tue Jul 01 02:59:06 EDT 2025 Tue Aug 27 15:43:34 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b552t-d84f5271a8c3616b071bb30eb4828a153fa384b56be1c9752d6703d25d6a06da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0003-2172-6161 0000-0002-9607-9571 0000-0001-7122-1212 0000-0003-0729-7989 0000-0003-3428-9482 0000-0002-0520-7655 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/7324890 |
| PMID | 32655294 |
| PQID | 2575147607 |
| PQPubID | 2048057 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_2174_1389202921666200214125102 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7324890 proquest_miscellaneous_2423516841 proquest_journals_2575147607 crossref_citationtrail_10_2174_1389202921666200214125102 crossref_primary_10_2174_1389202921666200214125102 benthamscience_primary_http_www_eurekaselect_com_openurl_content_php_genre_article_issn_1389_2029_volume_21_issue_1_spage_11 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Sharjah |
| PublicationPlace_xml | – name: Sharjah |
| PublicationTitle | Current genomics |
| PublicationTitleAlternate | CG |
| PublicationYear | 2020 |
| Publisher | Bentham Science Publishers Ltd Benham Science Publishers Bentham Science Publishers |
| Publisher_xml | – name: Bentham Science Publishers Ltd – name: Benham Science Publishers – name: Bentham Science Publishers |
| References | Dao F.Y. (ref=98) 2019; 35 Stephenson N. (ref=54) 2019; 20 Xue J. (ref=21) 2017; 12 Batuwita R. (ref=31) 2009; 25 Peng L. (ref=137) 2018; 13 Ruby J.G. (ref=28) 2007; 17 Wang X. (ref=30) 2005; 21 Manavalan B. (ref=82) 2019; 16 Zheng X. (ref=42) 2019; 9 Saçar M.D. (ref=135) 2014; 1107 Breiman L. (ref=106) 2001; 45 Knight S.W. (ref=8) 2001; 293 Tempel S. (ref=130) 2012; 40 Zhang T. (ref=56) 2017; 45 Metz C.E. (ref=124) 1989; 24 Khan A. (ref=51) 2017; 13 Chou C.H. (ref=64) 2018; 46 Zuo Y. (ref=90) 2017; 33 Patel S. (ref=138) 2017; 12 Yoon B.J. (ref=116) 2006; 54 Feng P. (ref=120) 2019; 111 Feng C.Q. (ref=99) 2019; 35 Xue C. (ref=33) 2005; 6 Manavalan B. (ref=103) 2018; 9 Lv H. (ref=53) 2019 Chen Z. (ref=74) 2018; 34 Manavalan B. (ref=102) 2017; 9 Lai E.C. (ref=29) 2003; 4 Liu B. (ref=40) 2016; 34 Yao Y. (ref=39) 2016; 12 Dao F.Y. (ref=113) 2018; 9 Milone D.H. (ref=115) 2010; 11 Boulesteix A.L. (ref=129) 2007; 8 Peace R.J. (ref=66) 2015; 43 Cheng L. (ref=23) 2018; 34 Stegmayer G. (ref=45) 2017; 14 Liao Z. (ref=18) 2018; 13 Xu Z.C. (ref=67) 2019; 35 Rupaimoole R. (ref=20) 2017; 16 Kozomara A. (ref=62) 2019; 47 Yang H. (ref=87) 2016; 2016 Fu X. (ref=43) 2019; 10 Qu K.Y. (ref=68) 2019; 14 Loh S.K. (ref=72) 2018; 13 Chou K.C. (ref=118) 2011; 273 Lin H. (ref=134) 2014; 42 Zhang Z. (ref=63) 2010; 38 Li J.H. (ref=65) 2014; 42 Tang H. (ref=88) 2016; 12 Ng K.L. (ref=32) 2007; 23 Peng H. (ref=133) 2005; 27 Millar A.A. (ref=10) 2005; 5 Chen W. (ref=121) 2019; 35 Agarwal S. (ref=35) 2010; 11 Breiman L. (ref=107) 1996; 24 Liang Z.Y. (ref=57) 2017; 33 Hofacker I.L. (ref=85) 2004; 20 Chou K.C. (ref=86) 2001; 43 (ref=97) 1998 Basith S. (ref=81) 2019; 18 Manavalan B. (ref=123) 2019; 17 Lee Y. (ref=4) 2004; 23 Tang H. (ref=104) 2017; 10 Manavalan B. (ref=83) 2019; 35 Sun Y. (ref=13) 2019; 18 López-Ruiz B.A. (ref=12) 2019; 20 Pfeffer S. (ref=48) 2005; 2 Cao R. (ref=77) 2017; 22 Zhu X.J. (ref=101) 2019; 163 Lagos-Quintana M. (ref=26) 2001; 294 Feng P.M. (ref=79) 2013; 2013 Hu B. (ref=60) 2019; 9 Long C.S. (ref=80) 2018; 7 Cao R. (ref=140) 2016; 17 Hofacker I.L. (ref=84) 2003; 31 Xue L. (ref=117) 2019; 59 Griffiths-Jones S. (ref=61) 2004; 32 Bonnet E. (ref=96) 2004; 20 Li B.Q. (ref=73) 2018; 13 Xia M.M. (ref=14) 2018; 40 Wei L. (ref=37) 2014; 11 Lau N.C. (ref=27) 2001; 294 Tang H. (ref=70) 2018; 14 Yang W. (ref=52) 2019; 14 Hasan M.M. (ref=111) 2019 Zhao W. (ref=75) 2017; 14 Cheng L. (ref=125) 2018; 19 Ambros V. (ref=1) 2004; 431 Chawla N.V. (ref=128) 2002; 16 Reinhart B.J. (ref=3) 2000; 403 Tan J.X. (ref=119) 2019; 16 Zhang J. (ref=15) 2019; 17 Liu D. (ref=131) 2019; 20 Chen P. (ref=16) 2017; 7 Kavzoglu T. (ref=127) 2002; 23 Chen X.X. (ref=89) 2016; 2016 Long H.X. (ref=139) 2017; 12 Bohnsack M.T. (ref=7) 2004; 10 Cheng L. (ref=126) 2018; 9 Chou K.C. (ref=95) 1999; 264 Kohonen T. (ref=114) 1988 Ruvkun G. (ref=2) 1989; 338 Zuo Y. (ref=91) 2015; 10 Kittelmann S. (ref=11) 2019; 10 Tang W. (ref=19) 2018; 34 Cheng L. (ref=59) 2019; 20 Jiang L. (ref=41) 2016; 2016 Jiang P. (ref=34) Ding H. (ref=78) 2014; 2014 Chen W. (ref=94) 2015; 31 Lee Y. (ref=5) 2003; 425 Zhang X. (ref=25) 2019; 16 Yuan L.Z. (ref=76) 2017; 12 Chen W. (ref=93) 2014; 2014 Song J. (ref=71) 2019; 20 Chen Z. (ref=17) 2019; 67 Manavalan B. (ref=108) 2014; 9 Lai H.Y. (ref=55) 2018; 18 Lin H. (ref=69) 2019; 16 Meng J. (ref=49) 2014; 15 Yang H. (ref=92) 2018; 25 Yones C. (ref=46) 2018; 34 Manavalan B. (ref=122) 2019; 8 Tav C. (ref=47) 2016; 44 Liu B. (ref=132) 2016; 291 Xuan P. (ref=36) 2011; 27 Liu B. (ref=38) 2015; 10 Hasan M.M. (ref=112) 2019; 15 Zambrano T. (ref=22) 2018; 19 Hou J. (ref=136) 2019; 87 Cheng L. (ref=58) 2019; 47 Lin C-J. (ref=105) 2011; 2 Manavalan B. (ref=109) 2018; 9 Kim V.N. (ref=6) 2004; 14 Lai H.Y. (ref=100) 2019; 17 Gudyś A. (ref=44) 2013; 14 Manavalan B. (ref=110) 2018; 9 Gregory R.I. (ref=9) 2005; 123 Tran V. (ref=50) 2015; 21 Cheng L. (ref=24) 2016; 6 |
| References_xml | – volume: 17 start-page: 337 year: 2019 ident: ref=100 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.05.028 – volume: 34 start-page: 398 year: 2018 ident: ref=19 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx622 – volume: 40 year: 2012 ident: ref=130 publication-title: Nucleic Acids Res doi: 10.1093/nar/gks146 – year: 1998 ident: ref=97 publication-title: Statistical Learning Theory – volume: 294 start-page: 853 year: 2001 ident: ref=26 publication-title: Science doi: 10.1126/science.1064921 – volume: 2016 year: 2016 ident: ref=41 publication-title: BioMed Res Int doi: 10.1155/2016/9565689 – volume: 12 start-page: 3124 year: 2016 ident: ref=39 publication-title: Mol Biosyst doi: 10.1039/C6MB00295A – volume: 14 start-page: 156 year: 2004 ident: ref=6 publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2004.02.006 – volume: 2016 year: 2016 ident: ref=87 publication-title: BioMed Res Int doi: 10.1155/2016/5413903 – volume: 54 start-page: 4166 year: 2006 ident: ref=116 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.880252 – volume: 14 start-page: 957 year: 2018 ident: ref=70 publication-title: Int J Biol Sci doi: 10.7150/ijbs.24174 – volume: 425 start-page: 415 year: 2003 ident: ref=5 publication-title: Nature doi: 10.1038/nature01957 – volume: 12 start-page: 233 year: 2017 ident: ref=139 publication-title: Curr Bioinform doi: 10.2174/1574893612666170221152848 – volume: 403 start-page: 901 year: 2000 ident: ref=3 publication-title: Nature doi: 10.1038/35002607 – volume: 10 year: 2015 ident: ref=38 publication-title: PLoS One doi: 10.1371/journal.pone.0121501 – volume: 8 start-page: 32 year: 2007 ident: ref=129 publication-title: Brief Bioinform doi: 10.1093/bib/bbl016 – volume: 9 start-page: 628 year: 2019 ident: ref=42 publication-title: Sci Rep doi: 10.1038/s41598-018-36946-4 – volume: 18 start-page: 77 year: 2019 ident: ref=13 publication-title: Exp Ther Med doi: 10.3892/etm.2019.7552 – volume: 45 start-page: 5 year: 2001 ident: ref=106 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 8 start-page: 8 year: 2019 ident: ref=122 publication-title: Cells doi: 10.3390/cells8111332 – volume: 16 start-page: 733 year: 2019 ident: ref=82 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.04.019 – volume: 16 start-page: 283 year: 2019 ident: ref=25 publication-title: IEEE/ACM Trans Comput Biol Bioinformatics doi: 10.1109/TCBB.2017.2776280 – volume: 291 start-page: 473 year: 2016 ident: ref=132 publication-title: Mol Genet Genomics doi: 10.1007/s00438-015-1078-7 – volume: 25 start-page: 989 year: 2009 ident: ref=31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp107 – volume: 264 start-page: 216 year: 1999 ident: ref=95 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.1999.1325 – volume: 23 start-page: 1321 year: 2007 ident: ref=32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm026 – volume: 34 start-page: 223 year: 2016 ident: ref=40 publication-title: J Biomol Struct Dyn doi: 10.1080/07391102.2015.1014422 – volume: 12 start-page: 52 year: 2017 ident: ref=76 publication-title: Curr Bioinform doi: 10.2174/1574893611666160628074537 – volume: 17 start-page: 9 year: 2019 ident: ref=15 publication-title: Reprod Biol Endocrinol doi: 10.1186/s12958-018-0450-y – volume: 9 year: 2019 ident: ref=60 publication-title: Open Biol doi: 10.1098/rsob.190054 – volume: 10 start-page: 185 year: 2004 ident: ref=7 publication-title: RNA doi: 10.1261/rna.5167604 – volume: 431 start-page: 350 year: 2004 ident: ref=1 publication-title: Nature doi: 10.1038/nature02871 – volume: 34 start-page: 2499 year: 2018 ident: ref=74 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty140 – volume: 123 start-page: 631 year: 2005 ident: ref=9 publication-title: Cell doi: 10.1016/j.cell.2005.10.022 – volume: 20 start-page: 638 year: 2019 ident: ref=71 publication-title: Brief Bioinform doi: 10.1093/bib/bby028 – volume: 273 start-page: 236 year: 2011 ident: ref=118 publication-title: J Theor Biol doi: 10.1016/j.jtbi.2010.12.024 – volume: 17 start-page: 972 year: 2019 ident: ref=123 publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2019.06.024 – start-page: S0141-8130(19)38547-2. year: 2019 ident: ref=111 publication-title: nt J Biol Macromol doi: 10.1016/j.ijbiomac.2019.12.009 – volume: 19 start-page: 919 year: 2018 ident: ref=125 publication-title: BMC Genomics doi: 10.1186/s12864-017-4338-6 – volume: 34 start-page: 541 year: 2018 ident: ref=46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx612 – volume: 4 start-page: R42 year: 2003 ident: ref=29 publication-title: Genome Biol doi: 10.1186/gb-2003-4-7-r42 – volume: 25 start-page: 1266 year: 2018 ident: ref=92 publication-title: J Comput Biol doi: 10.1089/cmb.2018.0004 – volume: 6 start-page: 34820 year: 2016 ident: ref=24 publication-title: Sci Rep doi: 10.1038/srep34820 – volume: 32 start-page: D109 year: 2004 ident: ref=61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkh023 – volume: 12 start-page: 551 year: 2017 ident: ref=138 publication-title: Curr Bioinform doi: 10.2174/1574893611666160815150746 – volume: 9 start-page: 657 year: 2018 ident: ref=126 publication-title: Front Genet doi: 10.3389/fgene.2018.00657 – volume: 10 start-page: 10 year: 2017 ident: ref=104 publication-title: Int J Biomath doi: 10.1142/S1793524517500504 – volume: 21 start-page: 3610 year: 2005 ident: ref=30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti562 – volume: 47 start-page: D140 year: 2019 ident: ref=58 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1051 – volume: 33 start-page: 122 year: 2017 ident: ref=90 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw564 – volume: 1107 start-page: 177 year: 2014 ident: ref=135 publication-title: Methods Mol Biol doi: 10.1007/978-1-62703-748-8_10 – volume: 23 start-page: 2919 year: 2002 ident: ref=127 publication-title: Int J Remote Sens doi: 10.1080/01431160110107743 – volume: 43 year: 2015 ident: ref=66 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv698 – volume: 11 start-page: 438 year: 2010 ident: ref=115 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-438 – volume: 15 start-page: 423 year: 2014 ident: ref=49 publication-title: BMC Bioinformatics doi: 10.1186/s12859-014-0423-x – year: 1988 ident: ref=114 publication-title: Self-organized formation of topologically correct feature maps – volume: 10 year: 2015 ident: ref=91 publication-title: PLoS One doi: 10.1371/journal.pone.0145541 – volume: 163 start-page: 787 year: 2019 ident: ref=101 publication-title: Knowl Base Syst doi: 10.1016/j.knosys.2018.10.007 – volume: 20 start-page: 185 year: 2019 ident: ref=54 publication-title: Curr Drug Metab doi: 10.2174/1389200219666180820112457 – volume: 42 start-page: 12961 year: 2014 ident: ref=134 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku1019 – volume: 16 start-page: 1316 year: 2019 ident: ref=69 publication-title: IEEE/ACM Trans Comput Biol Bioinformatics doi: 10.1109/TCBB.2017.2666141 – volume: 35 start-page: 2796 year: 2019 ident: ref=121 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz015 – volume: 14 start-page: 234 year: 2019 ident: ref=52 publication-title: Curr Bioinform doi: 10.2174/1574893613666181113131415 – volume: 2014 year: 2014 ident: ref=93 publication-title: BioMed Res Int doi: 10.1155/2014/623149 – volume: 10 start-page: 119 year: 2019 ident: ref=43 publication-title: Front Genet doi: 10.3389/fgene.2019.00119 – volume: 14 start-page: 246 year: 2019 ident: ref=68 publication-title: Curr Bioinform doi: 10.2174/1574893614666181212102030 – volume: 21 start-page: 775 year: 2015 ident: ref=50 publication-title: RNA doi: 10.1261/rna.043612.113 – volume: 7 start-page: 15915 year: 2017 ident: ref=16 publication-title: Sci Rep doi: 10.1038/s41598-017-16162-2 – volume: 34 start-page: 1953 year: 2018 ident: ref=23 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty002 – volume: 35 start-page: 1469 year: 2019 ident: ref=99 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty827 – volume: 9 start-page: 476 year: 2018 ident: ref=103 publication-title: Front Microbiol doi: 10.3389/fmicb.2018.00476 – volume: 18 start-page: 131 year: 2019 ident: ref=81 publication-title: Mol Ther Nucleic Acids doi: 10.1016/j.omtn.2019.08.011 – volume: 16 start-page: 203 year: 2017 ident: ref=20 publication-title: Nat Rev Drug Discov doi: 10.1038/nrd.2016.246 – volume: 11 start-page: S29 year: 2010 ident: ref=35 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-S1-S29 – volume: 9 start-page: 276 year: 2018 ident: ref=110 publication-title: Front Pharmacol doi: 10.3389/fphar.2018.00276 – volume: 13 start-page: 373 year: 2018 ident: ref=72 publication-title: Curr Bioinform doi: 10.2174/1574893612666171002113742 – volume: 18 start-page: 257 year: 2018 ident: ref=55 publication-title: Curr Gene Ther doi: 10.2174/1566523218666180913112751 – volume: 42 start-page: D92 year: 2014 ident: ref=65 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkt1248 – volume: 9 start-page: 1783 year: 2018 ident: ref=109 publication-title: Front Immunol doi: 10.3389/fimmu.2018.01783 – volume: 27 start-page: 1226 year: 2005 ident: ref=133 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.159 – volume: 293 start-page: 2269 year: 2001 ident: ref=8 publication-title: Science doi: 10.1126/science.1062039 – volume: 2016 year: 2016 ident: ref=89 publication-title: BioMed Res Int doi: 10.1155/2016/1654623 – volume: 9 year: 2014 ident: ref=108 publication-title: PLoS One doi: 10.1371/journal.pone.0106542 – volume: 15 start-page: 451 year: 2019 ident: ref=112 publication-title: Mol Omics doi: 10.1039/C9MO00098D – volume: 11 start-page: S29 year: 2014 ident: ref=37 publication-title: BMC Bioinformatics doi: 10.1109/TCBB.2013.146 – volume: 31 start-page: 119 year: 2015 ident: ref=94 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu602 – volume: 7 start-page: 7794 year: 2018 ident: ref=80 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2889809 – volume: 44 start-page: W181 year: 2016 ident: ref=47 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkw459 – volume: 33 start-page: 467 year: 2017 ident: ref=57 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw591 – volume: 20 start-page: 20 year: 2019 ident: ref=12 publication-title: Int J Mol Sci doi: 10.3390/ijms20092079 – volume: 13 start-page: 352 year: 2018 ident: ref=137 publication-title: Curr Bioinform doi: 10.2174/1574893612666170707095707 – year: 2019 ident: ref=53 publication-title: Brief Bioinform doi: 10.1093/bib/bbz048 – volume: 35 start-page: 2757 year: 2019 ident: ref=83 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty1047 – volume: 13 start-page: 1640 year: 2017 ident: ref=51 publication-title: Mol Biosyst doi: 10.1039/C7MB00115K – volume: 9 start-page: 1944 year: 2017 ident: ref=102 publication-title: Oncotarget doi: 10.18632/oncotarget.23099 – volume: 20 start-page: 1826 year: 2019 ident: ref=131 publication-title: Brief Bioinform doi: 10.1093/bib/bby053 – volume: 17 start-page: 495 year: 2016 ident: ref=140 publication-title: BMC Bioinformatics doi: 10.1186/s12859-016-1405-y – volume: 5 start-page: 129 year: 2005 ident: ref=10 publication-title: Funct Integr Genomics doi: 10.1007/s10142-005-0145-2 – volume: 27 start-page: 1368 year: 2011 ident: ref=36 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr153 – volume: 13 start-page: 57 year: 2018 ident: ref=18 publication-title: Curr Bioinform doi: 10.2174/1574893611666160609081155 – volume: 10 start-page: 10 year: 2019 ident: ref=11 publication-title: Genes (Basel) doi: 10.3390/genes10040321 – volume: 20 start-page: 203 year: 2019 ident: ref=59 publication-title: Brief Bioinform doi: 10.1093/bib/bbx103 – volume: 14 start-page: 1316 year: 2017 ident: ref=45 publication-title: IEEE/ACM Trans Comput Biol Bioinformatics doi: 10.1109/TCBB.2016.2576459 – volume: 24 start-page: 234 year: 1989 ident: ref=124 publication-title: Invest Radiol doi: 10.1097/00004424-198903000-00012 – volume: 9 start-page: 613 year: 2018 ident: ref=113 publication-title: Front Genet doi: 10.3389/fgene.2018.00613 – volume: 12 start-page: 141 year: 2017 ident: ref=21 publication-title: Expert Opin Drug Discov doi: 10.1080/17460441.2017.1263298 – volume: 38 start-page: D806 year: 2010 ident: ref=63 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp818 – volume: 87 start-page: 1165 year: 2019 ident: ref=136 publication-title: Proteins doi: 10.1002/prot.25697 – volume: 16 start-page: 2466 year: 2019 ident: ref=119 publication-title: Math Biosci Eng doi: 10.3934/mbe.2019123 – volume: 23 start-page: 4051 year: 2004 ident: ref=4 publication-title: EMBO J doi: 10.1038/sj.emboj.7600385 – volume: 40 start-page: 724 year: 2018 ident: ref=14 publication-title: Yi Chuan – volume: 24 start-page: 123 year: 1996 ident: ref=107 publication-title: Mach Learn doi: 10.1007/BF00058655 – volume: 16 start-page: 321 year: 2002 ident: ref=128 publication-title: J Artif Intell Res doi: 10.1613/jair.953 – volume: 59 start-page: 615 year: 2019 ident: ref=117 publication-title: J Chem Inf Model doi: 10.1021/acs.jcim.8b00368 – volume: 43 start-page: 246 year: 2001 ident: ref=86 publication-title: Proteins doi: 10.1002/prot.1035 – volume: 2013 year: 2013 ident: ref=79 publication-title: Comput Math Methods Med doi: 10.1155/2013/567529 – volume: 19 start-page: 748 year: 2018 ident: ref=22 publication-title: Pharmacogenomics doi: 10.2217/pgs-2018-0051 – volume: 2 start-page: 27 year: 2011 ident: ref=105 publication-title: ACM Trans Intell Syst Technol doi: 10.1145/1961189.1961199 – volume: 2 start-page: 269 year: 2005 ident: ref=48 publication-title: Nat Methods doi: 10.1038/nmeth746 – volume: 47 start-page: D155 year: 2019 ident: ref=62 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1141 – volume: 2014 year: 2014 ident: ref=78 publication-title: BioMed Res Int doi: 10.1155/2014/286419 – volume: 46 start-page: D296 year: 2018 ident: ref=64 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1067 – volume: 111 start-page: 96 year: 2019 ident: ref=120 publication-title: Genomics doi: 10.1016/j.ygeno.2018.01.005 – volume: 17 start-page: 1850 year: 2007 ident: ref=28 publication-title: Genome Res doi: 10.1101/gr.6597907 – volume: 35 start-page: 2075 year: 2019 ident: ref=98 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty943 – volume: 14 start-page: 625 year: 2017 ident: ref=75 publication-title: Lett Org Chem doi: 10.2174/1570178614666170419122621 – volume: 67 start-page: 3981 year: 2019 ident: ref=17 publication-title: J Agric Food Chem doi: 10.1021/acs.jafc.9b00622 – volume: 13 start-page: 14 year: 2018 ident: ref=73 publication-title: Curr Bioinform doi: 10.2174/1574893611666160711162006 – volume: 294 start-page: 858 year: 2001 ident: ref=27 publication-title: Science doi: 10.1126/science.1065062 – volume: 14 start-page: 83 year: 2013 ident: ref=44 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-14-83 – volume: 31 start-page: 3429 year: 2003 ident: ref=84 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkg599 – volume: 20 start-page: 2911 year: 2004 ident: ref=96 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth374 – volume: 20 start-page: 186 year: 2004 ident: ref=85 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg388 – volume: 338 start-page: 313 year: 1989 ident: ref=2 publication-title: Nature doi: 10.1038/338313a0 – volume: 45 start-page: D135 year: 2017 ident: ref=56 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx533 – volume: 12 start-page: 1269 year: 2016 ident: ref=88 publication-title: Mol Biosyst doi: 10.1039/C5MB00883B – volume: 6 start-page: 310 year: 2005 ident: ref=33 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-310 – volume: 35 start-page: 4922 year: 2019 ident: ref=67 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz358 – volume: 22 start-page: 22 year: 2017 ident: ref=77 publication-title: Molecules doi: 10.3390/molecules22101732 – ident: ref=34 doi: 10.1093/nar/gkm368 |
| SSID | ssj0020870 |
| Score | 2.2153687 |
| SecondaryResourceType | review_article |
| Snippet | MicroRNAs, a group of short non-coding RNA molecules, could regulate gene expression. Many diseases are associated with abnormal expression of miRNAs.... |
| SourceID | unpaywall pubmedcentral proquest crossref benthamscience |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 11 |
| SubjectTerms | Algorithms Artificial intelligence Computer applications Experimental methods Feature extraction Gene expression Genomics Learning algorithms Machine learning MicroRNAs miRNA Non-coding RNA Precursors Research methodology |
| Title | A Brief Survey for MicroRNA Precursor Identification Using Machine Learning Methods |
| URI | http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1389-2029&volume=21&issue=1&spage=11 https://www.proquest.com/docview/2575147607 https://www.proquest.com/docview/2423516841 https://pubmed.ncbi.nlm.nih.gov/PMC7324890 https://www.ncbi.nlm.nih.gov/pmc/articles/7324890 |
| UnpaywallVersion | submittedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1875-5488 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0020870 issn: 1389-2029 databaseCode: DIK dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1875-5488 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020870 issn: 1389-2029 databaseCode: GX1 dateStart: 20060101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1875-5488 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0020870 issn: 1389-2029 databaseCode: RPM dateStart: 20060101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED6NTvx44DeIwpgyidd0ceLY6WNBjAmp1bRRqTxZduKo09qsahtQEX88d45T6CSkwWscK07y-fzd-fMdwDsiFVksixD_rQh5muOcK00ZFgLJtZUlcgA67zwcidMx_zxJJ3vA2rMwTrSfm8teNZv3qsup01Yu5vlxqxM7lkgBsj566fsiRfrdgf3x6Gzw1TlWpNiJXGUyhjw8RDae3YMjkjsj8T6mdmqOaavMiRM4Le8UUXlo0MRP9dwvO7uL1G_meVM3eb-uFnrzXc9mfyxKJ4_hvH2dRoty1avXppf_uJHp8Z_e9wk88hQ1GDRNT2HPVs_gblO0cvMcLgbBe_Svy-CiXn6zmwBZbzAkWd_5aBCcLSl-v8JLzQng0ocEAydNCIZOumkDn9UVL7gC1qsXMD75-OXDaehLM4QmTeN1WGS8TGPJdJYnggmDRMWYJLKGowen0YqWOsm4SYWxLO_LNC4EmpYiTguhI1Ho5CV0quvKvoIgyqW2Eg1BzjRHdpIZpiXvZyxKeFLapAs_d3-OWjR5ONyJJIUfUNl6aa_0yhUOUjhRla88pkjuT8WKF9OFcvNR-c-qyMIqAoQiRKhmKVAxUw7uiilnz9E_6kLWQkHlPm06Ve-YKXSfCFbqr7DqQrzt2o75Fp0OWrwpb05WKqbdMS5FJLtwtG1GQ0C7O7qy1zXeg8Q4ZSLjOGS5g9PtwymV-G4LIs6lFPcg60KyRfTth_z6v3q9gQcxxS5cOOsAOutlbd8iwVubQ7jzacIO_cT-BQi7Sgc |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBYlZT8e9rtj2brhwl6dWLYsOY_ZWCmDhNIu0D0dki2T0sQNSbySsj9-d7KcLYVBt1fLwrL96fTd6dMdYx-JVGSxKkL8tzIUaY5zrjRlWEgk11aVyAHovPNoLE8m4utFerHHeHsWxon2c3PZq2bzXnU5ddrKxTzvtzqxvkIKkA3QS9-XKdLvDtufjE-H351jRYqdyFUm48jDQ2Tj2UN2RHJnJN59aqfmmLbKnDhB0PJOEZUnBk38VM_9srO7SP1mnnd1k4_qaqE3N3o2-2NROn7GztrXabQoV716bXr57Z1Mj__0vs_ZU09Rg2HT9ILt2eole9AUrdy8YufD4BP612VwXi9_2E2ArDcYkazvbDwMTpcUv1_hpeYEcOlDgoGTJgQjJ920gc_qihdcAevVAZscf_n2-ST0pRlCk6bxOiwyUaax4jrLE8mlQaJiTBJZI9CD02hFS51kwqTSWJ4PVBoXEk1LEaeF1JEsdPKadarryr5hQZQrbRUagpxrgewkM1wrMch4lIiktEmX_dz9ObBo8nC4E0mAHxBsvbRXeuUKBwFOVPCVx4Dk_lSseDFdgJuP4D8rkIUFAgQQIqBZCiDm4OAOHJw9R_-oy7IWCpD7tOlUvWMG6D4RrOCvsOqyeNu1HfM9Oh22eANvTlYQ0-6YUDJSXXa0bUZDQLs7urLXNd6DxDjlMhM4ZLWD0-3DKZX4bgsizqUU9yDrsmSL6PsP-e1_9XrHHscUu3DhrEPWWS9r-x4J3tp88FP6F1I7SRY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Brief+Survey+for+MicroRNA+Precursor+Identification+Using+Machine+Learning+Methods&rft.jtitle=Current+genomics&rft.au=Guan%2C+Zheng-Xing&rft.au=Li%2C+Shi-Hao&rft.au=Zhang%2C+Zi-Mei&rft.au=Zhang%2C+Dan&rft.date=2020-01-01&rft.issn=1389-2029&rft.volume=21&rft.issue=1&rft.spage=11&rft_id=info:doi/10.2174%2F1389202921666200214125102&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-2029&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-2029&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-2029&client=summon |