Developing prediction algorithms for late-life depression using wearable devices: a cohort study protocol
IntroductionDespite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting whil...
Saved in:
| Published in | BMJ open Vol. 14; no. 6; p. e073290 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
British Medical Journal Publishing Group
13.06.2024
BMJ Publishing Group LTD BMJ Publishing Group |
| Series | Protocol |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2044-6055 2044-6055 |
| DOI | 10.1136/bmjopen-2023-073290 |
Cover
| Abstract | IntroductionDespite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems.Methods and analysisThe current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study—Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning.Ethics and disseminationThis study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849–2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations. |
|---|---|
| AbstractList | IntroductionDespite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems.Methods and analysisThe current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study—Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning.Ethics and disseminationThis study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849–2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations. Despite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems.INTRODUCTIONDespite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems.The current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study-Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning.METHODS AND ANALYSISThe current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study-Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning.This study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849-2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations.ETHICS AND DISSEMINATIONThis study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849-2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations. Despite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems. The current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study-Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning. This study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849-2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations. Introduction Despite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to medical access. Wearable devices such as smartphones and smartwatches can help to screen MDD symptoms earlier in a natural setting while forgoing these concerns. However, previous research using wearable devices has mostly targeted the younger population. By collecting longitudinal data using wearable devices from the elderly population, this research aims to produce prediction algorithms for late-life depression and to develop strategies that strengthen medical access in community care systems.Methods and analysis The current cohort study recruited a subsample of 685 elderly people from the Korean Genome and Epidemiology Study—Cardiovascular Disease Association Study, a national large cohort established in 2004. The current study has been conducted over a 3-year period to explore the development patterns of late-life depression. Participants have completed three annual face-to-face interviews (baseline, the first follow-up and the second follow-up) and 2 years of app-based surveys and passive sensing data collection. All the data collection will end at the second follow-up interview. The collected self-report, observational and passive sensing data will be primarily analysed by machine learning.Ethics and dissemination This study protocol has been reviewed and approved by the Yonsei University Mirae Campus Institutional Review Board (1041849–2 02 111 SB-180-06) in South Korea. All participants provided written informed consent. The findings of this research will be disseminated by academic publications and conference presentations. |
| Author | Kim, Min-Hyuk Lee, Jinhee Lee, Jin-kyung Lee, Kyoung-Joung Lim, Hyo-Sang Park, Ji Young Hwang, Sangwon Shin, Taeksoo Urtnasan, Erdenebayar Chung, Moo-Kwon |
| AuthorAffiliation | 1 Yonsei University - Mirae Campus , Wonju , Gangwon-do , Republic of Korea 2 Yonsei University Wonju College of Medicine , Wonju , Gangwon , Republic of Korea 3 Sangji University , Wonju , Gangwon-do , Republic of Korea |
| AuthorAffiliation_xml | – name: 2 Yonsei University Wonju College of Medicine , Wonju , Gangwon , Republic of Korea – name: 1 Yonsei University - Mirae Campus , Wonju , Gangwon-do , Republic of Korea – name: 3 Sangji University , Wonju , Gangwon-do , Republic of Korea |
| Author_xml | – sequence: 1 givenname: Jin-kyung orcidid: 0000-0002-2698-0102 surname: Lee fullname: Lee, Jin-kyung organization: Yonsei University - Mirae Campus, Wonju, Gangwon-do, Republic of Korea – sequence: 2 givenname: Min-Hyuk surname: Kim fullname: Kim, Min-Hyuk organization: Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea – sequence: 3 givenname: Sangwon surname: Hwang fullname: Hwang, Sangwon organization: Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea – sequence: 4 givenname: Kyoung-Joung surname: Lee fullname: Lee, Kyoung-Joung organization: Yonsei University - Mirae Campus, Wonju, Gangwon-do, Republic of Korea – sequence: 5 givenname: Ji Young surname: Park fullname: Park, Ji Young organization: Sangji University, Wonju, Gangwon-do, Republic of Korea – sequence: 6 givenname: Taeksoo surname: Shin fullname: Shin, Taeksoo organization: Yonsei University - Mirae Campus, Wonju, Gangwon-do, Republic of Korea – sequence: 7 givenname: Hyo-Sang surname: Lim fullname: Lim, Hyo-Sang organization: Yonsei University - Mirae Campus, Wonju, Gangwon-do, Republic of Korea – sequence: 8 givenname: Erdenebayar surname: Urtnasan fullname: Urtnasan, Erdenebayar organization: Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea – sequence: 9 givenname: Moo-Kwon surname: Chung fullname: Chung, Moo-Kwon email: chungmk@yonsei.ac.kr organization: Yonsei University - Mirae Campus, Wonju, Gangwon-do, Republic of Korea – sequence: 10 givenname: Jinhee orcidid: 0000-0003-4255-1831 surname: Lee fullname: Lee, Jinhee email: jinh.lee95@yonsei.ac.kr organization: Yonsei University Wonju College of Medicine, Wonju, Gangwon, Republic of Korea |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38871664$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkstu1DAUhiNURC_0CZBQJDZsQp34lrBBVSlQqRIbWFu2czzjkScOtjPVvD0OGUrbBeCNLZ_v_3Vup8XR4Acoilc1elfXmF2o7caPMFQNanCFOG469Kw4aRAhFUOUHj14HxfnMW5QPoR2lDYvimPctrxmjJwU9iPswPnRDqtyDNBbnawfSulWPti03sbS-FA6maBy1kDZQ6ZinJkpzqI7kEEqN0d2VkN8X8pS-7UPqYxp6vfZ1SevvXtZPDfSRTg_3GfF90_X366-VLdfP99cXd5WihKUqlYpagzpWsOwwQowg6bVstOII4x7xg0QSiWtiSFQM8J7gyXmMvehk1gpfFbcLL69lxsxBruVYS-8tOLXhw8rIUOy2oGgLW4NkqjP_SOYNZKjniFF6s6oRrcme5HFaxpGub-Tzt0b1kjMgxCHQYh5EGIZRJZ9WGTjpLbQaxhSkO5RLo8jg12Lld9lx5pzxnl2eHtwCP7HBDGJrY0anJMD-CkKjFjLKWaszuibJ-jGT2HILZ6pDOGWdpl6_TCl-1x-b0IG8ALo4GMMYP6z0u6JStsk5xXKdVn3D-3Fos3BPzn_TfETQnrtJQ |
| CitedBy_id | crossref_primary_10_1186_s12888_024_05919_5 crossref_primary_10_1155_2024_6462853 |
| Cites_doi | 10.1016/S0140-6736(05)66665-2 10.3389/fphar.2020.00279 10.1016/j.psychres.2010.12.007 10.1017/S0033291714000129 10.3389/fpsyt.2021.672347 10.3389/fpsyt.2020.584711 10.1207/s15327752jpa4203_11 10.1016/j.pnpbp.2020.110010 10.1016/S2215-0366(15)00268-0 10.2196/20966 10.3390/jpm11100957 10.1136/jnnp.23.1.56 10.1088/1361-6579/aabf64 10.2196/jmir.9410 10.1111/hsc.12311 10.2196/24365 10.1146/annurev-clinpsy-032816-044949 10.1016/S0165-0327(03)00198-8 10.1002/1520-6394(2000)12:1<1::AID-DA1>3.0.CO;2-W 10.1192/bjp.2019.74 10.1017/S0033291716002166 10.5124/jkma.2013.56.6.485 10.1056/NEJMcp1402180 10.3390/s20051396 10.1001/archinte.166.10.1092 10.2196/24666 10.1097/01.nmd.0000243824.84651.6c 10.1007/s40266-021-00858-2 10.1016/j.jad.2010.11.033 10.1111/jnu.12501 10.1001/jama.289.23.3095 10.2196/39618 10.1097/00003727-198811000-00008 10.1016/j.cpr.2011.07.004 10.2196/jmir.7006 10.1192/bjp.bp.116.188078 10.1016/j.neubiorev.2017.01.032 10.1176/appi.ajp.2015.15081000 10.2196/14045 10.1176/appi.ajp.162.9.1588 10.1093/ije/dyv316 10.1109/ACII.2017.8273620 10.1037/a0019062 10.1109/ICC42927.2021.9500419 10.4324/9781003076391-158 |
| ContentType | Journal Article |
| Copyright | Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024 |
| Copyright_xml | – notice: Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2024 Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2024 |
| DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88E 88G 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR BTHHO CCPQU COVID DWQXO FYUFA GHDGH GNUQQ K9- K9. KB0 M0R M0S M1P M2M NAPCQ PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1136/bmjopen-2023-073290 |
| DatabaseName | BMJ Open Access Journals (Free internet resource, activated by CARLI) BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central BMJ Journals ProQuest One Community College Coronavirus Research Database ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Consumer Health Database (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Consumer Health Database Health & Medical Collection (Alumni) Medical Database Psychology Database Nursing & Allied Health Premium Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Family Health (Alumni Edition) ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Central Basic ProQuest Family Health ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition BMJ Journals ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 5 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2044-6055 |
| ExternalDocumentID | oai_doaj_org_article_5838f0a0d7324362a70d60b419fb2c8f 10.1136/bmjopen-2023-073290 PMC11177677 38871664 10_1136_bmjopen_2023_073290 bmjopen |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GeographicLocations | Republic of Korea South Korea |
| GeographicLocations_xml | – name: Republic of Korea – name: South Korea |
| GrantInformation_xml | – fundername: The Ministry of Education of the Republic of Korea and the National Research Foundation of Korea grantid: NRF-2020S1A5A2A03045088 – fundername: Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) grantid: RS-2023-00282361 – fundername: ; grantid: RS-2023-00282361 – fundername: ; grantid: NRF-2020S1A5A2A03045088 |
| GroupedDBID | --- 4.4 53G 5VS 7RV 7X7 7~R 88E 8FI 8FJ 9YT ABUWG ACGFS ACMMV ADBBV AENEX AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BCNDV BENPR BKNYI BPHCQ BTFSW BTHHO CCPQU DIK DWQXO EBS FYUFA GNUQQ GROUPED_DOAJ GX1 HMCUK HYE HZ~ K9- KQ8 M0R M1P M2M M48 M~E NAPCQ O9- OK1 PGMZT PHGZT PIMPY PQQKQ PROAC PSQYO PSYQQ RHI RMJ RPM UKHRP AAYXX ADRAZ BVXVI CITATION EJD H13 PHGZM PJZUB PPXIY PUEGO 3V. CGR CUY CVF ECM EIF NPM RHF 7XB 8FK COVID K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-b540t-8bb5ff498f63f3be36e28ca9c07033d67fe455a514f4e1647df3a37a0239a3bb3 |
| IEDL.DBID | M48 |
| ISSN | 2044-6055 |
| IngestDate | Fri Oct 03 12:43:05 EDT 2025 Sun Oct 26 04:12:41 EDT 2025 Tue Sep 30 17:08:59 EDT 2025 Wed Oct 01 17:28:38 EDT 2025 Tue Oct 07 07:34:39 EDT 2025 Wed Jan 29 09:33:15 EST 2025 Wed Oct 01 01:56:55 EDT 2025 Thu Apr 24 23:03:07 EDT 2025 Thu Apr 24 22:49:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | health informatics aging depression & mood disorders mental health |
| Language | English |
| License | This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b540t-8bb5ff498f63f3be36e28ca9c07033d67fe455a514f4e1647df3a37a0239a3bb3 |
| Notes | Protocol ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2698-0102 0000-0003-4255-1831 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1136/bmjopen-2023-073290 |
| PMID | 38871664 |
| PQID | 3067533859 |
| PQPubID | 2040975 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5838f0a0d7324362a70d60b419fb2c8f unpaywall_primary_10_1136_bmjopen_2023_073290 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11177677 proquest_miscellaneous_3068753661 proquest_journals_3067533859 pubmed_primary_38871664 crossref_primary_10_1136_bmjopen_2023_073290 crossref_citationtrail_10_1136_bmjopen_2023_073290 bmj_journals_10_1136_bmjopen_2023_073290 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-13 |
| PublicationDateYYYYMMDD | 2024-06-13 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: BMA House, Tavistock Square, London, WC1H 9JR |
| PublicationSeriesTitle | Protocol |
| PublicationTitle | BMJ open |
| PublicationTitleAbbrev | BMJ Open |
| PublicationTitleAlternate | BMJ Open |
| PublicationYear | 2024 |
| Publisher | British Medical Journal Publishing Group BMJ Publishing Group LTD BMJ Publishing Group |
| Publisher_xml | – name: British Medical Journal Publishing Group – name: BMJ Publishing Group LTD – name: BMJ Publishing Group |
| References | Dogan, Sander, Wagner (R17) 2017; 19 Luppa, Sikorski, Luck (R5) 2012; 136 Reinertsen, Clifford (R23) 2018; 39 O’Brien, Gallagher, Stow (R33) 2017; 47 Richter, Fishbain, Richter-Levin (R50) 2021; 11 Bremner, Bolus, Mayer (R41) 2007; 195 Kim, Han (R35) 2017; 46 Lee, Shin, Yang (R43) 2010 Narziev, Goh, Toshnazarov (R20) 2020; 20 Bremner, Vermetten, Mazure (R40) 2000; 12 Forbes, O’Neil, Lane (R11) 2021; 38 Alexopoulos (R6) 2005; 365 Trajković, Starčević, Latas (R37) 2011; 189 Bai, Xiao, Guo (R24) 2021; 9 Martinato, Lorenzoni, Zanchi (R34) 2021; 9 Sheehan, Lecrubier, Sheehan (R36) 1998; 59 Suppl 20 Spitzer, Kroenke, Williams (R42) 2006; 166 Linnemann, Lang (R14) 2020; 11 Solomon, Lee, Chatterjee (R47) 2009; 14 HAMILTON (R38) 1960; 23 Wilcox (R46) 2010; 2 Lubben (R48) 1988; 11 Courtin, Knapp (R7) 2017; 25 Wei, Hou, Zhang (R15) 2019; 215 Russell, Peplau, Ferguson (R45) 1978; 42 Mohr, Zhang, Schueller (R19) 2017; 13 Schütz, Saner, Botros (R29) 2021; 9 Vahia, Sewell (R31) 2016; 173 Lee, Kim, Park (R18) 2021; 12 Clement, Schauman, Graham (R16) 2015; 45 Löwe, Kroenke, Herzog (R39) 2004; 81 Pedrelli, Fedor, Ghandeharioun (R21) 2020; 11 Marzano, Bardill, Fields (R25) 2015; 2 Taylor (R10) 2014; 371 Bao, Han, Ma (R12) 2017; 75 Thornicroft, Chatterji, Evans-Lacko (R2) 2017; 210 Kessler, Berglund, Demler (R1) 2003; 289 Chu, Chang, Ho (R13) 2019; 51 Dlima, Shevade, Menezes (R32) 2022; 3 Cao, Truong, Banu (R26) 2020; 7 Richards (R4) 2011; 31 Watson, Pignone (R30) 2003; 52 Shin (R44) 2013; 56 Kim, Han (R8) 2021; 104 Mitchell, Subramaniam (R9) 2005; 162 Sano, Taylor, McHill (R27) 2018; 20 Dogan (2024061320001039000_14.6.e073290.17) 2017; 19 Sano (2024061320001039000_14.6.e073290.27) 2018; 20 Dlima (2024061320001039000_14.6.e073290.32) 2022; 3 Martinato (2024061320001039000_14.6.e073290.34) 2021; 9 2024061320001039000_14.6.e073290.22 Kim (2024061320001039000_14.6.e073290.8) 2021; 104 2024061320001039000_14.6.e073290.28 Narziev (2024061320001039000_14.6.e073290.20) 2020; 20 Solomon (2024061320001039000_14.6.e073290.47) 2009; 14 Chu (2024061320001039000_14.6.e073290.13) 2019; 51 Wilcox (2024061320001039000_14.6.e073290.46) 2010; 2 2024061320001039000_14.6.e073290.1 2024061320001039000_14.6.e073290.2 2024061320001039000_14.6.e073290.3 2024061320001039000_14.6.e073290.4 2024061320001039000_14.6.e073290.37 Lee (2024061320001039000_14.6.e073290.18) 2021; 12 2024061320001039000_14.6.e073290.39 Bai (2024061320001039000_14.6.e073290.24) 2021; 9 2024061320001039000_14.6.e073290.38 2024061320001039000_14.6.e073290.9 2024061320001039000_14.6.e073290.5 Kim (2024061320001039000_14.6.e073290.35) 2017; 46 2024061320001039000_14.6.e073290.6 2024061320001039000_14.6.e073290.7 Vahia (2024061320001039000_14.6.e073290.31) 2016; 173 Shin (2024061320001039000_14.6.e073290.44) 2013; 56 Richter (2024061320001039000_14.6.e073290.50) 2021; 11 Watson (2024061320001039000_14.6.e073290.30) 2003; 52 Reinertsen (2024061320001039000_14.6.e073290.23) 2018; 39 2024061320001039000_14.6.e073290.43 Marzano (2024061320001039000_14.6.e073290.25) 2015; 2 2024061320001039000_14.6.e073290.45 2024061320001039000_14.6.e073290.40 Forbes (2024061320001039000_14.6.e073290.11) 2021; 38 2024061320001039000_14.6.e073290.42 2024061320001039000_14.6.e073290.41 Linnemann (2024061320001039000_14.6.e073290.14) 2020; 11 2024061320001039000_14.6.e073290.49 Pedrelli (2024061320001039000_14.6.e073290.21) 2020; 11 Cao (2024061320001039000_14.6.e073290.26) 2020; 7 Sheehan (2024061320001039000_14.6.e073290.36) 1998; 59 Suppl 20 Lubben (2024061320001039000_14.6.e073290.48) 1988; 11 O’Brien (2024061320001039000_14.6.e073290.33) 2017; 47 2024061320001039000_14.6.e073290.10 2024061320001039000_14.6.e073290.12 Schütz (2024061320001039000_14.6.e073290.29) 2021; 9 2024061320001039000_14.6.e073290.15 2024061320001039000_14.6.e073290.16 Mohr (2024061320001039000_14.6.e073290.19) 2017; 13 |
| References_xml | – volume: 365 start-page: 1961 year: 2005 ident: R6 article-title: Depression in the elderly publication-title: Lancet doi: 10.1016/S0140-6736(05)66665-2 – volume: 11 year: 2020 ident: R14 article-title: Pathways connecting late-life depression and dementia publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00279 – volume: 189 start-page: 1 year: 2011 ident: R37 article-title: Reliability of the Hamilton rating scale for depression: A meta-analysis over a period of 49 years publication-title: Psychiatry Res doi: 10.1016/j.psychres.2010.12.007 – year: 2010 ident: R43 article-title: Development of the stress questionnaire for KNHANES: report of scientific study service publication-title: Korea Disease Control and Prevention Agency – volume: 45 start-page: 11 year: 2015 ident: R16 article-title: What is the impact of mental health-related stigma on help-seeking? A systematic review of quantitative and qualitative studies publication-title: Psychol Med doi: 10.1017/S0033291714000129 – volume: 59 Suppl 20 start-page: 22 year: 1998 ident: R36 article-title: The mini-International neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 publication-title: J Clin Psychiatry – volume: 14 start-page: 110 year: 2009 ident: R47 article-title: Preliminary Psychometrics of a new scale: A sense of acceptance in community activities publication-title: Int J Psychosoc Rehabilitation – volume: 12 year: 2021 ident: R18 article-title: Current advances in Wearable devices and their sensors in patients with depression publication-title: Front Psychiatry doi: 10.3389/fpsyt.2021.672347 – volume: 11 year: 2020 ident: R21 article-title: Monitoring changes in depression severity using Wearable and mobile sensors publication-title: Front Psychiatry doi: 10.3389/fpsyt.2020.584711 – volume: 42 start-page: 290 year: 1978 ident: R45 article-title: Developing a measure of loneliness publication-title: J Pers Assess doi: 10.1207/s15327752jpa4203_11 – volume: 104 year: 2021 ident: R8 article-title: Neural substrates for late-life depression: A selective review of structural neuroimaging studies publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2020.110010 – volume: 2 start-page: 942 year: 2015 ident: R25 article-title: The application of mHealth to mental health: opportunities and challenges publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(15)00268-0 – volume: 9 year: 2021 ident: R34 article-title: Usability and accuracy of a Smartwatch for the assessment of physical activity in the elderly population: observational study publication-title: JMIR Mhealth Uhealth doi: 10.2196/20966 – volume: 11 year: 2021 ident: R50 article-title: Machine learning-based behavioral diagnostic tools for depression: advances, challenges, and future directions publication-title: J Pers Med doi: 10.3390/jpm11100957 – volume: 23 start-page: 56 year: 1960 ident: R38 article-title: A rating scale for depression publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.23.1.56 – volume: 39 year: 2018 ident: R23 article-title: A review of physiological and behavioral monitoring with Digital sensors for neuropsychiatric illnesses publication-title: Physiol Meas doi: 10.1088/1361-6579/aabf64 – volume: 20 year: 2018 ident: R27 article-title: Identifying objective physiological markers and Modifiable behaviors for self-reported stress and mental health status using Wearable sensors and mobile phones: observational study publication-title: J Med Internet Res doi: 10.2196/jmir.9410 – volume: 25 start-page: 799 year: 2017 ident: R7 article-title: Social isolation, loneliness and health in old age: A Scoping review publication-title: Health Soc Care Community doi: 10.1111/hsc.12311 – volume: 9 year: 2021 ident: R24 article-title: Tracking and monitoring mood stability of patients with major depressive disorder by machine learning models using passive Digital data: prospective naturalistic multicenter study publication-title: JMIR Mhealth Uhealth doi: 10.2196/24365 – volume: 2 start-page: 175 year: 2010 ident: R46 article-title: Multidimensional scale of perceived social support publication-title: Psychol Trauma – volume: 13 start-page: 23 year: 2017 ident: R19 article-title: Personal sensing: understanding mental health using ubiquitous sensors and machine learning publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev-clinpsy-032816-044949 – volume: 81 start-page: 61 year: 2004 ident: R39 article-title: Measuring depression outcome with a brief self-report instrument: sensitivity to change of the patient health questionnaire (PHQ-9) publication-title: J Affect Disord doi: 10.1016/S0165-0327(03)00198-8 – volume: 12 start-page: 1 year: 2000 ident: R40 article-title: Development and preliminary Psychometric properties of an instrument for the measurement of childhood trauma: the early trauma inventory publication-title: Depress Anxiety doi: 10.1002/1520-6394(2000)12:1<1::AID-DA1>3.0.CO;2-W – volume: 215 start-page: 449 year: 2019 ident: R15 article-title: The Association of late-life depression with all-cause and cardiovascular mortality among community-dwelling older adults: systematic review and meta-analysis publication-title: Br J Psychiatry doi: 10.1192/bjp.2019.74 – volume: 47 start-page: 93 year: 2017 ident: R33 article-title: A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression publication-title: Psychol Med doi: 10.1017/S0033291716002166 – volume: 56 start-page: 485 year: 2013 ident: R44 article-title: Measuring stress with questionnaires publication-title: J Korean Med Assoc doi: 10.5124/jkma.2013.56.6.485 – volume: 371 start-page: 1228 year: 2014 ident: R10 article-title: Depression in the elderly publication-title: N Engl J Med doi: 10.1056/NEJMcp1402180 – volume: 20 year: 2020 ident: R20 article-title: STDD: short-term depression detection with passive sensing publication-title: Sensors (Basel) doi: 10.3390/s20051396 – volume: 166 start-page: 1092 year: 2006 ident: R42 article-title: A brief measure for assessing generalized anxiety disorder: the GAD-7 publication-title: Arch Intern Med doi: 10.1001/archinte.166.10.1092 – volume: 9 year: 2021 ident: R29 article-title: Contactless sleep monitoring for early detection of health Deteriorations in community-dwelling older adults: exploratory study publication-title: JMIR Mhealth Uhealth doi: 10.2196/24666 – volume: 195 start-page: 211 year: 2007 ident: R41 article-title: Psychometric properties of the early trauma inventory–self report publication-title: J Nerv Ment Dis doi: 10.1097/01.nmd.0000243824.84651.6c – volume: 38 start-page: 451 year: 2021 ident: R11 article-title: Major depressive disorder in older patients as an inflammatory disorder: implications for the pharmacological management of geriatric depression publication-title: Drugs Aging doi: 10.1007/s40266-021-00858-2 – volume: 136 start-page: 212 year: 2012 ident: R5 article-title: Age-and gender-specific prevalence of depression in latest-life–systematic review and meta-analysis publication-title: J Affect Disord doi: 10.1016/j.jad.2010.11.033 – volume: 52 start-page: 956 year: 2003 ident: R30 article-title: Screening accuracy for late-life depression in primary care: A systematic review publication-title: J Fam Pract – volume: 51 start-page: 547 year: 2019 ident: R13 article-title: The relationship between depression and frailty in community-dwelling older people: A systematic review and meta-analysis of 84,351 older adults publication-title: J Nurs Scholarsh doi: 10.1111/jnu.12501 – volume: 289 start-page: 3095 year: 2003 ident: R1 article-title: The epidemiology of major depressive disorder: results from the National Comorbidity survey replication (NCS-R) publication-title: JAMA doi: 10.1001/jama.289.23.3095 – volume: 3 year: 2022 ident: R32 article-title: Digital Phenotyping in health using machine learning approaches: Scoping review publication-title: JMIR Bioinform Biotech doi: 10.2196/39618 – volume: 11 start-page: 42 year: 1988 ident: R48 article-title: Assessing social networks among elderly populations publication-title: Family Commun Health doi: 10.1097/00003727-198811000-00008 – volume: 31 start-page: 1117 year: 2011 ident: R4 article-title: Prevalence and clinical course of depression: A review publication-title: Clin Psychol Rev doi: 10.1016/j.cpr.2011.07.004 – volume: 19 year: 2017 ident: R17 article-title: Smartphone-based monitoring of objective and subjective data in Affective disorders: where are we and where are we going publication-title: J Med Internet Res doi: 10.2196/jmir.7006 – volume: 210 start-page: 119 year: 2017 ident: R2 article-title: Undertreatment of people with major depressive disorder in 21 countries publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.116.188078 – volume: 75 start-page: 257 year: 2017 ident: R12 article-title: Cooccurrence and Bidirectional Prekdiction of sleep disturbances and depression in older adults: meta-analysis and systemic review publication-title: Neurosci Biobehav Rev doi: 10.1016/j.neubiorev.2017.01.032 – volume: 173 start-page: 763 year: 2016 ident: R31 article-title: Late-life depression: A role for accelerometer technology in diagnosis and management publication-title: AJP doi: 10.1176/appi.ajp.2015.15081000 – volume: 7 year: 2020 ident: R26 article-title: Tracking and predicting depressive symptoms of adolescents using Smartphone-based self-reports, parental evaluations, and passive phone sensor data: development and usability study publication-title: JMIR Ment Health doi: 10.2196/14045 – volume: 162 start-page: 1588 year: 2005 ident: R9 article-title: Prognosis of depression in old age compared to middle age: A systematic review of comparative studies publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.162.9.1588 – volume: 46 year: 2017 ident: R35 article-title: Cohort profile: the Korean genome and epidemiology study (Koges) consortium publication-title: Int J Epidemiol doi: 10.1093/ije/dyv316 – ident: 2024061320001039000_14.6.e073290.41 doi: 10.1097/01.nmd.0000243824.84651.6c – ident: 2024061320001039000_14.6.e073290.3 – ident: 2024061320001039000_14.6.e073290.5 doi: 10.1016/j.jad.2010.11.033 – ident: 2024061320001039000_14.6.e073290.9 doi: 10.1176/appi.ajp.162.9.1588 – ident: 2024061320001039000_14.6.e073290.15 doi: 10.1192/bjp.2019.74 – volume: 11 start-page: 42 year: 1988 ident: 2024061320001039000_14.6.e073290.48 article-title: Assessing social networks among elderly populations publication-title: Family Commun Health doi: 10.1097/00003727-198811000-00008 – volume: 47 start-page: 93 year: 2017 ident: 2024061320001039000_14.6.e073290.33 article-title: A study of wrist-worn activity measurement as a potential real-world biomarker for late-life depression publication-title: Psychol Med doi: 10.1017/S0033291716002166 – ident: 2024061320001039000_14.6.e073290.40 doi: 10.1002/1520-6394(2000)12:1<1::AID-DA1>3.0.CO;2-W – ident: 2024061320001039000_14.6.e073290.42 doi: 10.1001/archinte.166.10.1092 – ident: 2024061320001039000_14.6.e073290.39 doi: 10.1016/S0165-0327(03)00198-8 – ident: 2024061320001039000_14.6.e073290.6 doi: 10.1016/S0140-6736(05)66665-2 – volume: 19 year: 2017 ident: 2024061320001039000_14.6.e073290.17 article-title: Smartphone-based monitoring of objective and subjective data in Affective disorders: where are we and where are we going publication-title: J Med Internet Res doi: 10.2196/jmir.7006 – volume: 11 year: 2020 ident: 2024061320001039000_14.6.e073290.14 article-title: Pathways connecting late-life depression and dementia publication-title: Front Pharmacol doi: 10.3389/fphar.2020.00279 – volume: 9 year: 2021 ident: 2024061320001039000_14.6.e073290.24 article-title: Tracking and monitoring mood stability of patients with major depressive disorder by machine learning models using passive Digital data: prospective naturalistic multicenter study publication-title: JMIR Mhealth Uhealth doi: 10.2196/24365 – ident: 2024061320001039000_14.6.e073290.38 doi: 10.1136/jnnp.23.1.56 – ident: 2024061320001039000_14.6.e073290.22 doi: 10.1109/ACII.2017.8273620 – volume: 13 start-page: 23 year: 2017 ident: 2024061320001039000_14.6.e073290.19 article-title: Personal sensing: understanding mental health using ubiquitous sensors and machine learning publication-title: Annu Rev Clin Psychol doi: 10.1146/annurev-clinpsy-032816-044949 – ident: 2024061320001039000_14.6.e073290.4 doi: 10.1016/j.cpr.2011.07.004 – volume: 2 start-page: 175 year: 2010 ident: 2024061320001039000_14.6.e073290.46 article-title: Multidimensional scale of perceived social support publication-title: Psychol Trauma doi: 10.1037/a0019062 – volume: 9 year: 2021 ident: 2024061320001039000_14.6.e073290.29 article-title: Contactless sleep monitoring for early detection of health Deteriorations in community-dwelling older adults: exploratory study publication-title: JMIR Mhealth Uhealth doi: 10.2196/24666 – volume: 173 start-page: 763 year: 2016 ident: 2024061320001039000_14.6.e073290.31 article-title: Late-life depression: A role for accelerometer technology in diagnosis and management publication-title: AJP doi: 10.1176/appi.ajp.2015.15081000 – ident: 2024061320001039000_14.6.e073290.45 doi: 10.1207/s15327752jpa4203_11 – ident: 2024061320001039000_14.6.e073290.12 doi: 10.1016/j.neubiorev.2017.01.032 – volume: 11 year: 2021 ident: 2024061320001039000_14.6.e073290.50 article-title: Machine learning-based behavioral diagnostic tools for depression: advances, challenges, and future directions publication-title: J Pers Med doi: 10.3390/jpm11100957 – ident: 2024061320001039000_14.6.e073290.10 doi: 10.1056/NEJMcp1402180 – volume: 12 year: 2021 ident: 2024061320001039000_14.6.e073290.18 article-title: Current advances in Wearable devices and their sensors in patients with depression publication-title: Front Psychiatry doi: 10.3389/fpsyt.2021.672347 – ident: 2024061320001039000_14.6.e073290.1 doi: 10.1001/jama.289.23.3095 – volume: 20 year: 2020 ident: 2024061320001039000_14.6.e073290.20 article-title: STDD: short-term depression detection with passive sensing publication-title: Sensors (Basel) doi: 10.3390/s20051396 – volume: 39 year: 2018 ident: 2024061320001039000_14.6.e073290.23 article-title: A review of physiological and behavioral monitoring with Digital sensors for neuropsychiatric illnesses publication-title: Physiol Meas doi: 10.1088/1361-6579/aabf64 – volume: 52 start-page: 956 year: 2003 ident: 2024061320001039000_14.6.e073290.30 article-title: Screening accuracy for late-life depression in primary care: A systematic review publication-title: J Fam Pract – ident: 2024061320001039000_14.6.e073290.2 doi: 10.1192/bjp.bp.116.188078 – volume: 9 year: 2021 ident: 2024061320001039000_14.6.e073290.34 article-title: Usability and accuracy of a Smartwatch for the assessment of physical activity in the elderly population: observational study publication-title: JMIR Mhealth Uhealth doi: 10.2196/20966 – ident: 2024061320001039000_14.6.e073290.28 doi: 10.1109/ICC42927.2021.9500419 – ident: 2024061320001039000_14.6.e073290.37 doi: 10.1016/j.psychres.2010.12.007 – volume: 3 year: 2022 ident: 2024061320001039000_14.6.e073290.32 article-title: Digital Phenotyping in health using machine learning approaches: Scoping review publication-title: JMIR Bioinform Biotech doi: 10.2196/39618 – volume: 2 start-page: 942 year: 2015 ident: 2024061320001039000_14.6.e073290.25 article-title: The application of mHealth to mental health: opportunities and challenges publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(15)00268-0 – volume: 20 year: 2018 ident: 2024061320001039000_14.6.e073290.27 article-title: Identifying objective physiological markers and Modifiable behaviors for self-reported stress and mental health status using Wearable sensors and mobile phones: observational study publication-title: J Med Internet Res doi: 10.2196/jmir.9410 – volume: 51 start-page: 547 year: 2019 ident: 2024061320001039000_14.6.e073290.13 article-title: The relationship between depression and frailty in community-dwelling older people: A systematic review and meta-analysis of 84,351 older adults publication-title: J Nurs Scholarsh doi: 10.1111/jnu.12501 – volume: 7 year: 2020 ident: 2024061320001039000_14.6.e073290.26 article-title: Tracking and predicting depressive symptoms of adolescents using Smartphone-based self-reports, parental evaluations, and passive phone sensor data: development and usability study publication-title: JMIR Ment Health doi: 10.2196/14045 – volume: 46 year: 2017 ident: 2024061320001039000_14.6.e073290.35 article-title: Cohort profile: the Korean genome and epidemiology study (Koges) consortium publication-title: Int J Epidemiol doi: 10.1093/ije/dyv316 – volume: 56 start-page: 485 year: 2013 ident: 2024061320001039000_14.6.e073290.44 article-title: Measuring stress with questionnaires publication-title: J Korean Med Assoc doi: 10.5124/jkma.2013.56.6.485 – volume: 38 start-page: 451 year: 2021 ident: 2024061320001039000_14.6.e073290.11 article-title: Major depressive disorder in older patients as an inflammatory disorder: implications for the pharmacological management of geriatric depression publication-title: Drugs Aging doi: 10.1007/s40266-021-00858-2 – volume: 59 Suppl 20 start-page: 22 year: 1998 ident: 2024061320001039000_14.6.e073290.36 article-title: The mini-International neuropsychiatric interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10 publication-title: J Clin Psychiatry – ident: 2024061320001039000_14.6.e073290.43 – volume: 11 year: 2020 ident: 2024061320001039000_14.6.e073290.21 article-title: Monitoring changes in depression severity using Wearable and mobile sensors publication-title: Front Psychiatry doi: 10.3389/fpsyt.2020.584711 – ident: 2024061320001039000_14.6.e073290.49 doi: 10.4324/9781003076391-158 – volume: 14 start-page: 110 year: 2009 ident: 2024061320001039000_14.6.e073290.47 article-title: Preliminary Psychometrics of a new scale: A sense of acceptance in community activities publication-title: Int J Psychosoc Rehabilitation – ident: 2024061320001039000_14.6.e073290.16 doi: 10.1017/S0033291714000129 – volume: 104 year: 2021 ident: 2024061320001039000_14.6.e073290.8 article-title: Neural substrates for late-life depression: A selective review of structural neuroimaging studies publication-title: Prog Neuropsychopharmacol Biol Psychiatry doi: 10.1016/j.pnpbp.2020.110010 – ident: 2024061320001039000_14.6.e073290.7 doi: 10.1111/hsc.12311 |
| SSID | ssj0000459552 |
| Score | 2.3902144 |
| Snippet | IntroductionDespite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and... Despite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and barriers to... Introduction Despite the high prevalence of major depressive disorder (MDD) among the elderly population, the rate of treatment is low due to stigmas and... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref bmj |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e073290 |
| SubjectTerms | Aged Aged, 80 and over aging Algorithms Chronic illnesses Cohort analysis Cohort Studies Data collection depression & mood disorders Depressive Disorder, Major - diagnosis Depressive Disorder, Major - epidemiology Exercise Female health informatics Humans Interviews Machine Learning Male Mental depression Mental disorders Mental Health Mortality Older people Population Republic of Korea - epidemiology Research Design Smartphones Smartwatches Substance abuse treatment Wearable computers Wearable Electronic Devices |
| SummonAdditionalLinks | – databaseName: BMJ Open Access Journals (Free internet resource, activated by CARLI) dbid: 9YT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SFNJcQt91mhYVeuihytqWLFu99RVCIT0lkJ6MZEubDY532XgJ_fedkb1ul5aQk7ElGVszI30jab4BeKedKKSQmktlay6rVHNTKMOrSmci14nzjtYhT3-ok3P5_SK72IJkHQtjr68obdQRXvuIBuJoartJIidq4lAfUx0f0cr0NjxAcC1C0oKfZ-OyCiIUnYU8O2ksJUewng1cQ4lQ67dzyhnO-5ftwa4oyGsgzoFtrLAxQQUe__-Bz3_PUD5ctQvz69Y0zV8T1PEj2B-QJfvUq8Jj2HLtE9g9HfbOn8Ls6xgfxRZLekwyYaaZzpez7vL6hiF-ZQ1iT97MvGPjGdmW0eH4KbtFo6BAKywJw8tHZhjl1112LJDUMuJ8mKNiPYPz429nX074kGiBWwRsHS-szbyXuvBKeGGdUC4tKqMrGg9ErXIUWJYZxFZeOiIgq70wIjcUGGuEteI57LTz1r0EFufapRQUhQMXsYeZWqQG3ZLaVS72No_gPfZxORjKTRl8EKHKQTIlSabsJRNBuhZEWQ2E5ZQ3o7m70Yex0aLn67i7-meS8FiVyLbDg_lyWg62W9LOso9NXGMTiRO-yeNaxVYm2tu0KnwEh2v9-PNjwRVD_z_TEbwdi9F2aUPGtG6-CnXIXUSIFMGLXp3GL1krZQTFhqJtfOpmSTu7DPzgCW3Eqxz7mo86eZ_OOLi_bF7BHt5JOjOXiEPY6ZYr9xrRWWffBHv8DVXsM1E priority: 102 providerName: BMJ Publishing Group Ltd – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZaDm0vCPoML7lSDz3UIokfsbnRAkKV6KlI3CI7sWGrkF0tWSH-PTNOSHfVivbA1XZWycw345n1-BtCPhnPteDCMKFczUSVG2a1sqyqjOSFyXzw-D_k2Q91ei6-X8iLpVZfWBPW0wP3gtvHY72Q2rQuYOsHb2uLtFapE5kJLq90QO-barOUTEUfLKSRMh9ohjKu9t31L-xHxbBdOANc5-iFn8PoyoYUefv_Fmz-WTP5ctHO7N2tbZqlDelkg6wPkSQ97L9gkzzz7Wvy4mw4K39DJkfjfSg6m-Mw6oDa5nI6n3RX1zcU4lXaQKzJmknwdKyJbSkWw1_SWzACvFgFM9GdHFBLsZ_uvKORlJYix8MUgPSWnJ8c__x2yobGCsxBgNYx7ZwMQRgdFA_cea58ritrKrR_XqsCFCSlhVgqCI-EY3XglhcWL8Ja7hx_R9baaes_EJoWxud4CQocFbKF2ZrnFtKQ2lc-Da5IyGeQcTkYxk0Zcw6uykEdJaqj7NWRkPxBEWU1EJRjn4zm8Ye-jA_Nen6Ox5d_RQ2PS5FcOw4A5MoBcuW_IJeQnQd8_P6wmHpBvi9NQj6O02CreABjWz9dxDWYHkJIlJD3PZzGN-EaU1clEqJXgLbyqqsz7eQq8oFnePCuCpA1GzH5P8LYegphbJNX8JMCq-cyvkPWuvnC70Kc1rm9aJL3Dqc5-g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA_tFdQX8dvVKhF88MHQ3U02uxFErLYUoYeIhb4tyW5yPdnuntc9iv-9M7ns1kM5fM0HJJmPTDIzvyHktbK8EFwoJqSpmahSxXQhNasqlfFcJdZZ_Ic8ncqTM_HlPDvfIdMhFwbDKged6BV13VX4R37gTVt4T2Xqw-Inw6pR6F0dSmjoUFqhfu8hxnbJXorIWBOyd3g0_fpt_HUBA0ZlWRrghxIuD8zlD6xTxbCMOAN-T1E770LrxkXl8fz_ZYT-HUt5e9Uu9K9r3TR_XFTH98jdYGHSj2uWuE92bPuA3DoNPvSHZP55zJOiiyU2I22obmaw3f7i8oqCHUsbsEFZM3eWjrGyLcUg-Rm9BuHAhCvo8WrmHdUU6-wue-rBailiP3TAYI_I2fHR908nLBRcYAYMt54VxmTOCVU4yR03lkubFpVWFeoFXsscCJdlGmwsJywCkdWOa55rTJDV3Bj-mEzarrVPCY1zZVNMjgIFhihiuuapBhrWtrKxM3lE3sAZl0Fgrkr_FuGyDOQokRzlmhwRSQdClFUALsf6Gc32SW_HSYs1bsf24YdI4XEogm77hm45K4MMl-hhdrGOa5gi4OLXeVzL2IhEOZNWhYvI_sAfNxu74duIvBq7QYbRMaNb2638GHw2gqkUkSdrdhpXwgt80koRkWKD0TaWutnTzi88TniCDnmZw1mzkSf_5zCebd_Hc3IHBguMl0v4Ppn0y5V9AZZZb14GcfsNEV04vw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIuUF4lUJCROHDAJYkdx-6tLVQVUisOrFROkZ3Y7UKaXe1mVbW_npnEDV0eVTnGDykZj-1vMjPfEPJWO64EF5oJaSsmylQzo6RhZakznuvEeYf_IQ-P5MFYfD7OjgPPNubCXPffJ1x-sGffsYwUwyrfDNQx1WCfr8kMgPeIrI2Pvux8w_JxsRAMgHkWeIX-MRPuD2hduYE6ov6_ocs_gyTvLZuZuTg3dX3tBtp_2Kd2LzriQgw8-bG1bO1WefkbreMtP26dPAhIlO70qvOI3HHNY3L3MPjan5DJxyGfis7m2IxrSE19Mp1P2tOzBQW8S2vAqqyeeEeHmNqGYjD9CT2HTYSJWdDTHUfb1FCsxztvaUdqS5EjYgqK-JSM9z993TtgoTADswDwWqaszbwXWnnJPbeOS5eq0ugSzw9eyRwWOMsMYDEvHBKWVZ4bnhtMpDXcWv6MjJpp454TGufapZhEBQcdso2ZiqcGzJjKlS72No_IO5BSETbWouhsFi6LILoCRVf0ootIerWuRRkIzrHORn3zpPfDpFnP73Hz8F1UmGEoknN3DbCsRdjrBXqifWziCqYIAAgmjysZW5Fob9NS-YhsXqnbrw_rTDfOVaYj8mbohr2ODhzTuOmyG4PmJUCqiGz02jm8CVdo-koREbWityuvutrTTE47PvEEHfcyB1mzQcVvI4wX_zn-JbkPTwID7RK-SUbtfOleAaRr7euwlX8CHv9G_A priority: 102 providerName: Unpaywall |
| Title | Developing prediction algorithms for late-life depression using wearable devices: a cohort study protocol |
| URI | https://bmjopen.bmj.com/content/14/6/e073290.full https://www.ncbi.nlm.nih.gov/pubmed/38871664 https://www.proquest.com/docview/3067533859 https://www.proquest.com/docview/3068753661 https://pubmed.ncbi.nlm.nih.gov/PMC11177677 https://doi.org/10.1136/bmjopen-2023-073290 https://doaj.org/article/5838f0a0d7324362a70d60b419fb2c8f |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADZ databaseName: BMJ Open Access Journals (Free internet resource, activated by CARLI) customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: 9YT dateStart: 20110101 isFulltext: true titleUrlDefault: https://journals.bmj.com/ providerName: BMJ Publishing Group Ltd – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: DIK dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: GX1 dateStart: 20110101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: RPM dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: 7X7 dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2044-6055 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2044-6055 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0000459552 issn: 2044-6055 databaseCode: M48 dateStart: 20110701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELf2IY29ID5HxqiMxAMPGJLY-TASQt3YmJBaTWhF3VNkJ3ZXlKVd1mrsv-fOTQMVY0K8JFLOzofvzv5dbP-OkFfS8FRwIZmIdcFEHkqm0lixPJcRT2RgrMH_kL1-fDwQX4bRcI0ss6I2DXh1a2iH-aQGdfn2x-XNR3D4D01Gknf64juKGGYCZ2CyoYQYfhOGKom5HHoN3ndds4hkFIUN-9Bf6m6TLZ5iHIEsBOtQYGXIcsz-t8HRP1dV3ptXU3VzrcrytyHr6AG532BN2l0Yx0OyZqpHZKvXzKY_JuNP7Y4pOq3xMmqJqnI0qcez84srCoiWloBGWTm2hrarZiuKy-VH9BrcBLdegcR1OO-pophxt55RR1tLkQViAqb2hAyODk8PjlmTeoFpgHAzlmodWStkamNuuTY8NmGaK5ljD8GLOAEVRpECtGWFQUqywnLFE4VbZRXXmj8lG9WkMs8I9RNpQtwmBV0Z8ompgocKApXC5Ma3OvHIa2jjbKn5zEUlPM4azWSomWyhGY-ES0VkeUNhjpk0yrsrvWkrTRcMHncX30cNt0WRfttdmNSjrPHmDOeara_8AqoIgAAq8YvY1yKQVod5aj2yt7SPXx_mgjPO00h65GUrBm_GKRpVmcnclcEAEkCTR3YW5tS-ydIoPZKuGNrKq65KqvG5YwwPcGo-TqCtWWuT_9IYu___qOdkG24kcFVdwPfIxqyemxeA32a6Q9aTYQJHeXbaIZvdg17vG5z3D_snXzvunwgcPw-DjvNdkAz6J92zn-fKTRE |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2kRgviDuBAUYCiQespbHjxEgTYmxTx9YKoU3aW2YndleUpaUXVftz_DbOSd2MClTxslc7jmyfi79jnwshb5XlqeBCMSFNwUQeKaZTqVmeq5gnqmWdxXvITle2z8TX8_h8jfxaxMKgW-VCJ9aKuhjkeEe-U0NbsKdi9Wn4k2HVKHxdXZTQ0L60QrFbpxjzgR3H9noGJtx492gf6P0uig4PTr-0ma8ywAyglQlLjYmdEyp1kjtuLJc2SnOtchQGXsgEZhvHGoCFExazbxWOa55ojArV3BgO_10nm7hgMP429w663743tzwAmFQcRz7dUYvLHXP1A-tiMSxbzkC-IjwN1qF16WCs6wf8C_T-7bu5Na2G-nqmy_KPg_HwPrnnES39PGfBB2TNVg_JnY5_s39E-vtNXBYdjrAZeYHqsgfbO7m8GlPAzbQEzMvKvrO08c2tKDrl9-gMdhkDvKCnVmsfqaZY13c0oXVyXIq5JgbA0I_J2a1s_ROyUQ0q-4zQMFE2wmAsUJiYtUwXPNLAM4XNbehMEpD3sMeZF9BxVts-XGaeHBmSI5uTIyDRghBZ7hOlY72OcvWgD82g4TxPyOrP95DCzaeY5LtuGIx6mdcZGb5ou1CHBQwRADR0EhYyNKKlnIny1AVke8EfNwu7kZOAvGm6QWfgQ5Cu7GBaf4NmKkCzgDyds1MzE56iCS1FQNIlRlua6nJP1b-s85K30AFAJrDXrOHJ_9mM56vX8ZpstU87J9nJUff4BbkLAwX66rX4NtmYjKb2JaDCiXnlRY-Si9uW9t_DhHXh |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED9tQxq8IL4JDDASSDxgNY0dJ0ZCCCjVxtjEA5P2FuzE7oqytPRD1f41_jru0jSjAlW87NUfkXNf_tl3vgN4oZ1IpZCaS2ULLvNIc5Mqw_NcxyLRXecd3UMeHav9E_n5ND7dgl-rtzAUVrmyibWhLkY53ZF3amiL56lYd3wTFvG11383_smpghR5WlflNJYicuguFnh8m7496CGvX0ZR_9O3j_u8qTDALSKVGU-tjb2XOvVKeGGdUC5Kc6NzUgRRqARXGscGQYWXjjJvFV4YkRh6EWqEtQK_uw3XEiE0hRMmp0l7v4NQScdx1CQ66grVsec_qCIWp4LlHDUron1gG1vXtsS6csC_4O7fUZvX59XYXCxMWf6xJfZvwc0Gy7L3S-G7DVuuugO7R423_i4Me-2LLDaeUDNJATPlAIk5OzufMkTMrES0y8uhd6yNyq0YheMP2AJpTE-7sKc2aG-YYVTRdzJjdVpcRlkmRijK9-DkSgh_H3aqUeUeAgsT7SJ6hoWmkvKVmUJEBqWlcLkLvU0CeIU0zhrVnGb1qUeorGFHRuzIluwIIFoxIsubFOlUqaPcPOl1O2m8zBCyefgH4nA7lNJ71w2jySBrrEVGvmwfmrDAKRIhhknCQoVWdrW3UZ76APZW8nH5Y5caEsDzthutBbmATOVG83oMHVARlAXwYClO7UpESodnJQNI1wRtbanrPdXwrM5I3iXXv0qQ1ryVyf8hxqPN__EMdlHHsy8Hx4eP4QbOkxSk1xV7sDObzN0ThIMz-7TWOwbfr1rRfwOMBnN7 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbQVgIuUF4lUJCROHDAJYkdx-6tLVQVUisOrFROkZ3Y7UKaXe1mVbW_npnEDV0eVTnGDykZj-1vMjPfEPJWO64EF5oJaSsmylQzo6RhZakznuvEeYf_IQ-P5MFYfD7OjgPPNubCXPffJ1x-sGffsYwUwyrfDNQx1WCfr8kMgPeIrI2Pvux8w_JxsRAMgHkWeIX-MRPuD2hduYE6ov6_ocs_gyTvLZuZuTg3dX3tBtp_2Kd2LzriQgw8-bG1bO1WefkbreMtP26dPAhIlO70qvOI3HHNY3L3MPjan5DJxyGfis7m2IxrSE19Mp1P2tOzBQW8S2vAqqyeeEeHmNqGYjD9CT2HTYSJWdDTHUfb1FCsxztvaUdqS5EjYgqK-JSM9z993TtgoTADswDwWqaszbwXWnnJPbeOS5eq0ugSzw9eyRwWOMsMYDEvHBKWVZ4bnhtMpDXcWv6MjJpp454TGufapZhEBQcdso2ZiqcGzJjKlS72No_IO5BSETbWouhsFi6LILoCRVf0ootIerWuRRkIzrHORn3zpPfDpFnP73Hz8F1UmGEoknN3DbCsRdjrBXqifWziCqYIAAgmjysZW5Fob9NS-YhsXqnbrw_rTDfOVaYj8mbohr2ODhzTuOmyG4PmJUCqiGz02jm8CVdo-koREbWityuvutrTTE47PvEEHfcyB1mzQcVvI4wX_zn-JbkPTwID7RK-SUbtfOleAaRr7euwlX8CHv9G_A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+prediction+algorithms+for+late-life+depression+using+wearable+devices%3A+a+cohort+study+protocol&rft.jtitle=BMJ+open&rft.au=Lee%2C+Jin-kyung&rft.au=Kim%2C+Min-Hyuk&rft.au=Hwang%2C+Sangwon&rft.au=Lee%2C+Kyoung-Joung&rft.series=Protocol&rft.date=2024-06-13&rft.pub=BMJ+Publishing+Group&rft.eissn=2044-6055&rft.volume=14&rft.issue=6&rft_id=info:doi/10.1136%2Fbmjopen-2023-073290&rft_id=info%3Apmid%2F38871664&rft.externalDocID=PMC11177677 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-6055&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-6055&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-6055&client=summon |