Developing and testing an automated qualitative assistant (AQUA) to support qualitative analysis
Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use...
Saved in:
| Published in | Family medicine and community health Vol. 9; no. Suppl 1; p. e001287 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
BMJ Publishing Group Ltd
01.11.2021
BMJ Publishing Group LTD BMJ Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2305-6983 2009-8774 2009-8774 |
| DOI | 10.1136/fmch-2021-001287 |
Cover
| Abstract | Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen’s kappa comparable to human coders (0.62–0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility. |
|---|---|
| AbstractList | Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen’s kappa comparable to human coders (0.62–0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility. Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility. Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qu alitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen’s kappa comparable to human coders (0.62–0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility. Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated alitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility. |
| Author | Calo, William A Fraleigh, Robbie Snyder, Bethany L Lennon, Robert P Van Scoy, Lauren J Keshaviah, Aparna Zgierska, Aleksandra E Hu, Xindi C Griffin, Christopher Miller, Erin L |
| AuthorAffiliation | 2 Applied Research Laboratory , Pennsylvania State University , University Park , Pennsylvania , USA 4 Mathematica Policy Research Inc , Princeton , New Jersey , USA 3 Internal Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA 5 Center for Community Health Integration , Case Western Reserve University , Cleveland , Ohio , USA 6 Public Health Services , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA 1 Family and Community Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA |
| AuthorAffiliation_xml | – name: 3 Internal Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA – name: 2 Applied Research Laboratory , Pennsylvania State University , University Park , Pennsylvania , USA – name: 4 Mathematica Policy Research Inc , Princeton , New Jersey , USA – name: 5 Center for Community Health Integration , Case Western Reserve University , Cleveland , Ohio , USA – name: 1 Family and Community Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA – name: 6 Public Health Services , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA |
| Author_xml | – sequence: 1 givenname: Robert P orcidid: 0000-0003-0973-5890 surname: Lennon fullname: Lennon, Robert P email: rlennon@pennstatehealth.psu.edu organization: Family and Community Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA – sequence: 2 givenname: Robbie surname: Fraleigh fullname: Fraleigh, Robbie organization: Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, USA – sequence: 3 givenname: Lauren J surname: Van Scoy fullname: Van Scoy, Lauren J organization: Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA – sequence: 4 givenname: Aparna surname: Keshaviah fullname: Keshaviah, Aparna organization: Mathematica Policy Research Inc, Princeton, New Jersey, USA – sequence: 5 givenname: Xindi C surname: Hu fullname: Hu, Xindi C organization: Mathematica Policy Research Inc, Princeton, New Jersey, USA – sequence: 6 givenname: Bethany L surname: Snyder fullname: Snyder, Bethany L organization: Center for Community Health Integration, Case Western Reserve University, Cleveland, Ohio, USA – sequence: 7 givenname: Erin L surname: Miller fullname: Miller, Erin L organization: Family and Community Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA – sequence: 8 givenname: William A surname: Calo fullname: Calo, William A organization: Public Health Services, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA – sequence: 9 givenname: Aleksandra E surname: Zgierska fullname: Zgierska, Aleksandra E organization: Family and Community Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA – sequence: 10 givenname: Christopher surname: Griffin fullname: Griffin, Christopher organization: Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34824135$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkc1v1DAQxSNUREvpnROKxKVIBMaf8V6QVuWrUiWERM9m7DjbrJw4TZxF-9_j3ZTCVgJx8sjzm-fnN0-zoy50LsueE3hDCJNv69beFBQoKQAIVeWj7IQCLApVlvwo1QxEIReKHWdn49gY4IpRnppPsmPGFeWEiZPs-3u3cT70TbfKsavy6MY41zlOMbQYXZXfTuibiLHZuByT1hixi_n58uv18lUeQz5OfR-GeMh16LcJfZY9rtGP7uzuPM2uP374dvG5uPry6fJieVUYQctYlLasweJCGsEtMlE5K6SjEgSAcyUYVFiLygDUhpXM8EVdC4oOmKScGctOs8tZtwq41v3QtDhsdcBG7y_CsNI4xMZ6px0oxaREuiCGY5LGBXPKYCkAK0SStMisNXU9bn-g9_eCBPQufL0LX-_C13P4aebdPNNPpnWVdV0c0B8YOex0zY1ehY1WkpacqCRwficwhNsprUG3zWid99i5MI06ZcHTU4LKhL58gK7DNKTA91TaLBBBE_XiT0f3Vn4tPwFyBuwQxnFwtbb77YWdwcb_66_wYPA_4nk9j5h2_dvtX_Gfs4LjoQ |
| CitedBy_id | crossref_primary_10_3390_su16051722 crossref_primary_10_3389_fpubh_2023_1268223 crossref_primary_10_1080_15214842_2024_2377873 crossref_primary_10_1145_3617362 crossref_primary_10_1136_ip_2023_045203 crossref_primary_10_3758_s13428_024_02443_y crossref_primary_10_62486_latia20234 crossref_primary_10_12688_f1000research_151952_1 crossref_primary_10_1186_s13012_024_01346_y crossref_primary_10_2196_56500 crossref_primary_10_1177_10497323231217392 crossref_primary_10_3389_frma_2024_1331589 |
| Cites_doi | 10.1177/1049732305276687 10.1073/pnas.1907367117 10.1109/TKDE.2014.2345378 10.1177/1609406919887021 10.1016/j.cam.2006.04.026 10.1177/2345678906290531 10.1177/1609406920984608 10.1057/ivs.2009.29 10.1177/15586898211021196 10.1007/s11222-019-09879-9 10.1109/TVCG.2016.2598495 10.1137/16M1080173 10.1136/bmj.l6927 10.1109/TVCG.2010.79 10.2196/jmir.9702 10.3389/fphys.2013.00008 10.1370/afm.2674 10.2307/2529310 10.1186/1471-2288-8-44 10.1177/1609406919899220 10.1145/1124772.1124851 10.1007/978-1-84882-312-9 10.1098/rsta.2015.0202 10.1007/978-3-030-22475-2_4 10.4135/9781412963947 10.1145/3173574.3173922 10.1109/MSPEC.2019.8678513 10.1080/17538068.2021.1953934 10.4135/9781473906907 10.1002/9780471703778 |
| ContentType | Journal Article |
| Copyright | Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021 |
| Copyright_xml | – notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021 |
| DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 8C1 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.1136/fmch-2021-001287 |
| DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Public Health Database Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Health & Medical Collection (Alumni) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Public Health ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 6 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Public Health |
| EISSN | 2009-8774 |
| ExternalDocumentID | oai_doaj_org_article_e088366a291b4a0baa93e8ba750adaa1 10.1136/fmch-2021-001287 PMC8627418 34824135 10_1136_fmch_2021_001287 fmch |
| Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Huck Institutes of the Life Sciences grantid: RL award 7601 – fundername: The Social Science Research Institute at Penn State University grantid: 7601 – fundername: Defense Advanced Research Project Agency SCORE program grantid: Cooperative Agreement W911NF-19-0272 – fundername: Huck Institute of Life Sciences grantid: CF and RF, un-numbered support – fundername: Penn State College of Medicine Department of Family and Community Medicine grantid: 7601(M) – fundername: ; grantid: 7601(M) – fundername: ; grantid: 7601 – fundername: ; grantid: CF and RF, un-numbered support – fundername: ; grantid: Cooperative Agreement W911NF-19-0272 – fundername: ; grantid: RL award 7601 |
| GroupedDBID | 5VS 7RV 7X7 8C1 8FI 8FJ 9YT ABUWG ACMMV ADBBV AFKRA ALIPV ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR CCPQU EBS EJD FIJ FYUFA GROUPED_DOAJ HMCUK IPNFZ KQ8 M~E NAPCQ OK1 PGMZT PHGZT RMJ RPM UKHRP AAYXX CITATION PHGZM PJZUB PPXIY PUEGO RIG CGR CUY CVF ECM EIF NPM RHF 3V. 7XB 8FK K9. PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-b527t-7c7f0ca96b54ca35dec56e260500ee70ba8af5db00fb373b49ff52ae036243bc3 |
| IEDL.DBID | 9YT |
| ISSN | 2305-6983 2009-8774 |
| IngestDate | Tue Oct 14 19:09:15 EDT 2025 Sun Oct 26 04:07:02 EDT 2025 Tue Sep 30 16:58:25 EDT 2025 Thu Sep 04 15:41:47 EDT 2025 Tue Oct 07 06:53:35 EDT 2025 Thu Jan 02 22:56:04 EST 2025 Thu Apr 24 23:01:16 EDT 2025 Wed Oct 01 02:31:40 EDT 2025 Thu Apr 24 22:50:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 1 |
| Keywords | qualitative research |
| Language | English |
| License | This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b527t-7c7f0ca96b54ca35dec56e260500ee70ba8af5db00fb373b49ff52ae036243bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0973-5890 |
| OpenAccessLink | https://fmch.bmj.com/content/9/Suppl_1/e001287.full |
| PMID | 34824135 |
| PQID | 2602410152 |
| PQPubID | 5161122 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e088366a291b4a0baa93e8ba750adaa1 unpaywall_primary_10_1136_fmch_2021_001287 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8627418 proquest_miscellaneous_2604012526 proquest_journals_2602410152 pubmed_primary_34824135 crossref_citationtrail_10_1136_fmch_2021_001287 crossref_primary_10_1136_fmch_2021_001287 bmj_journals_10_1136_fmch_2021_001287 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London – name: BMA House, Tavistock Square, London, WC1H 9JR |
| PublicationTitle | Family medicine and community health |
| PublicationTitleAbbrev | Fam Med Com Health |
| PublicationTitleAlternate | Fam Med Community Health |
| PublicationYear | 2021 |
| Publisher | BMJ Publishing Group Ltd BMJ Publishing Group LTD BMJ Publishing Group |
| Publisher_xml | – name: BMJ Publishing Group Ltd – name: BMJ Publishing Group LTD – name: BMJ Publishing Group |
| References | CH, Jannasch-Pennell, DiGangi (R19) 2011; 16 Van Scoy, Snyder, Miller (R27) 2021 Vollmer, Mateen, Bohner (R14) 2020; 368 Wiedemann (R3) 2013; 14 Rajtmajer, Simhachalam, Zhao (R30) 2020 Soleimani, Miller (R32) 2015; 27 Griffin, Bickel (R12) 2018 Guetterman, Chang, DeJonckheere (R5) 2018; 20 Leeson, Resnick, Alexander (R13) 2019; 18 O’Connor, Joffe (R24) 2020 Van Scoy, Miller, Snyder (R28) 2021; 19 Manning, Clark, Hewitt (R11) 2020; 117 Abram, Mancini, Parker (R7) 2020; 19 Bryman (R2) 2007; 1 Jolliffe, Cadima (R35) 2017; 374 Andrade, Takeda, Fukumizu (R34) 2020; 30 Graham, Kennedy (R16) 2010; 9 Landis, Koch (R25) 1977; 33 Smith, Chen, Liu (R23) 2008; 8 Chen, Martin, Daimon (R8) 2013; 4 Schulz, Hadlak, Schumann (R17) 2011; 17 O’Connor, Joffe (R26) 2020; 19 Hsieh, Shannon (R29) 2005; 15 Sacha, Zhang, Sedlmair (R15) 2017; 23 Angelov (R31) 2020 Bottou, Curtis, Nocedal (R38) 2018; 60 Chang, DeJonckheere, Vydiswaran (R6) 2021; 15 Higham, Kalna, Kibble (R33) 2007; 204 2021112508250813000_9.Suppl_1.e001287.10 2021112508250813000_9.Suppl_1.e001287.31 Chen (2021112508250813000_9.Suppl_1.e001287.8) 2013; 4 2021112508250813000_9.Suppl_1.e001287.30 2021112508250813000_9.Suppl_1.e001287.14 2021112508250813000_9.Suppl_1.e001287.36 2021112508250813000_9.Suppl_1.e001287.35 Guetterman (2021112508250813000_9.Suppl_1.e001287.5) 2018; 20 2021112508250813000_9.Suppl_1.e001287.12 2021112508250813000_9.Suppl_1.e001287.11 Leeson (2021112508250813000_9.Suppl_1.e001287.13) 2019; 18 2021112508250813000_9.Suppl_1.e001287.33 2021112508250813000_9.Suppl_1.e001287.18 2021112508250813000_9.Suppl_1.e001287.39 2021112508250813000_9.Suppl_1.e001287.16 2021112508250813000_9.Suppl_1.e001287.37 2021112508250813000_9.Suppl_1.e001287.19 Schulz (2021112508250813000_9.Suppl_1.e001287.17) 2011; 17 2021112508250813000_9.Suppl_1.e001287.1 2021112508250813000_9.Suppl_1.e001287.3 2021112508250813000_9.Suppl_1.e001287.2 2021112508250813000_9.Suppl_1.e001287.9 2021112508250813000_9.Suppl_1.e001287.21 2021112508250813000_9.Suppl_1.e001287.20 Smith (2021112508250813000_9.Suppl_1.e001287.23) 2008; 8 Chang (2021112508250813000_9.Suppl_1.e001287.6) 2021; 15 2021112508250813000_9.Suppl_1.e001287.25 2021112508250813000_9.Suppl_1.e001287.4 2021112508250813000_9.Suppl_1.e001287.24 2021112508250813000_9.Suppl_1.e001287.22 Soleimani (2021112508250813000_9.Suppl_1.e001287.32) 2015; 27 2021112508250813000_9.Suppl_1.e001287.29 2021112508250813000_9.Suppl_1.e001287.28 Andrade (2021112508250813000_9.Suppl_1.e001287.34) 2020; 30 2021112508250813000_9.Suppl_1.e001287.27 2021112508250813000_9.Suppl_1.e001287.26 Bottou (2021112508250813000_9.Suppl_1.e001287.38) 2018; 60 Abram (2021112508250813000_9.Suppl_1.e001287.7) 2020; 19 Sacha (2021112508250813000_9.Suppl_1.e001287.15) 2017; 23 |
| References_xml | – volume: 15 start-page: 1277 year: 2005 ident: R29 article-title: Three approaches to qualitative content analysis publication-title: Qual Health Res doi: 10.1177/1049732305276687 – volume: 117 start-page: 30046 year: 2020 ident: R11 article-title: Emergent linguistic structure in artificial neural networks trained by self-supervision publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1907367117 – volume: 27 start-page: 824 year: 2015 ident: R32 article-title: Parsimonious topic models with salient word discovery publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2014.2345378 – volume: 18 start-page: 160940691988702 year: 2019 ident: R13 article-title: Natural language processing (Nlp) in qualitative public health research: a proof of concept study publication-title: Int J Qual Methods doi: 10.1177/1609406919887021 – year: 2018 ident: R12 article-title: Unsupervised machine learning of open source Russian Twitter data reveals global scope and operational characteristics publication-title: ArXiv – volume: 14 year: 2013 ident: R3 article-title: Opening Up to Big Data : Computer-Assisted Analysis of Textual Data in Social Sciences publication-title: FQS – volume: 204 start-page: 25 year: 2007 ident: R33 article-title: Spectral clustering and its use in bioinformatics publication-title: J Comput Appl Math doi: 10.1016/j.cam.2006.04.026 – volume: 1 start-page: 8 year: 2007 ident: R2 article-title: Barriers to integrating quantitative and qualitative research publication-title: J Mix Methods Res doi: 10.1177/2345678906290531 – year: 2021 ident: R27 article-title: Public anxiety and distrust due to perceived politicization and media sensationalism during early COVID-19 media messaging publication-title: J Commun Healthc – volume: 19 start-page: 160940692098460 year: 2020 ident: R7 article-title: Methods to integrate natural language processing into qualitative research publication-title: Int J Qual Methods doi: 10.1177/1609406920984608 – volume: 16 year: 2011 ident: R19 article-title: Compatibility between text mining and qualitative research in the perspectives of grounded theory, content analysis, and reliability publication-title: Qualitative Report – year: 2020 ident: R24 article-title: Intercoder reliability in qualitative research: debates and practical guidelines publication-title: Int J Qual Met – volume: 19 year: 2020 ident: R26 article-title: Intercoder reliability in qualitative research: debates and practical guidelines publication-title: Int J Qual Methods – volume: 9 start-page: 235 year: 2010 ident: R16 article-title: A survey of multiple tree visualisation publication-title: Inf Vis doi: 10.1057/ivs.2009.29 – volume: 15 start-page: 398 year: 2021 ident: R6 article-title: Accelerating mixed methods research with natural language processing of big text data publication-title: J Mix Methods Res doi: 10.1177/15586898211021196 – volume: 374 year: 2017 ident: R35 article-title: Principal component analysis: a review and recent developments publication-title: Philos Trans A Math Phys Eng Sci – volume: 30 start-page: 351 year: 2020 ident: R34 article-title: Robust Bayesian model selection for variable clustering with the Gaussian graphical model publication-title: Stat Comput doi: 10.1007/s11222-019-09879-9 – volume: 23 start-page: 241 year: 2017 ident: R15 article-title: Visual interaction with dimensionality reduction: a structured literature analysis publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2016.2598495 – volume: 60 start-page: 223 year: 2018 ident: R38 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev Soc Ind Appl Math doi: 10.1137/16M1080173 – volume: 368 year: 2020 ident: R14 article-title: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness publication-title: BMJ doi: 10.1136/bmj.l6927 – volume: 17 start-page: 393 year: 2011 ident: R17 article-title: The design space of implicit hierarchy visualization: a survey publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2010.79 – volume: 20 year: 2018 ident: R5 article-title: Augmenting qualitative text analysis with natural language processing: methodological study publication-title: J Med Internet Res doi: 10.2196/jmir.9702 – volume: 4 year: 2013 ident: R8 article-title: Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications publication-title: Front Physiol doi: 10.3389/fphys.2013.00008 – volume: 19 start-page: 293 year: 2021 ident: R28 article-title: Knowledge, perceptions, and preferred information sources related to COVID-19 among central Pennsylvania adults early in the pandemic: a mixed methods cross-sectional survey publication-title: Ann Fam Med doi: 10.1370/afm.2674 – year: 2020 ident: R30 article-title: A dynamical systems perspective reveals coordination in Russian Twitter operations publication-title: ArXiv – volume: 33 start-page: 159 year: 1977 ident: R25 article-title: The measurement of observer agreement for categorical data publication-title: Biometrics doi: 10.2307/2529310 – year: 2020 ident: R31 article-title: Top2Vec: distributed representations of topics publication-title: ArXiv – volume: 8 year: 2008 ident: R23 article-title: Language and rigour in qualitative research: problems and principles in analyzing data collected in mandarin publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-8-44 – ident: 2021112508250813000_9.Suppl_1.e001287.21 – ident: 2021112508250813000_9.Suppl_1.e001287.19 – ident: 2021112508250813000_9.Suppl_1.e001287.25 doi: 10.2307/2529310 – volume: 15 start-page: 398 year: 2021 ident: 2021112508250813000_9.Suppl_1.e001287.6 article-title: Accelerating mixed methods research with natural language processing of big text data publication-title: J Mix Methods Res doi: 10.1177/15586898211021196 – volume: 17 start-page: 393 year: 2011 ident: 2021112508250813000_9.Suppl_1.e001287.17 article-title: The design space of implicit hierarchy visualization: a survey publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2010.79 – ident: 2021112508250813000_9.Suppl_1.e001287.26 doi: 10.1177/1609406919899220 – volume: 27 start-page: 824 year: 2015 ident: 2021112508250813000_9.Suppl_1.e001287.32 article-title: Parsimonious topic models with salient word discovery publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2014.2345378 – ident: 2021112508250813000_9.Suppl_1.e001287.18 doi: 10.1145/1124772.1124851 – ident: 2021112508250813000_9.Suppl_1.e001287.36 doi: 10.1007/978-1-84882-312-9 – ident: 2021112508250813000_9.Suppl_1.e001287.29 doi: 10.1177/1049732305276687 – ident: 2021112508250813000_9.Suppl_1.e001287.35 doi: 10.1098/rsta.2015.0202 – ident: 2021112508250813000_9.Suppl_1.e001287.10 doi: 10.1007/978-3-030-22475-2_4 – ident: 2021112508250813000_9.Suppl_1.e001287.30 – ident: 2021112508250813000_9.Suppl_1.e001287.22 doi: 10.4135/9781412963947 – ident: 2021112508250813000_9.Suppl_1.e001287.1 doi: 10.1145/3173574.3173922 – ident: 2021112508250813000_9.Suppl_1.e001287.14 doi: 10.1136/bmj.l6927 – ident: 2021112508250813000_9.Suppl_1.e001287.11 doi: 10.1073/pnas.1907367117 – volume: 8 year: 2008 ident: 2021112508250813000_9.Suppl_1.e001287.23 article-title: Language and rigour in qualitative research: problems and principles in analyzing data collected in mandarin publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-8-44 – volume: 20 year: 2018 ident: 2021112508250813000_9.Suppl_1.e001287.5 article-title: Augmenting qualitative text analysis with natural language processing: methodological study publication-title: J Med Internet Res doi: 10.2196/jmir.9702 – volume: 23 start-page: 241 year: 2017 ident: 2021112508250813000_9.Suppl_1.e001287.15 article-title: Visual interaction with dimensionality reduction: a structured literature analysis publication-title: IEEE Trans Vis Comput Graph doi: 10.1109/TVCG.2016.2598495 – volume: 60 start-page: 223 year: 2018 ident: 2021112508250813000_9.Suppl_1.e001287.38 article-title: Optimization methods for large-scale machine learning publication-title: SIAM Rev Soc Ind Appl Math – volume: 4 year: 2013 ident: 2021112508250813000_9.Suppl_1.e001287.8 article-title: Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications publication-title: Front Physiol doi: 10.3389/fphys.2013.00008 – ident: 2021112508250813000_9.Suppl_1.e001287.28 doi: 10.1370/afm.2674 – ident: 2021112508250813000_9.Suppl_1.e001287.20 doi: 10.1109/MSPEC.2019.8678513 – ident: 2021112508250813000_9.Suppl_1.e001287.27 doi: 10.1080/17538068.2021.1953934 – ident: 2021112508250813000_9.Suppl_1.e001287.4 doi: 10.4135/9781473906907 – ident: 2021112508250813000_9.Suppl_1.e001287.33 doi: 10.1016/j.cam.2006.04.026 – ident: 2021112508250813000_9.Suppl_1.e001287.2 doi: 10.1177/2345678906290531 – ident: 2021112508250813000_9.Suppl_1.e001287.31 – volume: 19 start-page: 160940692098460 year: 2020 ident: 2021112508250813000_9.Suppl_1.e001287.7 article-title: Methods to integrate natural language processing into qualitative research publication-title: Int J Qual Methods doi: 10.1177/1609406920984608 – ident: 2021112508250813000_9.Suppl_1.e001287.12 – ident: 2021112508250813000_9.Suppl_1.e001287.24 doi: 10.1177/1609406919899220 – ident: 2021112508250813000_9.Suppl_1.e001287.16 doi: 10.1057/ivs.2009.29 – volume: 30 start-page: 351 year: 2020 ident: 2021112508250813000_9.Suppl_1.e001287.34 article-title: Robust Bayesian model selection for variable clustering with the Gaussian graphical model publication-title: Stat Comput doi: 10.1007/s11222-019-09879-9 – ident: 2021112508250813000_9.Suppl_1.e001287.37 doi: 10.1002/9780471703778 – ident: 2021112508250813000_9.Suppl_1.e001287.3 – volume: 18 start-page: 160940691988702 year: 2019 ident: 2021112508250813000_9.Suppl_1.e001287.13 article-title: Natural language processing (Nlp) in qualitative public health research: a proof of concept study publication-title: Int J Qual Methods doi: 10.1177/1609406919887021 – ident: 2021112508250813000_9.Suppl_1.e001287.9 – ident: 2021112508250813000_9.Suppl_1.e001287.39 |
| SSID | ssib048324877 ssj0001793592 ssib025873065 ssib060517204 |
| Score | 2.3548944 |
| Snippet | Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref bmj |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e001287 |
| SubjectTerms | Agreements Algorithms Artificial Intelligence Automation Cluster Analysis Coronaviruses COVID-19 Data analysis Data collection Datasets Grounded theory Humans Linguistics Machine Learning Medical research Methodology and Research Methods Primary care Public health Qualitative Research Reproducibility Reproducibility of Results Researchers Software |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kD-pL8d5olRUUrBCa7DX7WC-lCPXJQt_i3kItx5yDJ6H03zuzyYknKO2LbyHZQDLzTeab7O43hLxxkIJdkGVeQqjlQhcht96zPMgQUCANUi4Wiqdf1cmZ-HIuz7dafeGasEEeeDDcYYQw4EpZZkonbOGsNTxWzkKms8HaVPgUldkqpgBJAnAKTHxKrAqVqMZuLMPfF407UlnqPFfIXJmKb-YwuQKX-guAD4NCG7_fmLncz8tZ5koC__9ipX8vrrzXtyt7fWUXi63MdfyA7I6Ukx4Nr_qQ3IntI3L3dJxUf0y-f5o2TlHbBtqh8EY6prbvlkBpY6DD5sukEk6BbyPrbDv67ggY8QHtlnTdr5DJz8eNgidPyNnx528fT_Kx8ULuJNNdrr1uCm-NclJ4y2WIXqqIlU9RxKjBCZVtZICIbRzX3AnTNJLZiNlQcOf5U7LTLtu4R6jQXkVVRFEJI5xRJvDgmrIIslG6bHhG3oJp6zFw1nWqSbiq0QU1uqAeXJCRw43xaz-ql2MTjcUNdxxMd6wG5Y4bxn5Af07jUHM7nQAk1iMS69uQmJH9DRr-vA8YDTgScC6WkdfTZQhhnJexbVz2aQxUuUwylZFnA3imJ0HtIeAZMiN6BqvZo86vtD8ukkx4ldoqVRl5PwHwVkM8_x-GeEHup-BJOzb3yU73q48vgbp17lWK0t83tzqV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEB7qFVQQ0Wo1WmUFBSuEJtmXJB9EWm0pQg8RC_0Wd7Mbq5zJ2SaI_96ZzUs9lPPbcdlAsvPMzjO7mWcAnhsMwcbKOIzR1UKRRjbUZZmEVlpLAmkYcilRPJmr41Px_kyebcB8rIWhzyrHNdEv1LYpaY98D3k3BhsMXsmb5Y-QukbR6erYQkMPrRXsay8xdg02E1LGmsHmweH8w8cRYQLxiwx9CriKFKqGLi39rkxKlaqJ70gXyVDlGR_PNrlCU5fnCKsEE3Ba1ymime_fViKaF_7_F1v9-6PLG1291L9-6sXij4h2dAduD1SU7ffYuQsbrt6C6yfDYfsW3Oq39FhfqXQPPr-bCqyYri1rSaDD_2a6axukvs6yvkjTq4kz5OXETuuWvdxH5rzL2oZddkti_KvjBmGU-3B6dPjp7XE4NGgIjUzSNkzLtIpKnSsjRam5tK6UylGGFEXOpZHRma6kRc-uDE-5EXlVyUQ7ipqCm5Jvw6xuavcQmEhL5VTkRCZyYXKVW25NFUdWViqNKx7AC5zqYnCwy8LnLlwVZJKCTFL0JglgbzRGUQ4q59RsY7Hmjt3pjmWv8LFm7AHZdxpH2tz-j-biSzG4euFw4eZK6SSPjdA4CTrnLjMauZm2WscB7IzouHqfK3gH8Gy6jK5O5ze6dk3nx2A2nMhEBfCgB9P0JKRRhHxEBpCuwGzlUVev1F_PvZx45tsvZQG8mgD534l4tP4dHsNN7ya-ZnMHZu1F554geWvN08EjfwNZzjy5 priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRceJcGCjISSBQpu0kc24nEZXlUFVIrDqxUDijYsc2j22TVJkLw6xk7D1hARXCLkklij2c838SZzwAPFYZgpVkcxuhqYSoiHcqyTELNtHYEaRhyXaJ4cMj3F-mrI3a0AU-HWhh7gqOrTj535QyOoKlq_MlZPvP7XBbxzPj1HzF1H6inK20vwCZniMQnsLk4fD1_6_aTc9_8M-FJmBFks5DnGR1WKSn3T0QDSTCV9s_CyIIvXYtNnsL_T7jz998nL7XVSn79IpfLn2LT3lV4N_Sq-yXleNo2alp--4Xw8X-7fQ2u9KCVzDsruw4bproBFw_6Zfmb8P7FWHpFZKVJ46g7_DGRbVMjKDaadOWbnmecIGJ3uLVqyOM5Yupd0tTkDBuAucC6XE-ZcgsWey_fPN8P-60bQsUS0YSiFDYqZc4VS0tJmTYl48blTlFkjIiUzKRlGn3eKiqoSnNrWSKNi6cpVSXdgklVV2YbSCpKbnhk0izNU5XzXFOtbBxpZrmILQ3gESqu6F3vrPBZDeWF017hhrjo9BbAbBjcouz5z902HMtz7tgd71h13B_nyD5z9jLKOdZuf6I-_VD0k0BhcEqnnMskj1UqUQkypyZTElGb1FLGAewM1vajP6g0RFmI2pIAHoyXcRJwKzuyMnXrZTBPTljCA7jdGefYEsdehEiFBSDWzHatqetXqk8fPdF45jdmygJ4Mhr4XxVx51-E78Jl74S-tnMHJs1pa-4hyGvU_d6XvwP64U3t priority: 102 providerName: Unpaywall |
| Title | Developing and testing an automated qualitative assistant (AQUA) to support qualitative analysis |
| URI | https://fmch.bmj.com/content/9/Suppl_1/e001287.full https://www.ncbi.nlm.nih.gov/pubmed/34824135 https://www.proquest.com/docview/2602410152 https://www.proquest.com/docview/2604012526 https://pubmed.ncbi.nlm.nih.gov/PMC8627418 https://fmch.bmj.com/content/fmch/9/Suppl_1/e001287.full.pdf https://doaj.org/article/e088366a291b4a0baa93e8ba750adaa1 |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: RPM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: 7X7 dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 2009-8774 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001793592 issn: 2009-8774 databaseCode: 8C1 dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9sC7Uv4nejNURQsEJ6SfYrebyeLUW4o4gn16e4m92o5ZqUNof43zu7yaUNSvXl7kg2ZG8-Mr_dyfwG4I3CEKw0i8MYXS2kItKhLIok1ExrS5CGIdcuFKczfjKnHxds0dVx21qY8gK1qy7O23IGS9BUNaNs5Fpc5vHIuNSPOLB70xuwhfCauLYFZ70RJywV5FbqjqLJIigXNxsvwhajJq7pXMRCnqVknb4k3N0fLSfBNba70w5sW_oXfNTb6IMTG8QvR_P_N2z65yuW91fVpfz1Uy6Xt-LX8UN40AHPYNxayiO4Z6rHsD3tUutP4OuHvnwqkJUOGku_4X4HctXUCGyNDtoSTMcVHiDqttizaoJ3Y8TF-0FTB9coQMTzw3Ed7clTmB8ffZ6chF37hVCxRDShKEQZFTLjitFCEqZNwbix658oMkZESqayZBr9tlREEEWzsmSJNDYmUqIK8gw2q7oyuxBQUXDDI0NTmlGV8UwTrco40qzkIi6JB29RtHnnPte5W5kQnltt5FYbeasND0Zr4edFx2FuW2ks77hiv7_isuXvuGPsodVnP84yb7sD9dW3vHPk3OBjmXAukyxWVKIQZEZMqiQiL6mljD3YW1vDzf9BoaEJIfJKPHjdn0ZHttkZWZl65cbgWjdhCffgeWs8_UzWJuiBGJjVYKrDM9WP744sPHXNlVIP3vcG-E9BvPhPdbyEHecqrjRzDzabq5V5hRitUT5siIXAz3QS-84_fdgaT6bTL_h9eDQ7_eS73Q_fba_hsfnsdHz2G8GrOOs |
| linkProvider | BMJ Publishing Group Ltd |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BSMTEGMVbFXVMJBGShrZzaftADAhkEXZjDCS8lZnOVDRru7LdEP6cv80z0wtuNPjEW9NOm3bO7TszPd8BeKcwBCvNQz9EU_NZHGhf5nnka661JUjDkGsTxeFIDE7Yp1N-ugC_uloY-1tl5xOdo9ZVbtfINxF3Y7DB4BV9mPz0bdcou7vatdCQbWsFveUoxtrCjkNzdYkp3HTrYBflvRZF-3vHHwd-22XAVzyKaz_O4yLIZSoUZ7mkXJucC2NhfhAYEwdKJrLgGtWzUDSmiqVFwSNprOtnVOUUn3sHlhhlKSZ_Szt7o89fOo1maC-YEfQBXlhGrLYrTLMKFNvK2Mh1wAu4L9KEdnupVKBq5eeoxhEm_DaO2Aiqfnyfi6Cu0cC_0PHfP3kuz8qJvLqU4_EfEXT_ITxooS_ZbnT1ESyYcgXuDtvN_RW43ywhkqYy6jGc7fYFXUSWmtSWEMQdEzmrK4TaRpOmKNSxlxPMAywaLmvyfhuR-jqpKzKdTWyGMT-uJWJ5Aie3IqqnsFhWpXkOhMW5MCIwLGEpU6lINdWqCAPNCxGHBfVgDac6aw16mrlciYrMiiSzIskakXiw2Qkjy1tWddvcY3zDHev9HZOGUeSGsTtWvv04ywXuTlQXX7PWtWQGAwUVQkZpqJjESZApNYmSiAWlljL0YLXTjuvvuTYnD972l9G12P0iWZpq5sZg9h3xSHjwrFGm_k0sJxLiH-5BPKdmc686f6X8du7oyxPX7inxYKNXyP9OxIubv-ENLA-Oh0fZ0cHo8CXccybj6kVXYbG-mJlXCBxr9bq1TgJnt-0QfgP8xnrH |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxpICMG4BQYYiUkMKWoSx3bygNCgVBtjEw9M6ltmxw4DlaSsiab9NX4dx85lVKDytLe2carE5_KdY_t8B-ClQghWmoV-iKbmxyLQvszzyNdMa0uQhpBrE8XDI753HH-csuka_OprYeyxyt4nOketq9yukY8w7kawQfCKRkV3LOLzePJ2_tO3HaTsTmvfTqNVkQNzcY7p2-LN_hhlvR1Fkw9f3u_5XYcBX7FI1L7IRRHkMuWKxbmkTJuccWND_CAwRgRKJrJgGlWzUFRQFadFwSJprNuPqcop_u81uC4oTe1xQjEdoDxGS8FcYPjOLRdW1w-mXf8RtiY2cr3vAubzNKH9LirlqFT5KSpwhKm-RRCLnerH9yXsdC0G_hUX_32880ZTzuXFuZzN_sDOyR243QW9ZLfV0ruwZspN2DjstvU34Va7eEjamqh7cDIeSrmILDWpLRWI-0xkU1cYZBtN2nJQx1tOMAOwcXBZk1e7GKPvkLoii2Zuc4vlcR0Fy304vhJBPYD1sirNIyCxyLnhgYmTOI1VylNNtSrCQLOCi7CgHmzjVGedKS8ylyVRnlmRZFYkWSsSD0a9MLK841O3bT1mK-7YGe6Yt1wiK8a-s_IdxlkWcPdDdfY165xKZhAiKOcySkMVS5wEmVKTKIlRoNRShh5s9dpx-T6XhuTBi-EyOhW7UyRLUzVuDObdEYu4Bw9bZRqexLIhYeTDPBBLarb0qMtXym-njrg8cY2eEg9eDwr534l4vPodnsMGuoHs0_7RwRO46SzGFYpuwXp91pinGDHW6pkzTQInV-0LfgOKn3hh |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRceJcGCjISSBQpu0kc24nEZXlUFVIrDqxUDijYsc2j22TVJkLw6xk7D1hARXCLkklij2c838SZzwAPFYZgpVkcxuhqYSoiHcqyTELNtHYEaRhyXaJ4cMj3F-mrI3a0AU-HWhh7gqOrTj535QyOoKlq_MlZPvP7XBbxzPj1HzF1H6inK20vwCZniMQnsLk4fD1_6_aTc9_8M-FJmBFks5DnGR1WKSn3T0QDSTCV9s_CyIIvXYtNnsL_T7jz998nL7XVSn79IpfLn2LT3lV4N_Sq-yXleNo2alp--4Xw8X-7fQ2u9KCVzDsruw4bproBFw_6Zfmb8P7FWHpFZKVJ46g7_DGRbVMjKDaadOWbnmecIGJ3uLVqyOM5Yupd0tTkDBuAucC6XE-ZcgsWey_fPN8P-60bQsUS0YSiFDYqZc4VS0tJmTYl48blTlFkjIiUzKRlGn3eKiqoSnNrWSKNi6cpVSXdgklVV2YbSCpKbnhk0izNU5XzXFOtbBxpZrmILQ3gESqu6F3vrPBZDeWF017hhrjo9BbAbBjcouz5z902HMtz7tgd71h13B_nyD5z9jLKOdZuf6I-_VD0k0BhcEqnnMskj1UqUQkypyZTElGb1FLGAewM1vajP6g0RFmI2pIAHoyXcRJwKzuyMnXrZTBPTljCA7jdGefYEsdehEiFBSDWzHatqetXqk8fPdF45jdmygJ4Mhr4XxVx51-E78Jl74S-tnMHJs1pa-4hyGvU_d6XvwP64U3t |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+and+testing+an+automated+qualitative+assistant+%28AQUA%29+to+support+qualitative+analysis&rft.jtitle=Family+medicine+and+community+health&rft.au=Lennon%2C+Robert+P&rft.au=Fraleigh%2C+Robbie&rft.au=Van+Scoy%2C+Lauren+J&rft.au=Keshaviah%2C+Aparna&rft.date=2021-11-01&rft.issn=2009-8774&rft.eissn=2009-8774&rft.volume=9&rft.issue=Suppl+1&rft_id=info:doi/10.1136%2Ffmch-2021-001287&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-6983&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-6983&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-6983&client=summon |