Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus

ObjectivesDiagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis.Met...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the rheumatic diseases Vol. 80; no. 6; pp. 758 - 766
Main Authors Adamichou, Christina, Genitsaridi, Irini, Nikolopoulos, Dionysis, Nikoloudaki, Myrto, Repa, Argyro, Bortoluzzi, Alessandra, Fanouriakis, Antonis, Sidiropoulos, Prodromos, Boumpas, Dimitrios T, Bertsias, George K
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd and European League Against Rheumatism 01.06.2021
Elsevier Limited
BMJ Publishing Group
Subjects
Online AccessGet full text
ISSN0003-4967
1468-2060
1468-2060
DOI10.1136/annrheumdis-2020-219069

Cover

Abstract ObjectivesDiagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis.MethodsFrom a discovery cohort of randomly selected 802 adults with SLE or control rheumatologic diseases, clinically selected panels of deconvoluted classification criteria and non-criteria features were analysed. Feature selection and model construction were done with Random Forests and Least Absolute Shrinkage and Selection Operator-logistic regression (LASSO-LR). The best model in 10-fold cross-validation was tested in a validation cohort (512 SLE, 143 disease controls).ResultsA novel LASSO-LR model had the best performance and included 14 variably weighed features with thrombocytopenia/haemolytic anaemia, malar/maculopapular rash, proteinuria, low C3 and C4, antinuclear antibodies (ANA) and immunologic disorder being the strongest SLE predictors. Our model produced SLE risk probabilities (depending on the combination of features) correlating positively with disease severity and organ damage, and allowing the unbiased classification of a validation cohort into diagnostic certainty levels (unlikely, possible, likely, definitive SLE) based on the likelihood of SLE against other diagnoses. Operating the model as binary (lupus/not-lupus), we noted excellent accuracy (94.8%) for identifying SLE, and high sensitivity for early disease (93.8%), nephritis (97.9%), neuropsychiatric (91.8%) and severe lupus requiring immunosuppressives/biologics (96.4%). This was converted into a scoring system, whereby a score >7 has 94.2% accuracy.ConclusionsWe have developed and validated an accurate, clinician-friendly algorithm based on classical disease features for early SLE diagnosis and treatment to improve patient outcomes.
AbstractList ObjectivesDiagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis.MethodsFrom a discovery cohort of randomly selected 802 adults with SLE or control rheumatologic diseases, clinically selected panels of deconvoluted classification criteria and non-criteria features were analysed. Feature selection and model construction were done with Random Forests and Least Absolute Shrinkage and Selection Operator-logistic regression (LASSO-LR). The best model in 10-fold cross-validation was tested in a validation cohort (512 SLE, 143 disease controls).ResultsA novel LASSO-LR model had the best performance and included 14 variably weighed features with thrombocytopenia/haemolytic anaemia, malar/maculopapular rash, proteinuria, low C3 and C4, antinuclear antibodies (ANA) and immunologic disorder being the strongest SLE predictors. Our model produced SLE risk probabilities (depending on the combination of features) correlating positively with disease severity and organ damage, and allowing the unbiased classification of a validation cohort into diagnostic certainty levels (unlikely, possible, likely, definitive SLE) based on the likelihood of SLE against other diagnoses. Operating the model as binary (lupus/not-lupus), we noted excellent accuracy (94.8%) for identifying SLE, and high sensitivity for early disease (93.8%), nephritis (97.9%), neuropsychiatric (91.8%) and severe lupus requiring immunosuppressives/biologics (96.4%). This was converted into a scoring system, whereby a score >7 has 94.2% accuracy.ConclusionsWe have developed and validated an accurate, clinician-friendly algorithm based on classical disease features for early SLE diagnosis and treatment to improve patient outcomes.
Diagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis. From a discovery cohort of randomly selected 802 adults with SLE or control rheumatologic diseases, clinically selected panels of deconvoluted classification criteria and non-criteria features were analysed. Feature selection and model construction were done with Random Forests and Least Absolute Shrinkage and Selection Operator-logistic regression (LASSO-LR). The best model in 10-fold cross-validation was tested in a validation cohort (512 SLE, 143 disease controls). A novel LASSO-LR model had the best performance and included 14 variably weighed features with thrombocytopenia/haemolytic anaemia, malar/maculopapular rash, proteinuria, low C3 and C4, antinuclear antibodies (ANA) and immunologic disorder being the strongest SLE predictors. Our model produced SLE risk probabilities (depending on the combination of features) correlating positively with disease severity and organ damage, and allowing the unbiased classification of a validation cohort into diagnostic certainty levels (unlikely, possible, likely, definitive SLE) based on the likelihood of SLE against other diagnoses. Operating the model as binary (lupus/not-lupus), we noted excellent accuracy (94.8%) for identifying SLE, and high sensitivity for early disease (93.8%), nephritis (97.9%), neuropsychiatric (91.8%) and severe lupus requiring immunosuppressives/biologics (96.4%). This was converted into a scoring system, whereby a score >7 has 94.2% accuracy. We have developed and validated an accurate, clinician-friendly algorithm based on classical disease features for early SLE diagnosis and treatment to improve patient outcomes.
Diagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis.OBJECTIVESDiagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing diagnoses. We applied machine learning in well-characterised patient data sets to develop an algorithm that can aid SLE diagnosis.From a discovery cohort of randomly selected 802 adults with SLE or control rheumatologic diseases, clinically selected panels of deconvoluted classification criteria and non-criteria features were analysed. Feature selection and model construction were done with Random Forests and Least Absolute Shrinkage and Selection Operator-logistic regression (LASSO-LR). The best model in 10-fold cross-validation was tested in a validation cohort (512 SLE, 143 disease controls).METHODSFrom a discovery cohort of randomly selected 802 adults with SLE or control rheumatologic diseases, clinically selected panels of deconvoluted classification criteria and non-criteria features were analysed. Feature selection and model construction were done with Random Forests and Least Absolute Shrinkage and Selection Operator-logistic regression (LASSO-LR). The best model in 10-fold cross-validation was tested in a validation cohort (512 SLE, 143 disease controls).A novel LASSO-LR model had the best performance and included 14 variably weighed features with thrombocytopenia/haemolytic anaemia, malar/maculopapular rash, proteinuria, low C3 and C4, antinuclear antibodies (ANA) and immunologic disorder being the strongest SLE predictors. Our model produced SLE risk probabilities (depending on the combination of features) correlating positively with disease severity and organ damage, and allowing the unbiased classification of a validation cohort into diagnostic certainty levels (unlikely, possible, likely, definitive SLE) based on the likelihood of SLE against other diagnoses. Operating the model as binary (lupus/not-lupus), we noted excellent accuracy (94.8%) for identifying SLE, and high sensitivity for early disease (93.8%), nephritis (97.9%), neuropsychiatric (91.8%) and severe lupus requiring immunosuppressives/biologics (96.4%). This was converted into a scoring system, whereby a score >7 has 94.2% accuracy.RESULTSA novel LASSO-LR model had the best performance and included 14 variably weighed features with thrombocytopenia/haemolytic anaemia, malar/maculopapular rash, proteinuria, low C3 and C4, antinuclear antibodies (ANA) and immunologic disorder being the strongest SLE predictors. Our model produced SLE risk probabilities (depending on the combination of features) correlating positively with disease severity and organ damage, and allowing the unbiased classification of a validation cohort into diagnostic certainty levels (unlikely, possible, likely, definitive SLE) based on the likelihood of SLE against other diagnoses. Operating the model as binary (lupus/not-lupus), we noted excellent accuracy (94.8%) for identifying SLE, and high sensitivity for early disease (93.8%), nephritis (97.9%), neuropsychiatric (91.8%) and severe lupus requiring immunosuppressives/biologics (96.4%). This was converted into a scoring system, whereby a score >7 has 94.2% accuracy.We have developed and validated an accurate, clinician-friendly algorithm based on classical disease features for early SLE diagnosis and treatment to improve patient outcomes.CONCLUSIONSWe have developed and validated an accurate, clinician-friendly algorithm based on classical disease features for early SLE diagnosis and treatment to improve patient outcomes.
Author Adamichou, Christina
Nikolopoulos, Dionysis
Nikoloudaki, Myrto
Genitsaridi, Irini
Repa, Argyro
Bortoluzzi, Alessandra
Bertsias, George K
Sidiropoulos, Prodromos
Boumpas, Dimitrios T
Fanouriakis, Antonis
AuthorAffiliation 1 Rheumatology, Clinical Immunology and Allergy , University of Crete School of Medicine , Heraklion , Crete , Greece
6 Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation , Biomedical Research Foundation of the Academy of Athens , Athens , Attica , Greece
3 Section of Rheumatology, Department of Medical Sciences , Azienda Ospedaliero Universitaria di Ferrara Arcispedale Sant'Anna , Cona , Emilia-Romagna , Italy
2 Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine , Attikon University Hospital, National and Kapodistrian University of Athens , Athens , Greece
4 Rheumatology , “Asklepieion” General Hospital , Athens , Greece
5 Institute of Molecular Biology and Biotechnology , Foundation of Research and Technology—Hellas , Heraklion , Crete , Greece
AuthorAffiliation_xml – name: 6 Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation , Biomedical Research Foundation of the Academy of Athens , Athens , Attica , Greece
– name: 4 Rheumatology , “Asklepieion” General Hospital , Athens , Greece
– name: 2 Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine , Attikon University Hospital, National and Kapodistrian University of Athens , Athens , Greece
– name: 1 Rheumatology, Clinical Immunology and Allergy , University of Crete School of Medicine , Heraklion , Crete , Greece
– name: 5 Institute of Molecular Biology and Biotechnology , Foundation of Research and Technology—Hellas , Heraklion , Crete , Greece
– name: 3 Section of Rheumatology, Department of Medical Sciences , Azienda Ospedaliero Universitaria di Ferrara Arcispedale Sant'Anna , Cona , Emilia-Romagna , Italy
Author_xml – sequence: 1
  givenname: Christina
  surname: Adamichou
  fullname: Adamichou, Christina
  organization: Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Crete, Greece
– sequence: 2
  givenname: Irini
  surname: Genitsaridi
  fullname: Genitsaridi, Irini
  organization: Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Crete, Greece
– sequence: 3
  givenname: Dionysis
  orcidid: 0000-0002-9894-6966
  surname: Nikolopoulos
  fullname: Nikolopoulos, Dionysis
  organization: Rheumatology and Clinical Immunology Unit, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
– sequence: 4
  givenname: Myrto
  surname: Nikoloudaki
  fullname: Nikoloudaki, Myrto
  organization: Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Crete, Greece
– sequence: 5
  givenname: Argyro
  surname: Repa
  fullname: Repa, Argyro
  organization: Rheumatology, Clinical Immunology and Allergy, University of Crete School of Medicine, Heraklion, Crete, Greece
– sequence: 6
  givenname: Alessandra
  surname: Bortoluzzi
  fullname: Bortoluzzi, Alessandra
  organization: Section of Rheumatology, Department of Medical Sciences, Azienda Ospedaliero Universitaria di Ferrara Arcispedale Sant'Anna, Cona, Emilia-Romagna, Italy
– sequence: 7
  givenname: Antonis
  orcidid: 0000-0003-2696-031X
  surname: Fanouriakis
  fullname: Fanouriakis, Antonis
  organization: Rheumatology, “Asklepieion” General Hospital, Athens, Greece
– sequence: 8
  givenname: Prodromos
  orcidid: 0000-0001-9607-0326
  surname: Sidiropoulos
  fullname: Sidiropoulos, Prodromos
  organization: Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology—Hellas, Heraklion, Crete, Greece
– sequence: 9
  givenname: Dimitrios T
  orcidid: 0000-0002-9812-4671
  surname: Boumpas
  fullname: Boumpas, Dimitrios T
  organization: Laboratory of Immune Regulation and Tolerance, Autoimmunity and Inflammation, Biomedical Research Foundation of the Academy of Athens, Athens, Attica, Greece
– sequence: 10
  givenname: George K
  orcidid: 0000-0001-5299-1406
  surname: Bertsias
  fullname: Bertsias, George K
  email: gbertsias@uoc.gr
  organization: Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology—Hellas, Heraklion, Crete, Greece
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33568388$$D View this record in MEDLINE/PubMed
BookMark eNqVkV1vFCEUhompsdvqX1ASb2riKDBfjIka01TdZBObqteEr9llZWAFpnX-jz9U1q1t7Y31isB5n3Pe83IA9px3GoAnGL3AuGxecufCSo-DMrEgiKCC4A413T0ww1VD81OD9sAMIVQWVde0--AgxnW-IorpA7BflnVDS0pn4Odi3IwR-gCdT2_h58UJPDPxGzwNXnBhrEkTnDulf8CjXDs7nT97BTmMZthY_RxKa5yRhruiD0Y7ZSc4cLkyTkOreXDGLQvBo1Zw8EpbmDzkMZqYYFppqAxfOp-v0PcwTjHpwUhofxvSYcqSgScfx_gQ3O-5jfrR5XkIvr4_-XL8sVh8-jA_frcoRF2SVHSi5USprqq1kC0VVVujEutcqxWRVd-RSumGEtxKjKq-V6hTveibXvA2x9GWh4Du-o5uw6cLbi3bBDPwMDGM2DZ4diN4tg2e7YLP6JsduhnFoJXULgV-jXtu2N8VZ1Zs6c8ZxRWpyiY3OLpsEPz3UcfEBhOltpY77cc8rKK0btoGbWc9vSVd-zG4nAwjNam7llBSZ9Xjm46urPz5-yx4vRPI4GMMumfSJJ6M3xo09g4rt7f4u4dFdqQY1v8BldfQ1cL_on4BxoAA8A
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103611
crossref_primary_10_1186_s42358_024_00390_y
crossref_primary_10_1016_j_autrev_2023_103496
crossref_primary_10_1007_s00296_022_05133_0
crossref_primary_10_1016_j_autrev_2023_103294
crossref_primary_10_1177_10815589231171404
crossref_primary_10_1136_annrheumdis_2021_220262
crossref_primary_10_1038_s41598_024_76706_1
crossref_primary_10_1109_JBHI_2022_3164937
crossref_primary_10_2139_ssrn_4173130
crossref_primary_10_3390_bioengineering11010090
crossref_primary_10_1016_j_ncrna_2024_10_002
crossref_primary_10_1007_s10067_024_07210_0
crossref_primary_10_3389_fimmu_2022_866181
crossref_primary_10_3390_pharmaceutics16121559
crossref_primary_10_1177_09612033231206830
crossref_primary_10_3389_fimmu_2024_1384229
crossref_primary_10_1177_1759720X221105978
crossref_primary_10_1136_lupus_2023_001125
crossref_primary_10_1007_s10067_024_06893_9
crossref_primary_10_1016_j_berh_2024_101938
crossref_primary_10_1136_lupus_2023_001140
crossref_primary_10_1016_j_aca_2024_343302
crossref_primary_10_1016_j_eswa_2021_115658
crossref_primary_10_1016_j_intimp_2024_112238
crossref_primary_10_1186_s12882_022_02978_2
crossref_primary_10_1186_s13075_024_03330_9
crossref_primary_10_1016_j_pdpdt_2024_104406
crossref_primary_10_3389_fphar_2024_1526936
crossref_primary_10_1155_2022_1830431
crossref_primary_10_1016_j_semarthrit_2023_152213
crossref_primary_10_3389_fimmu_2022_1074044
crossref_primary_10_1055_a_1547_3498
crossref_primary_10_1007_s00011_023_01755_7
crossref_primary_10_1016_j_autrev_2021_102864
crossref_primary_10_1136_lupus_2021_000643
crossref_primary_10_1016_S2665_9913_23_00010_3
crossref_primary_10_1136_annrheumdis_2021_220246
crossref_primary_10_1136_ard_2023_223880
crossref_primary_10_1080_1744666X_2023_2292188
crossref_primary_10_1016_j_imlet_2025_106993
crossref_primary_10_3390_ijms24054514
crossref_primary_10_1136_ard_2024_225664
crossref_primary_10_3390_jcm13206242
crossref_primary_10_1016_j_ijmedinf_2025_105839
crossref_primary_10_1007_s00011_023_01793_1
crossref_primary_10_1097_BOR_0000000000000902
crossref_primary_10_1007_s00296_024_05575_8
crossref_primary_10_1016_j_jbspin_2021_105292
crossref_primary_10_3389_fimmu_2023_1200732
crossref_primary_10_1038_s41598_023_49925_1
crossref_primary_10_1002_art_42544
crossref_primary_10_1093_rheumatology_keac005
crossref_primary_10_1155_2022_7167066
crossref_primary_10_1097_HEP_0000000000000364
crossref_primary_10_1016_j_berh_2023_101895
crossref_primary_10_1038_s41584_021_00708_w
crossref_primary_10_3389_fimmu_2024_1456145
crossref_primary_10_1007_s10067_024_07108_x
crossref_primary_10_1007_s11517_022_02699_6
crossref_primary_10_1186_s13040_023_00352_y
crossref_primary_10_1016_j_ipm_2024_103804
crossref_primary_10_1097_BOR_0000000000001087
crossref_primary_10_1093_rheumatology_keac120
crossref_primary_10_3390_diagnostics14131339
crossref_primary_10_1177_09612033241238053
Cites_doi 10.1177/0961203317749746
10.1136/annrheumdis-2018-214379
10.1177/0961203313513508
10.1016/j.autrev.2010.08.014
10.1093/rheumatology/kep058
10.1136/annrheumdis-2019-216599
10.1002/acr.20116
10.1093/rheumatology/kez584
10.1002/art.1780400928
10.1002/acr.22422
10.1136/annrheumdis-2017-211206
10.1038/s41586-019-1390-1
10.1097/BOR.0000000000000612
10.1038/s41598-018-24783-4
10.1002/art.1780390303
10.1136/lupus-2016-000176
10.1136/annrheumdis-2019-216712
10.1038/s41598-019-45989-0
10.1002/acr.23894
10.1002/art.34473
10.1002/art.40428
10.1136/bmj.l886
10.1007/s40258-014-0085-x
10.1038/s41598-017-10558-w
10.1136/annrheumdis-2017-212285
10.1002/art.41056
10.1177/0961203320908932
10.3389/fmed.2018.00161
10.1186/s13075-015-0521-9
10.1136/lupus-2020-000394
10.1016/j.berh.2012.01.005
10.1007/s11910-016-0688-8
10.1136/annrheumdis-2019-216155
10.1503/cmaj.190506
10.1056/NEJMra1814259
10.1038/nrrheum.2013.103
10.1093/rheumatology/keh624
10.1007/s11926-019-0810-4
10.1016/j.autrev.2018.01.007
10.1002/acr.22539
10.1136/annrheumdis-2018-214685
10.1370/afm.2264
10.1111/j.1365-2753.2007.00716.x
10.1002/acr.22583
10.1093/rheumatology/keu384
10.1136/rmdopen-2019-001097
10.1177/0961203313512883
10.1136/annrheumdis-2018-214819
10.1002/art.40930
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021
Copyright_xml – notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AF
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BTHHO
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9-
K9.
LK8
M0R
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1136/annrheumdis-2020-219069
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
BMJ Journals
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Consumer Health Database
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database (Proquest)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest Central Student
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-2060
EndPage 766
ExternalDocumentID oai:sfera.unife.it:11392/2474340
PMC8142436
33568388
10_1136_annrheumdis_2020_219069
annrheumdis
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Foundation for Research in Rheumatology
  grantid: 016BertsiasPrecl
– fundername: H2020 European Research Council
  grantid: 742390
  funderid: http://dx.doi.org/10.13039/100010663
– fundername: Pancretan Health Association
– fundername: Hellenic Society of Rheumatology & Professionals Union of Rheumatologists of Greece
  grantid: 644
– fundername: ;
– fundername: ;
  grantid: 644
– fundername: ;
  grantid: 742390
– fundername: ;
  grantid: 016BertsiasPrecl
GroupedDBID ---
.55
.GJ
.VT
169
23M
2WC
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
88I
8AF
8FE
8FH
8FI
8FJ
8R4
8R5
9YT
AAHLL
AAKAS
AAOJX
AAWJN
AAWTL
AAXUO
ABAAH
ABJNI
ABKDF
ABMQD
ABOCM
ABTFR
ABUWG
ABVAJ
ACGFO
ACGFS
ACGOD
ACGTL
ACHTP
ACMFJ
ACMMV
ACOAB
ACOFX
ACPRK
ACQSR
ACTZY
ADBBV
ADCEG
ADFRT
ADUGQ
ADZCM
AEKJL
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
AKKEP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZQEC
BAWUL
BBNVY
BENPR
BHPHI
BKNYI
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DWQXO
E3Z
EBS
EJD
F5P
FDB
FYUFA
GNUQQ
H13
HAJ
HCIFZ
HMCUK
HYE
HZ~
IAO
IEA
IHR
INH
INR
IOF
ITC
J5H
K9-
KQ8
L7B
LK8
M0R
M1P
M2P
M7P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
RWL
RXW
TAE
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
VVN
W2D
W8F
WH7
WOQ
X6Y
X7M
YFH
YOC
YQY
ZGI
ZXP
0R~
AAFWJ
AALRI
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
3V.
CGR
CUY
CVF
ECM
EIF
FRP
IGG
NPM
PKN
RHF
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-b532t-9b7a2dd945ebc78b475031e5325d2c4f924de68217c104ffd09dfbf6fba768373
IEDL.DBID 9YT
ISSN 0003-4967
1468-2060
IngestDate Sun Oct 26 04:10:30 EDT 2025
Tue Sep 30 16:49:30 EDT 2025
Thu Oct 02 11:08:58 EDT 2025
Tue Oct 07 07:34:34 EDT 2025
Sat Feb 15 01:21:17 EST 2025
Wed Oct 01 03:50:50 EDT 2025
Thu Apr 24 23:13:05 EDT 2025
Thu Apr 24 22:49:43 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords autoimmune diseases
systemic
lupus erythematosus
autoantibodies
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b532t-9b7a2dd945ebc78b475031e5325d2c4f924de68217c104ffd09dfbf6fba768373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2696-031X
0000-0002-9894-6966
0000-0001-9607-0326
0000-0001-5299-1406
0000-0002-9812-4671
OpenAccessLink http://dx.doi.org/10.1136/annrheumdis-2020-219069
PMID 33568388
PQID 2525972825
PQPubID 2041045
PageCount 9
ParticipantIDs unpaywall_primary_10_1136_annrheumdis_2020_219069
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8142436
proquest_miscellaneous_2488567609
proquest_journals_2525972825
pubmed_primary_33568388
crossref_citationtrail_10_1136_annrheumdis_2020_219069
crossref_primary_10_1136_annrheumdis_2020_219069
bmj_primary_10_1136_annrheumdis_2020_219069
bmj_journals_10_1136_annrheumdis_2020_219069
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Kidlington
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationTitle Annals of the rheumatic diseases
PublicationTitleAbbrev Ann Rheum Dis
PublicationTitleAlternate Ann Rheum Dis
PublicationYear 2021
Publisher BMJ Publishing Group Ltd and European League Against Rheumatism
Elsevier Limited
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd and European League Against Rheumatism
– name: Elsevier Limited
– name: BMJ Publishing Group
References Doria, Zen, Canova (R1) 2010; 10
Tomašev, Glorot, Rae (R49) 2019; 572
Bertsias, Pamfil, Fanouriakis (R39) 2013; 9
Adamichou, Nikolopoulos, Genitsaridi (R11) 2020; 79
Feng, Zou, Pan (R2) 2014; 23
Lezcano-Valverde, Salazar, León (R17) 2017; 7
Alarcón-Riquelme (R46) 2019; 21
Ntranos, Lublin, Criteria (R45) 2016; 16
Tedeschi, Johnson, Boumpas (R40) 2019; 78
Orange, Agius, DiCarlo (R16) 2018; 70
Walsh, Rozycki, Yi (R21) 2019; 31
Watson, Krutzinna, Bruce (R22) 2019; 364
Nikolopoulos, Kostopoulou, Pieta (R26) 2020; 7
Bortoluzzi, Scirè, Bombardieri (R29) 2015; 54
Papadaki, Fanouriakis, Kavroulakis (R28) 2018; 77
Panousis, Bertsias, Ongen (R47) 2019; 78
Gergianaki, Fanouriakis, Repa (R24) 2017; 76
Faurschou, Dreyer, Kamper (R5) 2010; 62
Rajkomar, Dean, Kohane (R14) 2019; 380
Aringer, Costenbader, Daikh (R9) 2019; 2019
Gergianaki, Bertsias (R6) 2018; 5
Sacre, Delaval, Dossier (R38) 2019
Aberle, Bourn, Chen (R32) 2017; 4
Guan, Zhang, Quang (R18) 2019; 71
Piga, Floris, Sebastiani (R48) 2020; 59
Pinal-Fernandez, Casal-Dominguez, Derfoul (R15) 2020; 79
Hochberg (R27) 1997; 40
Pons-Estel, Wojdyla, McGwin (R37) 2014; 23
Lambers, Westra, Jonkman (R41) 2020; 72
Aringer, Costenbader, Daikh (R10) 2019; 2019
Pons-Estel, Ugarte-Gil, Harvey (R12) 2020; 6
Petri, Orbai, Alarcón (R8) 2012; 64
Isenberg, Rahman, Allen (R30) 2005; 44
Gladman, Ginzler, Goldsmith (R31) 1996; 39
Kegerreis, Catalina, Bachali (R19) 2019; 9
Inês, Silva, Galindo (R36) 2015; 67
Mosca, Tani, Carli (R42) 2012; 26
Huang, Shi, Cai (R20) 2009; 48
Hartman, van Royen-Kerkhof, Jacobs (R34) 2018; 17
Soltani, Moayyeri (R44) 2007; 13
Oglesby, Korves, Laliberté (R4) 2014; 12
Amezcua-Guerra, Higuera-Ortiz, Arteaga-García (R33) 2015; 67
Gao, Sun, Wang (R23) 2018; 8
Donner-Banzhoff (R43) 2018; 16
Ighe, Dahlström, Skogh (R35) 2015; 17
Pelaccia, Forestier, Wemmert (R13) 2019; 191
Aggarwal, Ringold, Khanna (R7) 2015; 67
Morgan, Bland, Maker (R3) 2018; 27
Nikolopoulos, Kostopoulou, Pieta (R25) 2020; 29
Papadaki, Fanouriakis, Kavroulakis 2018; 77
Piga, Floris, Sebastiani 2020; 59
Tedeschi, Johnson, Boumpas 2019; 78
Inês, Silva, Galindo 2015; 67
Bertsias, Pamfil, Fanouriakis 2013; 9
Kegerreis, Catalina, Bachali 2019; 9
Walsh, Rozycki, Yi 2019; 31
Pons-Estel, Ugarte-Gil, Harvey 2020; 6
Ighe, Dahlström, Skogh 2015; 17
Sacre, Delaval, Dossier 2019
Pons-Estel, Wojdyla, McGwin 2014; 23
Aggarwal, Ringold, Khanna 2015; 67
Hochberg 1997; 40
Gergianaki, Bertsias 2018; 5
Aringer, Costenbader, Daikh 2019; 2019
Isenberg, Rahman, Allen 2005; 44
Watson, Krutzinna, Bruce 2019; 364
Rajkomar, Dean, Kohane 2019; 380
Orange, Agius, DiCarlo 2018; 70
Huang, Shi, Cai 2009; 48
Gao, Sun, Wang 2018; 8
Gergianaki, Fanouriakis, Repa 2017; 76
Mosca, Tani, Carli 2012; 26
Guan, Zhang, Quang 2019; 71
Donner-Banzhoff 2018; 16
Alarcón-Riquelme 2019; 21
Ntranos, Lublin, Criteria 2016; 16
Faurschou, Dreyer, Kamper 2010; 62
Pelaccia, Forestier, Wemmert 2019; 191
Nikolopoulos, Kostopoulou, Pieta 2020; 29
Petri, Orbai, Alarcón 2012; 64
Oglesby, Korves, Laliberté 2014; 12
Adamichou, Nikolopoulos, Genitsaridi 2020; 79
Doria, Zen, Canova 2010; 10
Aberle, Bourn, Chen 2017; 4
Amezcua-Guerra, Higuera-Ortiz, Arteaga-García 2015; 67
Tomašev, Glorot, Rae 2019; 572
Lezcano-Valverde, Salazar, León 2017; 7
Hartman, van Royen-Kerkhof, Jacobs 2018; 17
Morgan, Bland, Maker 2018; 27
Panousis, Bertsias, Ongen 2019; 78
Pinal-Fernandez, Casal-Dominguez, Derfoul 2020; 79
Nikolopoulos, Kostopoulou, Pieta 2020; 7
Bortoluzzi, Scirè, Bombardieri 2015; 54
Feng, Zou, Pan 2014; 23
Gladman, Ginzler, Goldsmith 1996; 39
Lambers, Westra, Jonkman 2020; 72
Soltani, Moayyeri 2007; 13
Pons-Estel (10.1136/annrheumdis-2020-219069_bib12) 2020; 6
Huang (10.1136/annrheumdis-2020-219069_bib20) 2009; 48
Gladman (10.1136/annrheumdis-2020-219069_bib31) 1996; 39
Aggarwal (10.1136/annrheumdis-2020-219069_bib7) 2015; 67
Donner-Banzhoff (10.1136/annrheumdis-2020-219069_bib43) 2018; 16
Adamichou (10.1136/annrheumdis-2020-219069_bib11) 2020; 79
Inês (10.1136/annrheumdis-2020-219069_bib36) 2015; 67
Soltani (10.1136/annrheumdis-2020-219069_bib44) 2007; 13
Piga (10.1136/annrheumdis-2020-219069_bib48) 2020; 59
Morgan (10.1136/annrheumdis-2020-219069_bib3) 2018; 27
Oglesby (10.1136/annrheumdis-2020-219069_bib4) 2014; 12
Aringer (10.1136/annrheumdis-2020-219069_bib10) 2019; 2019
Bortoluzzi (10.1136/annrheumdis-2020-219069_bib29) 2015; 54
Rajkomar (10.1136/annrheumdis-2020-219069_bib14) 2019; 380
Lezcano-Valverde (10.1136/annrheumdis-2020-219069_bib17) 2017; 7
Orange (10.1136/annrheumdis-2020-219069_bib16) 2018; 70
Faurschou (10.1136/annrheumdis-2020-219069_bib5) 2010; 62
Guan (10.1136/annrheumdis-2020-219069_bib18) 2019; 71
Pinal-Fernandez (10.1136/annrheumdis-2020-219069_bib15) 2020; 79
Petri (10.1136/annrheumdis-2020-219069_bib8) 2012; 64
Gergianaki (10.1136/annrheumdis-2020-219069_bib24) 2017; 76
Isenberg (10.1136/annrheumdis-2020-219069_bib30) 2005; 44
Nikolopoulos (10.1136/annrheumdis-2020-219069_bib25) 2020; 29
Gao (10.1136/annrheumdis-2020-219069_bib23) 2018; 8
Lambers (10.1136/annrheumdis-2020-219069_bib41) 2020; 72
Panousis (10.1136/annrheumdis-2020-219069_bib47) 2019; 78
Tomašev (10.1136/annrheumdis-2020-219069_bib49) 2019; 572
Sacre (10.1136/annrheumdis-2020-219069_bib38) 2019
Hartman (10.1136/annrheumdis-2020-219069_bib34) 2018; 17
Mosca (10.1136/annrheumdis-2020-219069_bib42) 2012; 26
Papadaki (10.1136/annrheumdis-2020-219069_bib28) 2018; 77
Gergianaki (10.1136/annrheumdis-2020-219069_bib6) 2018; 5
Doria (10.1136/annrheumdis-2020-219069_bib1) 2010; 10
Walsh (10.1136/annrheumdis-2020-219069_bib21) 2019; 31
Aberle (10.1136/annrheumdis-2020-219069_bib32) 2017; 4
Tedeschi (10.1136/annrheumdis-2020-219069_bib40) 2019; 78
Alarcón-Riquelme (10.1136/annrheumdis-2020-219069_bib46) 2019; 21
Ighe (10.1136/annrheumdis-2020-219069_bib35) 2015; 17
Pelaccia (10.1136/annrheumdis-2020-219069_bib13) 2019; 191
Bertsias (10.1136/annrheumdis-2020-219069_bib39) 2013; 9
Pons-Estel (10.1136/annrheumdis-2020-219069_bib37) 2014; 23
Feng (10.1136/annrheumdis-2020-219069_bib2) 2014; 23
Amezcua-Guerra (10.1136/annrheumdis-2020-219069_bib33) 2015; 67
Kegerreis (10.1136/annrheumdis-2020-219069_bib19) 2019; 9
Ntranos (10.1136/annrheumdis-2020-219069_bib45) 2016; 16
Nikolopoulos (10.1136/annrheumdis-2020-219069_bib26) 2020; 7
Aringer (10.1136/annrheumdis-2020-219069_bib9) 2019; 2019
Watson (10.1136/annrheumdis-2020-219069_bib22) 2019; 364
Hochberg (10.1136/annrheumdis-2020-219069_bib27) 1997; 40
33811033 - Ann Rheum Dis. 2023 Jun;82(6):e145. doi: 10.1136/annrheumdis-2021-220262.
33811035 - Ann Rheum Dis. 2023 Jun;82(6):e144. doi: 10.1136/annrheumdis-2021-220246.
References_xml – volume: 27
  start-page: 681
  year: 2018
  ident: R3
  article-title: Individuals living with lupus: findings from the lupus UK members survey 2014
  publication-title: Lupus
  doi: 10.1177/0961203317749746
– volume: 78
  start-page: 1079
  year: 2019
  ident: R47
  article-title: Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214379
– volume: 23
  start-page: 327
  year: 2014
  ident: R2
  article-title: Associations of clinical features and prognosis with age at disease onset in patients with systemic lupus erythematosus
  publication-title: Lupus
  doi: 10.1177/0961203313513508
– volume: 10
  start-page: 55
  year: 2010
  ident: R1
  article-title: Sle diagnosis and treatment: when early is early
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2010.08.014
– volume: 48
  start-page: 626
  year: 2009
  ident: R20
  article-title: Maldi-Tof MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kep058
– volume: 2019
  start-page: 1151
  year: 2019
  ident: R10
  article-title: European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus
  publication-title: Ann Rheum Dis
– volume: 79
  start-page: 1234
  year: 2020
  ident: R15
  article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216599
– volume: 62
  start-page: 873
  year: 2010
  ident: R5
  article-title: Long-Term mortality and renal outcome in a cohort of 100 patients with lupus nephritis
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.20116
– volume: 59
  start-page: 2272
  year: 2020
  ident: R48
  article-title: Risk factors of damage in early diagnosed systemic lupus erythematosus: results of the Italian multicentre early lupus project inception cohort
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kez584
– volume: 40
  year: 1997
  ident: R27
  article-title: Updating the American College of rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780400928
– volume: 67
  start-page: 437
  year: 2015
  ident: R33
  article-title: Performance of the 2012 systemic lupus international collaborating clinics and the 1997 American College of rheumatology classification criteria for systemic lupus erythematosus in a real-life scenario
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22422
– volume: 76
  start-page: 1992
  year: 2017
  ident: R24
  article-title: Epidemiology and burden of systemic lupus erythematosus in a southern European population: data from the community-based lupus Registry of Crete, Greece
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-211206
– volume: 572
  start-page: 116
  year: 2019
  ident: R49
  article-title: A clinically applicable approach to continuous prediction of future acute kidney injury
  publication-title: Nature
  doi: 10.1038/s41586-019-1390-1
– volume: 31
  start-page: 362
  year: 2019
  ident: R21
  article-title: Application of machine learning in the diagnosis of axial spondyloarthritis
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/BOR.0000000000000612
– volume: 8
  year: 2018
  ident: R23
  article-title: Model-Based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson's disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24783-4
– volume: 39
  start-page: 363
  year: 1996
  ident: R31
  article-title: The development and initial validation of the systemic lupus international collaborating Clinics/American College of rheumatology damage index for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780390303
– volume: 4
  year: 2017
  ident: R32
  article-title: Use of SLICC criteria in a large, diverse lupus registry enables SLE classification of a subset of ACR-designated subjects with incomplete lupus
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2016-000176
– year: 2019
  ident: R38
  article-title: New 2019 SLE EULAR/ACR classification criteria are valid for identifying patients with SLE among patients admitted for pericardial effusion
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216712
– volume: 9
  year: 2019
  ident: R19
  article-title: Machine learning approaches to predict lupus disease activity from gene expression data
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45989-0
– volume: 72
  start-page: 607
  year: 2020
  ident: R41
  article-title: Incomplete systemic lupus erythematosus: what remains after application of American College of rheumatology and systemic lupus international collaborating clinics criteria?
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.23894
– volume: 64
  start-page: 2677
  year: 2012
  ident: R8
  article-title: Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.34473
– volume: 70
  start-page: 690
  year: 2018
  ident: R16
  article-title: Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40428
– volume: 364
  year: 2019
  ident: R22
  article-title: Clinical applications of machine learning algorithms: beyond the black box
  publication-title: BMJ
  doi: 10.1136/bmj.l886
– volume: 12
  start-page: 179
  year: 2014
  ident: R4
  article-title: Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes
  publication-title: Appl Health Econ Health Policy
  doi: 10.1007/s40258-014-0085-x
– volume: 7
  year: 2017
  ident: R17
  article-title: Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10558-w
– volume: 77
  start-page: 441
  year: 2018
  ident: R28
  article-title: Neuropsychiatric lupus or not? cerebral hypoperfusion by perfusion-weighted MRI in normal-appearing white matter in primary neuropsychiatric lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-212285
– volume: 71
  start-page: 1987
  year: 2019
  ident: R18
  article-title: Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.41056
– volume: 29
  start-page: 514
  year: 2020
  ident: R25
  article-title: Evolving phenotype of systemic lupus erythematosus in Caucasians: low incidence of lupus nephritis, high burden of neuropsychiatric disease and increased rates of late-onset lupus in the 'Attikon' cohort
  publication-title: Lupus
  doi: 10.1177/0961203320908932
– volume: 5
  start-page: 161
  year: 2018
  ident: R6
  article-title: Systemic lupus erythematosus in primary care: an update and practical messages for the general practitioner
  publication-title: Front Med
  doi: 10.3389/fmed.2018.00161
– volume: 17
  start-page: 3
  year: 2015
  ident: R35
  article-title: Application of the 2012 systemic lupus international collaborating clinics classification criteria to patients in a regional Swedish systemic lupus erythematosus register
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-015-0521-9
– volume: 7
  start-page: e000394
  year: 2020
  ident: R26
  article-title: Transition to severe phenotype in systemic lupus erythematosus initially presenting with non-severe disease: implications for the management of early disease
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2020-000394
– volume: 26
  start-page: 73
  year: 2012
  ident: R42
  article-title: Undifferentiated CTD: a wide spectrum of autoimmune diseases
  publication-title: Best Pract Res Clin Rheumatol
  doi: 10.1016/j.berh.2012.01.005
– volume: 16
  year: 2016
  ident: R45
  article-title: Diagnostic criteria, classification and treatment goals in multiple sclerosis: the Chronicles of time and space
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-016-0688-8
– volume: 79
  start-page: 232
  year: 2020
  ident: R11
  article-title: In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216155
– volume: 191
  start-page: E1332
  year: 2019
  ident: R13
  article-title: Deconstructing the diagnostic reasoning of human versus artificial intelligence
  publication-title: CMAJ
  doi: 10.1503/cmaj.190506
– volume: 380
  start-page: 1347
  year: 2019
  ident: R14
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 9
  start-page: 687
  year: 2013
  ident: R39
  article-title: Diagnostic criteria for systemic lupus erythematosus: has the time come?
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2013.103
– volume: 44
  start-page: 902
  year: 2005
  ident: R30
  article-title: BILAG 2004. development and initial validation of an updated version of the British Isles lupus assessment group's disease activity index for patients with systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keh624
– volume: 21
  year: 2019
  ident: R46
  article-title: New attempts to define and clarify lupus
  publication-title: Curr Rheumatol Rep
  doi: 10.1007/s11926-019-0810-4
– volume: 17
  start-page: 316
  year: 2018
  ident: R34
  article-title: Performance of the 2012 systemic lupus international collaborating clinics classification criteria versus the 1997 American College of rheumatology classification criteria in adult and juvenile systemic lupus erythematosus. A systematic review and meta-analysis
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2018.01.007
– volume: 67
  start-page: 1180
  year: 2015
  ident: R36
  article-title: Classification of systemic lupus erythematosus: systemic lupus international collaborating clinics versus American College of rheumatology criteria. A comparative study of 2,055 patients from a real-life, International systemic lupus erythematosus cohort
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22539
– volume: 78
  start-page: 634
  year: 2019
  ident: R40
  article-title: Multicriteria decision analysis process to develop new classification criteria for systemic lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214685
– volume: 16
  start-page: 353
  year: 2018
  ident: R43
  article-title: Solving the diagnostic challenge: a patient-centered approach
  publication-title: Ann Fam Med
  doi: 10.1370/afm.2264
– volume: 13
  start-page: 533
  year: 2007
  ident: R44
  article-title: Deterministic versus evidence-based attitude towards clinical diagnosis
  publication-title: J Eval Clin Pract
  doi: 10.1111/j.1365-2753.2007.00716.x
– volume: 67
  start-page: 891
  year: 2015
  ident: R7
  article-title: Distinctions between diagnostic and classification criteria?
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22583
– volume: 2019
  start-page: 1400
  year: 2019
  ident: R9
  article-title: European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheumatol
– volume: 54
  start-page: 891
  year: 2015
  ident: R29
  article-title: Development and validation of a new algorithm for Attribution of neuropsychiatric events in systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keu384
– volume: 6
  start-page: e001097
  year: 2020
  ident: R12
  article-title: Applying the 2019 EULAR/ACR lupus criteria to patients from an established cohort: a Latin American perspective
  publication-title: RMD Open
  doi: 10.1136/rmdopen-2019-001097
– volume: 23
  start-page: 3
  year: 2014
  ident: R37
  article-title: The American College of rheumatology and the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus in two multiethnic cohorts: a commentary
  publication-title: Lupus
  doi: 10.1177/0961203313512883
– volume: 39
  start-page: 363
  year: 1996
  article-title: The development and initial validation of the systemic lupus international collaborating Clinics/American College of rheumatology damage index for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780390303
– volume: 31
  start-page: 362
  year: 2019
  article-title: Application of machine learning in the diagnosis of axial spondyloarthritis
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/BOR.0000000000000612
– volume: 76
  start-page: 1992
  year: 2017
  article-title: Epidemiology and burden of systemic lupus erythematosus in a southern European population: data from the community-based lupus Registry of Crete, Greece
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-211206
– volume: 62
  start-page: 873
  year: 2010
  article-title: Long-Term mortality and renal outcome in a cohort of 100 patients with lupus nephritis
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.20116
– volume: 27
  start-page: 681
  year: 2018
  article-title: Individuals living with lupus: findings from the lupus UK members survey 2014
  publication-title: Lupus
  doi: 10.1177/0961203317749746
– volume: 64
  start-page: 2677
  year: 2012
  article-title: Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.34473
– volume: 21
  year: 2019
  article-title: New attempts to define and clarify lupus
  publication-title: Curr Rheumatol Rep
  doi: 10.1007/s11926-019-0810-4
– volume: 8
  year: 2018
  article-title: Model-Based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson's disease
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-24783-4
– volume: 72
  start-page: 607
  year: 2020
  article-title: Incomplete systemic lupus erythematosus: what remains after application of American College of rheumatology and systemic lupus international collaborating clinics criteria?
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.23894
– volume: 17
  start-page: 3
  year: 2015
  article-title: Application of the 2012 systemic lupus international collaborating clinics classification criteria to patients in a regional Swedish systemic lupus erythematosus register
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-015-0521-9
– volume: 26
  start-page: 73
  year: 2012
  article-title: Undifferentiated CTD: a wide spectrum of autoimmune diseases
  publication-title: Best Pract Res Clin Rheumatol
  doi: 10.1016/j.berh.2012.01.005
– volume: 16
  start-page: 353
  year: 2018
  article-title: Solving the diagnostic challenge: a patient-centered approach
  publication-title: Ann Fam Med
  doi: 10.1370/afm.2264
– volume: 29
  start-page: 514
  year: 2020
  article-title: Evolving phenotype of systemic lupus erythematosus in Caucasians: low incidence of lupus nephritis, high burden of neuropsychiatric disease and increased rates of late-onset lupus in the 'Attikon' cohort
  publication-title: Lupus
  doi: 10.1177/0961203320908932
– volume: 16
  year: 2016
  article-title: Diagnostic criteria, classification and treatment goals in multiple sclerosis: the Chronicles of time and space
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-016-0688-8
– volume: 79
  start-page: 1234
  year: 2020
  article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216599
– volume: 67
  start-page: 437
  year: 2015
  article-title: Performance of the 2012 systemic lupus international collaborating clinics and the 1997 American College of rheumatology classification criteria for systemic lupus erythematosus in a real-life scenario
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22422
– volume: 9
  start-page: 687
  year: 2013
  article-title: Diagnostic criteria for systemic lupus erythematosus: has the time come?
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2013.103
– volume: 48
  start-page: 626
  year: 2009
  article-title: Maldi-Tof MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kep058
– volume: 6
  start-page: e001097
  year: 2020
  article-title: Applying the 2019 EULAR/ACR lupus criteria to patients from an established cohort: a Latin American perspective
  publication-title: RMD Open
  doi: 10.1136/rmdopen-2019-001097
– year: 2019
  article-title: New 2019 SLE EULAR/ACR classification criteria are valid for identifying patients with SLE among patients admitted for pericardial effusion
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216712
– volume: 67
  start-page: 1180
  year: 2015
  article-title: Classification of systemic lupus erythematosus: systemic lupus international collaborating clinics versus American College of rheumatology criteria. A comparative study of 2,055 patients from a real-life, International systemic lupus erythematosus cohort
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22539
– volume: 13
  start-page: 533
  year: 2007
  article-title: Deterministic versus evidence-based attitude towards clinical diagnosis
  publication-title: J Eval Clin Pract
  doi: 10.1111/j.1365-2753.2007.00716.x
– volume: 78
  start-page: 1079
  year: 2019
  article-title: Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214379
– volume: 23
  start-page: 3
  year: 2014
  article-title: The American College of rheumatology and the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus in two multiethnic cohorts: a commentary
  publication-title: Lupus
  doi: 10.1177/0961203313512883
– volume: 9
  year: 2019
  article-title: Machine learning approaches to predict lupus disease activity from gene expression data
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45989-0
– volume: 17
  start-page: 316
  year: 2018
  article-title: Performance of the 2012 systemic lupus international collaborating clinics classification criteria versus the 1997 American College of rheumatology classification criteria in adult and juvenile systemic lupus erythematosus. A systematic review and meta-analysis
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2018.01.007
– volume: 67
  start-page: 891
  year: 2015
  article-title: Distinctions between diagnostic and classification criteria?
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22583
– volume: 12
  start-page: 179
  year: 2014
  article-title: Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes
  publication-title: Appl Health Econ Health Policy
  doi: 10.1007/s40258-014-0085-x
– volume: 77
  start-page: 441
  year: 2018
  article-title: Neuropsychiatric lupus or not? cerebral hypoperfusion by perfusion-weighted MRI in normal-appearing white matter in primary neuropsychiatric lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-212285
– volume: 70
  start-page: 690
  year: 2018
  article-title: Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40428
– volume: 2019
  start-page: 1151
  year: 2019
  article-title: European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus
  publication-title: Ann Rheum Dis
– volume: 71
  start-page: 1987
  year: 2019
  article-title: Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.41056
– volume: 4
  year: 2017
  article-title: Use of SLICC criteria in a large, diverse lupus registry enables SLE classification of a subset of ACR-designated subjects with incomplete lupus
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2016-000176
– volume: 572
  start-page: 116
  year: 2019
  article-title: A clinically applicable approach to continuous prediction of future acute kidney injury
  publication-title: Nature
  doi: 10.1038/s41586-019-1390-1
– volume: 364
  year: 2019
  article-title: Clinical applications of machine learning algorithms: beyond the black box
  publication-title: BMJ
  doi: 10.1136/bmj.l886
– volume: 10
  start-page: 55
  year: 2010
  article-title: Sle diagnosis and treatment: when early is early
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2010.08.014
– volume: 7
  year: 2017
  article-title: Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10558-w
– volume: 44
  start-page: 902
  year: 2005
  article-title: BILAG 2004. development and initial validation of an updated version of the British Isles lupus assessment group's disease activity index for patients with systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keh624
– volume: 2019
  start-page: 1400
  year: 2019
  article-title: European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheumatol
– volume: 79
  start-page: 232
  year: 2020
  article-title: In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216155
– volume: 78
  start-page: 634
  year: 2019
  article-title: Multicriteria decision analysis process to develop new classification criteria for systemic lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214685
– volume: 5
  start-page: 161
  year: 2018
  article-title: Systemic lupus erythematosus in primary care: an update and practical messages for the general practitioner
  publication-title: Front Med
  doi: 10.3389/fmed.2018.00161
– volume: 380
  start-page: 1347
  year: 2019
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 7
  start-page: e000394
  year: 2020
  article-title: Transition to severe phenotype in systemic lupus erythematosus initially presenting with non-severe disease: implications for the management of early disease
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2020-000394
– volume: 59
  start-page: 2272
  year: 2020
  article-title: Risk factors of damage in early diagnosed systemic lupus erythematosus: results of the Italian multicentre early lupus project inception cohort
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kez584
– volume: 23
  start-page: 327
  year: 2014
  article-title: Associations of clinical features and prognosis with age at disease onset in patients with systemic lupus erythematosus
  publication-title: Lupus
  doi: 10.1177/0961203313513508
– volume: 40
  year: 1997
  article-title: Updating the American College of rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780400928
– volume: 191
  start-page: E1332
  year: 2019
  article-title: Deconstructing the diagnostic reasoning of human versus artificial intelligence
  publication-title: CMAJ
  doi: 10.1503/cmaj.190506
– volume: 54
  start-page: 891
  year: 2015
  article-title: Development and validation of a new algorithm for Attribution of neuropsychiatric events in systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keu384
– volume: 79
  start-page: 232
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib11
  article-title: In an early SLE cohort the ACR-1997, SLICC-2012 and EULAR/ACR-2019 criteria classify non-overlapping groups of patients: use of all three criteria ensures optimal capture for clinical studies while their modification earlier classification and treatment
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216155
– volume: 10
  start-page: 55
  year: 2010
  ident: 10.1136/annrheumdis-2020-219069_bib1
  article-title: Sle diagnosis and treatment: when early is early
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2010.08.014
– volume: 572
  start-page: 116
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib49
  article-title: A clinically applicable approach to continuous prediction of future acute kidney injury
  publication-title: Nature
  doi: 10.1038/s41586-019-1390-1
– volume: 7
  start-page: 000394
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib26
  article-title: Transition to severe phenotype in systemic lupus erythematosus initially presenting with non-severe disease: implications for the management of early disease
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2020-000394
– volume: 191
  start-page: 1332
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib13
  article-title: Deconstructing the diagnostic reasoning of human versus artificial intelligence
  publication-title: CMAJ
  doi: 10.1503/cmaj.190506
– volume: 9
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib19
  article-title: Machine learning approaches to predict lupus disease activity from gene expression data
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-45989-0
– volume: 31
  start-page: 362
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib21
  article-title: Application of machine learning in the diagnosis of axial spondyloarthritis
  publication-title: Curr Opin Rheumatol
  doi: 10.1097/BOR.0000000000000612
– volume: 5
  start-page: 161
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib6
  article-title: Systemic lupus erythematosus in primary care: an update and practical messages for the general practitioner
  publication-title: Front Med
  doi: 10.3389/fmed.2018.00161
– volume: 17
  start-page: 3
  year: 2015
  ident: 10.1136/annrheumdis-2020-219069_bib35
  article-title: Application of the 2012 systemic lupus international collaborating clinics classification criteria to patients in a regional Swedish systemic lupus erythematosus register
  publication-title: Arthritis Res Ther
  doi: 10.1186/s13075-015-0521-9
– volume: 79
  start-page: 1234
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib15
  article-title: Machine learning algorithms reveal unique gene expression profiles in muscle biopsies from patients with different types of myositis
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2019-216599
– volume: 64
  start-page: 2677
  year: 2012
  ident: 10.1136/annrheumdis-2020-219069_bib8
  article-title: Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.34473
– volume: 71
  start-page: 1987
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib18
  article-title: Machine learning to predict anti-tumor necrosis factor drug responses of rheumatoid arthritis patients by integrating clinical and genetic markers
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.41056
– volume: 2019
  start-page: 1151
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib10
  article-title: European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214819
– volume: 364
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib22
  article-title: Clinical applications of machine learning algorithms: beyond the black box
  publication-title: BMJ
– volume: 78
  start-page: 1079
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib47
  article-title: Combined genetic and transcriptome analysis of patients with SLE: distinct, targetable signatures for susceptibility and severity
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214379
– volume: 6
  start-page: 001097
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib12
  article-title: Applying the 2019 EULAR/ACR lupus criteria to patients from an established cohort: a Latin American perspective
  publication-title: RMD Open
  doi: 10.1136/rmdopen-2019-001097
– volume: 67
  start-page: 437
  year: 2015
  ident: 10.1136/annrheumdis-2020-219069_bib33
  article-title: Performance of the 2012 systemic lupus international collaborating clinics and the 1997 American College of rheumatology classification criteria for systemic lupus erythematosus in a real-life scenario
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22422
– volume: 29
  start-page: 514
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib25
  article-title: Evolving phenotype of systemic lupus erythematosus in Caucasians: low incidence of lupus nephritis, high burden of neuropsychiatric disease and increased rates of late-onset lupus in the ’Attikon’ cohort
  publication-title: Lupus
  doi: 10.1177/0961203320908932
– volume: 23
  start-page: 3
  year: 2014
  ident: 10.1136/annrheumdis-2020-219069_bib37
  article-title: The American College of rheumatology and the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus in two multiethnic cohorts: a commentary
  publication-title: Lupus
  doi: 10.1177/0961203313512883
– volume: 48
  start-page: 626
  year: 2009
  ident: 10.1136/annrheumdis-2020-219069_bib20
  article-title: Maldi-Tof MS combined with magnetic beads for detecting serum protein biomarkers and establishment of boosting decision tree model for diagnosis of systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kep058
– volume: 17
  start-page: 316
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib34
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2018.01.007
– volume: 16
  start-page: 353
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib43
  article-title: Solving the diagnostic challenge: a patient-centered approach
  publication-title: Ann Fam Med
  doi: 10.1370/afm.2264
– volume: 39
  start-page: 363
  year: 1996
  ident: 10.1136/annrheumdis-2020-219069_bib31
  article-title: The development and initial validation of the systemic lupus international collaborating Clinics/American College of rheumatology damage index for systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780390303
– volume: 13
  start-page: 533
  year: 2007
  ident: 10.1136/annrheumdis-2020-219069_bib44
  article-title: Deterministic versus evidence-based attitude towards clinical diagnosis
  publication-title: J Eval Clin Pract
  doi: 10.1111/j.1365-2753.2007.00716.x
– volume: 77
  start-page: 441
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib28
  article-title: Neuropsychiatric lupus or not? cerebral hypoperfusion by perfusion-weighted MRI in normal-appearing white matter in primary neuropsychiatric lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-212285
– volume: 44
  start-page: 902
  year: 2005
  ident: 10.1136/annrheumdis-2020-219069_bib30
  article-title: BILAG 2004. development and initial validation of an updated version of the British Isles lupus assessment group’s disease activity index for patients with systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keh624
– volume: 4
  year: 2017
  ident: 10.1136/annrheumdis-2020-219069_bib32
  article-title: Use of SLICC criteria in a large, diverse lupus registry enables SLE classification of a subset of ACR-designated subjects with incomplete lupus
  publication-title: Lupus Sci Med
  doi: 10.1136/lupus-2016-000176
– volume: 380
  start-page: 1347
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib14
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– volume: 67
  start-page: 1180
  year: 2015
  ident: 10.1136/annrheumdis-2020-219069_bib36
  article-title: Classification of systemic lupus erythematosus: systemic lupus international collaborating clinics versus American College of rheumatology criteria. A comparative study of 2,055 patients from a real-life, International systemic lupus erythematosus cohort
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22539
– volume: 78
  start-page: 634
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib40
  article-title: Multicriteria decision analysis process to develop new classification criteria for systemic lupus erythematosus
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2018-214685
– volume: 72
  start-page: 607
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib41
  article-title: Incomplete systemic lupus erythematosus: what remains after application of American College of rheumatology and systemic lupus international collaborating clinics criteria?
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.23894
– volume: 23
  start-page: 327
  year: 2014
  ident: 10.1136/annrheumdis-2020-219069_bib2
  article-title: Associations of clinical features and prognosis with age at disease onset in patients with systemic lupus erythematosus
  publication-title: Lupus
  doi: 10.1177/0961203313513508
– volume: 26
  start-page: 73
  year: 2012
  ident: 10.1136/annrheumdis-2020-219069_bib42
  article-title: Undifferentiated CTD: a wide spectrum of autoimmune diseases
  publication-title: Best Pract Res Clin Rheumatol
  doi: 10.1016/j.berh.2012.01.005
– volume: 54
  start-page: 891
  year: 2015
  ident: 10.1136/annrheumdis-2020-219069_bib29
  article-title: Development and validation of a new algorithm for Attribution of neuropsychiatric events in systemic lupus erythematosus
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/keu384
– volume: 7
  year: 2017
  ident: 10.1136/annrheumdis-2020-219069_bib17
  article-title: Development and validation of a multivariate predictive model for rheumatoid arthritis mortality using a machine learning approach
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-10558-w
– volume: 21
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib46
  article-title: New attempts to define and clarify lupus
  publication-title: Curr Rheumatol Rep
  doi: 10.1007/s11926-019-0810-4
– volume: 12
  start-page: 179
  year: 2014
  ident: 10.1136/annrheumdis-2020-219069_bib4
  article-title: Impact of early versus late systemic lupus erythematosus diagnosis on clinical and economic outcomes
  publication-title: Appl Health Econ Health Policy
  doi: 10.1007/s40258-014-0085-x
– volume: 67
  start-page: 891
  year: 2015
  ident: 10.1136/annrheumdis-2020-219069_bib7
  article-title: Distinctions between diagnostic and classification criteria?
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.22583
– volume: 2019
  start-page: 1400
  year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib9
  article-title: European League against Rheumatism/American College of rheumatology classification criteria for systemic lupus erythematosus
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40930
– year: 2019
  ident: 10.1136/annrheumdis-2020-219069_bib38
  article-title: New 2019 SLE EULAR/ACR classification criteria are valid for identifying patients with SLE among patients admitted for pericardial effusion
  publication-title: Ann Rheum Dis
– volume: 27
  start-page: 681
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib3
  article-title: Individuals living with lupus: findings from the lupus UK members survey 2014
  publication-title: Lupus
  doi: 10.1177/0961203317749746
– volume: 70
  start-page: 690
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib16
  article-title: Identification of three rheumatoid arthritis disease subtypes by machine learning integration of synovial histologic features and RNA sequencing data
  publication-title: Arthritis Rheumatol
  doi: 10.1002/art.40428
– volume: 16
  year: 2016
  ident: 10.1136/annrheumdis-2020-219069_bib45
  article-title: Diagnostic criteria, classification and treatment goals in multiple sclerosis: the Chronicles of time and space
  publication-title: Curr Neurol Neurosci Rep
  doi: 10.1007/s11910-016-0688-8
– volume: 40
  year: 1997
  ident: 10.1136/annrheumdis-2020-219069_bib27
  article-title: Updating the American College of rheumatology revised criteria for the classification of systemic lupus erythematosus
  publication-title: Arthritis Rheum
  doi: 10.1002/art.1780400928
– volume: 9
  start-page: 687
  year: 2013
  ident: 10.1136/annrheumdis-2020-219069_bib39
  article-title: Diagnostic criteria for systemic lupus erythematosus: has the time come?
  publication-title: Nat Rev Rheumatol
  doi: 10.1038/nrrheum.2013.103
– volume: 8
  year: 2018
  ident: 10.1136/annrheumdis-2020-219069_bib23
  article-title: Model-Based and model-free machine learning techniques for diagnostic prediction and classification of clinical outcomes in Parkinson's disease
  publication-title: Sci Rep
– volume: 59
  start-page: 2272
  year: 2020
  ident: 10.1136/annrheumdis-2020-219069_bib48
  article-title: Risk factors of damage in early diagnosed systemic lupus erythematosus: results of the Italian multicentre early lupus project inception cohort
  publication-title: Rheumatology
  doi: 10.1093/rheumatology/kez584
– volume: 76
  start-page: 1992
  year: 2017
  ident: 10.1136/annrheumdis-2020-219069_bib24
  article-title: Epidemiology and burden of systemic lupus erythematosus in a southern European population: data from the community-based lupus Registry of Crete, Greece
  publication-title: Ann Rheum Dis
  doi: 10.1136/annrheumdis-2017-211206
– volume: 62
  start-page: 873
  year: 2010
  ident: 10.1136/annrheumdis-2020-219069_bib5
  article-title: Long-Term mortality and renal outcome in a cohort of 100 patients with lupus nephritis
  publication-title: Arthritis Care Res
  doi: 10.1002/acr.20116
– reference: 33811033 - Ann Rheum Dis. 2023 Jun;82(6):e145. doi: 10.1136/annrheumdis-2021-220262.
– reference: 33811035 - Ann Rheum Dis. 2023 Jun;82(6):e144. doi: 10.1136/annrheumdis-2021-220246.
SSID ssj0000818
Score 2.6057613
Snippet ObjectivesDiagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against...
Diagnostic reasoning in systemic lupus erythematosus (SLE) is a complex process reflecting the probability of disease at a given timepoint against competing...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 758
SubjectTerms Accuracy
Adult
Algorithms
Antibodies, Antinuclear
Antinuclear antibodies
Artificial intelligence
Atrophy
autoantibodies
autoimmune diseases
Classification
Clinical medicine
Datasets
Diagnosis
Disease
Feature selection
Hemolytic anemia
Humans
Immunological diseases
Learning algorithms
Lupus
lupus erythematosus
Lupus Erythematosus, Systemic
Machine Learning
Medical diagnosis
Mental disorders
Nephritis
Patients
Probability
Proteinuria
Rheumatology
Serology
systemic
Systemic Lupus Erythematosus
Thrombocytopenia
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1tb9MwELa2TgK-IN4pDHRIfACxaHlznCKhCVCnDW1VVZi0b1H8xrK1SWkaof4ffihn56VUk9i-RbITx7mzfZe7ex5C3lILQu5qR_kqcELmcmfAaOQIPD2oEjHXlr3hdBQdnYXfzun5Fhm1tTAmrbLdE-1GLQth_pHv-xQNdWYqLQ_mvxzDGmWiqy2FRtpQK8hPFmJsm-z4BhmrR3a-DEfjyXpvjr245dDDl2RNxpcXWNqXxYWqZjIrUXXQqcK17Jo86G0-u9w8ta6ZotczKu9W-Txd_U6n03-Oq8MH5H5jZ8LnWjEeki2VPyJ3TptI-mPy56SaVyUUC8iL5QF8PxnCJCuvYLzABW4TZldwbJAU4R22TcbH7z9CCmVmwIT3oK6nRM1ytMFJltMVzGxWpoKGhuKnY85HCZZpB5YFoJGOGgVob4Ks0_syHF5DDSWdCZjaF1KLVY0jW5RV-YScHQ5_fD1yGsYGh9PAXzoDzlJfykFIFRcs5qGJknoK26j0RajR2ZMqitENEugGai3dgdRcR5qn6PYELHhKenmRq-cEQiZN4MdnUoShRkddaS6pJ12hIolXfbKHckmaFVcm1pkJbIF1K8bEiDGpxdgnH0z3eQ3hcXPvqBV3IhqsdEPZMb35Rre78dZj7bb6tJ7NWtv75E3XjCvfhHPSXBUV9sG9l0YscvERz2r168YMAorfM477hG0oZtfBoIpvtuTZhUUXj03tYxD1idep8G2n8uL_U3lJ7vkmI8j-w9olveWiUq_QpFvy1806_Qt4Kkzy
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgJe-P4oDHRIewCxtGkS2ykvaEKdNrRN1aDSeIri2GZhbVI1iVD5e_hDOTtJoeyhE2-Rzs7F1s_2XXz3O0L2qCUhd7WjPOU7AXeFM-SUOQmeHlQlodC2esPpGTuaBJ8u6MUW2WtzYXBaemL2vc5mMPxMWdkP3T7ro127TXYYRYu7Q3YmZ-ODr20xPNTG2yQiz2VuE8Y18G0tl8WlqmYyLVCEnhIuUNcEN2-jkvWj6Jp9eT1M8naVzePlj3g6_esMOrxHRu3X16EnV72qFL3k5z_EjpuGd5_cbYxQOKhR84BsqewhuXXaXLM_Ir9OqnlVQL6ALC8_wOeTEZynxRWMF7j6bTTtEo4NzSK8Qdn5-Pjte4ihSA3T8D7UyZYIO0cbEmU5XcLMhmwqaGpUfHPM4SnBluGBMge04BFugMYoyDr2L0X1Gmqe6TSBqf0gtVjWJLN5URWPyeRw9OXjkdOUc3AE9b3SGQoee1IOA6pEwkMRmCvUgUIZlV4SaPQEpWIh-kgJ-ohaS3cotdBMixh9Ip_7T0gnyzP1jEDApbkV8rhMgkCjF6-0kHQg3UQxiU9dso-zHDXLsYisp-Pb7OsWDpGBQ1TDoUvemebzmt9jc2vWwiZKGiJ1U89jurmju-p4Y127LS7_jMaj6LNyk3TcJa9XYtwWzF1PnKm8wja4MVPGmYuveFrDeKXT9ynOZxh2CV8D-KqBoRxfl2TppaUeD01ipM-6ZLBaCjcdyvP_6POC3PFMDJH967VLOuWiUi_RCCzFq2YP-A006Vwy
  priority: 102
  providerName: Unpaywall
Title Lupus or not? SLE Risk Probability Index (SLERPI): a simple, clinician-friendly machine learning-based model to assist the diagnosis of systemic lupus erythematosus
URI https://ard.bmj.com/content/80/6/758.full
https://www.ncbi.nlm.nih.gov/pubmed/33568388
https://www.proquest.com/docview/2525972825
https://www.proquest.com/docview/2488567609
https://pubmed.ncbi.nlm.nih.gov/PMC8142436
https://ard.bmj.com/content/80/6/758
UnpaywallVersion submittedVersion
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1468-2060
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0000818
  issn: 1468-2060
  databaseCode: BENPR
  dateStart: 19390101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 1468-2060
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0000818
  issn: 1468-2060
  databaseCode: 7X7
  dateStart: 19390101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfWTRp7QXxTGNUh8QBikfJlO-UFlanThtaqKivqnqo4tlmgTaqmEer_wx_K2Uk7qiE2nhLJTuzkfhff5c6_I-QNtSTkrnaUrwIn5K5w2pwyJ8HVg6okEtpWb-j12eko_Dym4x3i_T2C7wW2HMviSpUzmRYoUnR2UMdc1m6QPZ_7oQX15cX1xzfyonWRPJwFr1O6_nGjA7IfBJRFgSm-0hCz79sr1A2z82b25L0ym8ern_F0-sfSdPKA3K9tSuhUIHhIdlT2iOz36qj5Y_LrvJyXBeQLyPLlR_hy3oVhWvyAwQKV2SbHruDMsCbCW2wbDs7efYAYitQQBx9BtXcSUeRow4kspyuY2QxMBXXJiW-OWQsl2Ko6sMwBDXJED6BtCbJK5UtxeA0VbXSawNROSC1WFWdsXpTFEzI66V4cnzp1dQZH0MBfOm3BY1_KdkiVSHgkQhMR9RS2UeknoUbHTioWocuToMuntXTbUgvNtIjRxQl48JTsZnmmnhMIuTRBHp_LJAw1OuVKC0k96SaKSTxrkiOUy6TWrmJiHZfAbqZeS3RiJDqpJNok7033eUXXcXtvthb3JKl50U15juntF7qbC-881uEaT9dP41N0QbnZQ9wkrzfNqOUmdBNnKi-xD35nKePMxVs8q-C3GXON3ibhW8DcdDAM4tstWXplmcQjs88xYE3ibSB810d58V8v-SU58E0ykP19dUh2l4tSvUJrbilapMHHvGW1uEX2Ose93lc8fur2B0M8jvqDzuVvw-tLPA
linkProvider BMJ Publishing Group Ltd
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELb2IjG-IN4pDDgkkEAsIk3iOEWaJl46taytqrJJ-xbi2GaBNilNo6n_h9_Bb-PsJC3VJLYv-xbJThznzveSu3uOkJfUgJDbypKOdC2P2dxqMepbMWoPKuOAK9O9oT_wOyfel1N6ukH-1LUwOq2ylolGUIss1v_I3zkUDXWmKy0Ppr8s3TVKR1frFhpR1VpB7BuIsaqw40guztGFy_e7n5HerxznsH38qWNVXQYsTl1nbrU4ixwhWh6VPGYB93RkrylxjAon9hQ6KEL6AZruMbouSgm7JRRXvuIRmuouc_G5m2Tbw02j87f9sT0Yjla6IGgGdc8-_CisyjBruqbNzOxMFhOR5Miq6MSh7LB13vUmn_xY15IXTN-LGZw7RTqNFufRePyPejy8TW5Vdi18KBnxDtmQ6V1yo19F7u-R371iWuSQzSDN5gfwtdeGUZL_hOEMBYpJ0F1AVyM3wmscGw27b95DBHmiwYv3oKzfRE62lMZlFuMFTEwWqISq7cV3S-tjAaazD8wzQKcAORjQvgVRphMmuLyCEro6iWFsXkjOFiVubZYX-X1yci20e0C20iyVjwh4TOhAk8NE7HmKBYFUXNCmsGPpC7xqkD2kS1id8Dw0zpNrCrprMoaajGFJxgZ5q6dPS8iQy2f7NbnDuMJm1y1CxpffaC9vvPJauzU_rXazOl0N8mI5jJJGh4-iVGYFzkFZT33m2_iIhyX7Ldd0XYrfMwgahK0x5nKCRjFfH0mTM4NmHuhaS9dvkOaSha-6lcf_38pzstM57vfCXndw9ITcdHQ2kvl_tku25rNCPkVzcs6fVWcWyLfrFhN_AQNoiiw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELe2IQ1eEP8pDDgkkEAsWhrHcYqEJsRWraybqsGkvoU4tlmgTUrTaOr34VPw6Tg7SUs1ie1lb5HsxHHufH9yd78j5BWzIOSudpSnqONzVzgdzgInQe3BVBIKbbs3HB0HB6f-5yEbrpE_TS2MSatsZKIV1DJPzD_yHY-hoc5NpeWOrtMiBnvd3ckvx3SQMpHWpp1GxSKHan6O7lvxobeHtH7ted39r58OnLrDgCMY9WZOR_DYk7LjMyUSHgrfRPXaCseY9BJfo3MiVRCi2Z6g26K1dDtSCx1oEaOZTjnF566TG5zSjkkn5EO-1AJhO2y69eHn4HVuWZvaBjPTM1WOZVogk6L7hlLDNRnX62L8Y1U_XjB6L-Zu3iyzSTw_j0ejfxRj9w65XVu08LFiwbtkTWX3yOZRHbO_T373y0lZQD6FLJ_twpf-PpykxU8YTFGU2NTcOfQMZiO8wbGTQe_te4ihSA1s8TZUlZvIw442iMxyNIexzf9UUDe8-O4YTSzB9vSBWQ7oDiDvAlq2IKtEwhSX11CBVqcJjOwLqem8QqzNi7J4QE6vhXIPyUaWZ-oxAZ9LE2LyuEx8X_MwVFpI1pZuogKJVy2yjXSJ6rNdRNZtoraUuyFjZMgYVWRskXdm-qQCC7l8dtCQO0pqVHbTHGR0-Y3u4sYrr7XV8NNyN8tz1SIvF8MoY0zgKM5UXuIclPIs4IGLj3hUsd9iTUoZfs8wbBG-wpiLCQa_fHUkS88sjnloqixp0CLtBQtfdStP_r-VF2QThUPU7x0fPiW3PJOGZH-cbZGN2bRUz9COnInn9sAC-XbdEuIvRV-Hxg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe2TgJe-P4oDHRIewCxtGkS2ykvaEKdNrRN1aDSeIri2GZhbVI1iVD5e_hDOTtJoeyhE2-Rzs7F1s_2XXz3O0L2qCUhd7WjPOU7AXeFM-SUOQmeHlQlodC2esPpGTuaBJ8u6MUW2WtzYXBaemL2vc5mMPxMWdkP3T7ro127TXYYRYu7Q3YmZ-ODr20xPNTG2yQiz2VuE8Y18G0tl8WlqmYyLVCEnhIuUNcEN2-jkvWj6Jp9eT1M8naVzePlj3g6_esMOrxHRu3X16EnV72qFL3k5z_EjpuGd5_cbYxQOKhR84BsqewhuXXaXLM_Ir9OqnlVQL6ALC8_wOeTEZynxRWMF7j6bTTtEo4NzSK8Qdn5-Pjte4ihSA3T8D7UyZYIO0cbEmU5XcLMhmwqaGpUfHPM4SnBluGBMge04BFugMYoyDr2L0X1Gmqe6TSBqf0gtVjWJLN5URWPyeRw9OXjkdOUc3AE9b3SGQoee1IOA6pEwkMRmCvUgUIZlV4SaPQEpWIh-kgJ-ohaS3cotdBMixh9Ip_7T0gnyzP1jEDApbkV8rhMgkCjF6-0kHQg3UQxiU9dso-zHDXLsYisp-Pb7OsWDpGBQ1TDoUvemebzmt9jc2vWwiZKGiJ1U89jurmju-p4Y127LS7_jMaj6LNyk3TcJa9XYtwWzF1PnKm8wja4MVPGmYuveFrDeKXT9ynOZxh2CV8D-KqBoRxfl2TppaUeD01ipM-6ZLBaCjcdyvP_6POC3PFMDJH967VLOuWiUi_RCCzFq2YP-A006Vwy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lupus+or+not%3F+SLE+Risk+Probability+Index+%28SLERPI%29%3A+a+simple%2C+clinician-friendly+machine+learning-based+model+to+assist+the+diagnosis+of+systemic+lupus+erythematosus&rft.jtitle=Annals+of+the+rheumatic+diseases&rft.au=Adamichou%2C+Christina&rft.au=Genitsaridi%2C+Irini&rft.au=Nikolopoulos%2C+Dionysis&rft.au=Nikoloudaki%2C+Myrto&rft.date=2021-06-01&rft.pub=BMJ+Publishing+Group&rft.issn=0003-4967&rft.eissn=1468-2060&rft.volume=80&rft.issue=6&rft.spage=758&rft.epage=766&rft_id=info:doi/10.1136%2Fannrheumdis-2020-219069&rft_id=info%3Apmid%2F33568388&rft.externalDocID=PMC8142436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4967&client=summon