Developing and testing an automated qualitative assistant (AQUA) to support qualitative analysis

Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use...

Full description

Saved in:
Bibliographic Details
Published inFamily medicine and community health Vol. 9; no. Suppl 1; p. e001287
Main Authors Lennon, Robert P, Fraleigh, Robbie, Van Scoy, Lauren J, Keshaviah, Aparna, Hu, Xindi C, Snyder, Bethany L, Miller, Erin L, Calo, William A, Zgierska, Aleksandra E, Griffin, Christopher
Format Journal Article
LanguageEnglish
Published England BMJ Publishing Group Ltd 01.11.2021
BMJ Publishing Group LTD
BMJ Publishing Group
Subjects
Online AccessGet full text
ISSN2305-6983
2009-8774
2009-8774
DOI10.1136/fmch-2021-001287

Cover

Abstract Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen’s kappa comparable to human coders (0.62–0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.
AbstractList Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen’s kappa comparable to human coders (0.62–0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.
Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qualitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.
Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated qu alitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen’s kappa comparable to human coders (0.62–0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.
Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been suggested as a means to reduce those burdens, and has been used in exploratory studies to reduce the burden of coding. However, methods to date use AI analytical techniques that lack transparency, potentially limiting acceptance of results. We developed an automated alitative assistant (AQUA) using a semiclassical approach, replacing Latent Semantic Indexing/Latent Dirichlet Allocation with a more transparent graph-theoretic topic extraction and clustering method. Applied to a large dataset of free-text survey responses, AQUA generated unsupervised topic categories and circle hierarchical representations of free-text responses, enabling rapid interpretation of data. When tasked with coding a subset of free-text data into user-defined qualitative categories, AQUA demonstrated intercoder reliability in several multicategory combinations with a Cohen's kappa comparable to human coders (0.62-0.72), enabling researchers to automate coding on those categories for the entire dataset. The aim of this manuscript is to describe pertinent components of best practices of AI/machine learning (ML)-assisted qualitative methods, illustrating how primary care researchers may use AQUA to rapidly and accurately code large text datasets. The contribution of this article is providing guidance that should increase AI/ML transparency and reproducibility.
Author Calo, William A
Fraleigh, Robbie
Snyder, Bethany L
Lennon, Robert P
Van Scoy, Lauren J
Keshaviah, Aparna
Zgierska, Aleksandra E
Hu, Xindi C
Griffin, Christopher
Miller, Erin L
AuthorAffiliation 2 Applied Research Laboratory , Pennsylvania State University , University Park , Pennsylvania , USA
4 Mathematica Policy Research Inc , Princeton , New Jersey , USA
3 Internal Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA
5 Center for Community Health Integration , Case Western Reserve University , Cleveland , Ohio , USA
6 Public Health Services , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA
1 Family and Community Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA
AuthorAffiliation_xml – name: 3 Internal Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA
– name: 2 Applied Research Laboratory , Pennsylvania State University , University Park , Pennsylvania , USA
– name: 4 Mathematica Policy Research Inc , Princeton , New Jersey , USA
– name: 5 Center for Community Health Integration , Case Western Reserve University , Cleveland , Ohio , USA
– name: 1 Family and Community Medicine , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA
– name: 6 Public Health Services , Penn State Health Milton S. Hershey Medical Center , Hershey , Pennsylvania , USA
Author_xml – sequence: 1
  givenname: Robert P
  orcidid: 0000-0003-0973-5890
  surname: Lennon
  fullname: Lennon, Robert P
  email: rlennon@pennstatehealth.psu.edu
  organization: Family and Community Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
– sequence: 2
  givenname: Robbie
  surname: Fraleigh
  fullname: Fraleigh, Robbie
  organization: Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, USA
– sequence: 3
  givenname: Lauren J
  surname: Van Scoy
  fullname: Van Scoy, Lauren J
  organization: Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
– sequence: 4
  givenname: Aparna
  surname: Keshaviah
  fullname: Keshaviah, Aparna
  organization: Mathematica Policy Research Inc, Princeton, New Jersey, USA
– sequence: 5
  givenname: Xindi C
  surname: Hu
  fullname: Hu, Xindi C
  organization: Mathematica Policy Research Inc, Princeton, New Jersey, USA
– sequence: 6
  givenname: Bethany L
  surname: Snyder
  fullname: Snyder, Bethany L
  organization: Center for Community Health Integration, Case Western Reserve University, Cleveland, Ohio, USA
– sequence: 7
  givenname: Erin L
  surname: Miller
  fullname: Miller, Erin L
  organization: Family and Community Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
– sequence: 8
  givenname: William A
  surname: Calo
  fullname: Calo, William A
  organization: Public Health Services, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
– sequence: 9
  givenname: Aleksandra E
  surname: Zgierska
  fullname: Zgierska, Aleksandra E
  organization: Family and Community Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania, USA
– sequence: 10
  givenname: Christopher
  surname: Griffin
  fullname: Griffin, Christopher
  organization: Applied Research Laboratory, Pennsylvania State University, University Park, Pennsylvania, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34824135$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxSNUREvpnROKxKVIBMaf8V6QVuWrUiWERM9m7DjbrJw4TZxF-9_j3ZTCVgJx8sjzm-fnN0-zoy50LsueE3hDCJNv69beFBQoKQAIVeWj7IQCLApVlvwo1QxEIReKHWdn49gY4IpRnppPsmPGFeWEiZPs-3u3cT70TbfKsavy6MY41zlOMbQYXZXfTuibiLHZuByT1hixi_n58uv18lUeQz5OfR-GeMh16LcJfZY9rtGP7uzuPM2uP374dvG5uPry6fJieVUYQctYlLasweJCGsEtMlE5K6SjEgSAcyUYVFiLygDUhpXM8EVdC4oOmKScGctOs8tZtwq41v3QtDhsdcBG7y_CsNI4xMZ6px0oxaREuiCGY5LGBXPKYCkAK0SStMisNXU9bn-g9_eCBPQufL0LX-_C13P4aebdPNNPpnWVdV0c0B8YOex0zY1ehY1WkpacqCRwficwhNsprUG3zWid99i5MI06ZcHTU4LKhL58gK7DNKTA91TaLBBBE_XiT0f3Vn4tPwFyBuwQxnFwtbb77YWdwcb_66_wYPA_4nk9j5h2_dvtX_Gfs4LjoQ
CitedBy_id crossref_primary_10_3390_su16051722
crossref_primary_10_3389_fpubh_2023_1268223
crossref_primary_10_1080_15214842_2024_2377873
crossref_primary_10_1145_3617362
crossref_primary_10_1136_ip_2023_045203
crossref_primary_10_3758_s13428_024_02443_y
crossref_primary_10_62486_latia20234
crossref_primary_10_12688_f1000research_151952_1
crossref_primary_10_1186_s13012_024_01346_y
crossref_primary_10_2196_56500
crossref_primary_10_1177_10497323231217392
crossref_primary_10_3389_frma_2024_1331589
Cites_doi 10.1177/1049732305276687
10.1073/pnas.1907367117
10.1109/TKDE.2014.2345378
10.1177/1609406919887021
10.1016/j.cam.2006.04.026
10.1177/2345678906290531
10.1177/1609406920984608
10.1057/ivs.2009.29
10.1177/15586898211021196
10.1007/s11222-019-09879-9
10.1109/TVCG.2016.2598495
10.1137/16M1080173
10.1136/bmj.l6927
10.1109/TVCG.2010.79
10.2196/jmir.9702
10.3389/fphys.2013.00008
10.1370/afm.2674
10.2307/2529310
10.1186/1471-2288-8-44
10.1177/1609406919899220
10.1145/1124772.1124851
10.1007/978-1-84882-312-9
10.1098/rsta.2015.0202
10.1007/978-3-030-22475-2_4
10.4135/9781412963947
10.1145/3173574.3173922
10.1109/MSPEC.2019.8678513
10.1080/17538068.2021.1953934
10.4135/9781473906907
10.1002/9780471703778
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021
Copyright_xml – notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2021 Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2021
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
8C1
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1136/fmch-2021-001287
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Public Health Database
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Health & Medical Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)

MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 6
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 2009-8774
ExternalDocumentID oai_doaj_org_article_e088366a291b4a0baa93e8ba750adaa1
10.1136/fmch-2021-001287
PMC8627418
34824135
10_1136_fmch_2021_001287
fmch
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Huck Institutes of the Life Sciences
  grantid: RL award 7601
– fundername: The Social Science Research Institute at Penn State University
  grantid: 7601
– fundername: Defense Advanced Research Project Agency SCORE program
  grantid: Cooperative Agreement W911NF-19-0272
– fundername: Huck Institute of Life Sciences
  grantid: CF and RF, un-numbered support
– fundername: Penn State College of Medicine Department of Family and Community Medicine
  grantid: 7601(M)
– fundername: ;
  grantid: 7601(M)
– fundername: ;
  grantid: 7601
– fundername: ;
  grantid: CF and RF, un-numbered support
– fundername: ;
  grantid: Cooperative Agreement W911NF-19-0272
– fundername: ;
  grantid: RL award 7601
GroupedDBID 5VS
7RV
7X7
8C1
8FI
8FJ
9YT
ABUWG
ACMMV
ADBBV
AFKRA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
CCPQU
EBS
EJD
FIJ
FYUFA
GROUPED_DOAJ
HMCUK
IPNFZ
KQ8
M~E
NAPCQ
OK1
PGMZT
PHGZT
RMJ
RPM
UKHRP
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PUEGO
RIG
CGR
CUY
CVF
ECM
EIF
NPM
RHF
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-b527t-7c7f0ca96b54ca35dec56e260500ee70ba8af5db00fb373b49ff52ae036243bc3
IEDL.DBID 9YT
ISSN 2305-6983
2009-8774
IngestDate Tue Oct 14 19:09:15 EDT 2025
Sun Oct 26 04:07:02 EDT 2025
Tue Sep 30 16:58:25 EDT 2025
Thu Sep 04 15:41:47 EDT 2025
Tue Oct 07 06:53:35 EDT 2025
Thu Jan 02 22:56:04 EST 2025
Thu Apr 24 23:01:16 EDT 2025
Wed Oct 01 02:31:40 EDT 2025
Thu Apr 24 22:50:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Suppl 1
Keywords qualitative research
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.
Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b527t-7c7f0ca96b54ca35dec56e260500ee70ba8af5db00fb373b49ff52ae036243bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0973-5890
OpenAccessLink https://fmch.bmj.com/content/9/Suppl_1/e001287.full
PMID 34824135
PQID 2602410152
PQPubID 5161122
ParticipantIDs doaj_primary_oai_doaj_org_article_e088366a291b4a0baa93e8ba750adaa1
unpaywall_primary_10_1136_fmch_2021_001287
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8627418
proquest_miscellaneous_2604012526
proquest_journals_2602410152
pubmed_primary_34824135
crossref_citationtrail_10_1136_fmch_2021_001287
crossref_primary_10_1136_fmch_2021_001287
bmj_journals_10_1136_fmch_2021_001287
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
– name: BMA House, Tavistock Square, London, WC1H 9JR
PublicationTitle Family medicine and community health
PublicationTitleAbbrev Fam Med Com Health
PublicationTitleAlternate Fam Med Community Health
PublicationYear 2021
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References CH, Jannasch-Pennell, DiGangi (R19) 2011; 16
Van Scoy, Snyder, Miller (R27) 2021
Vollmer, Mateen, Bohner (R14) 2020; 368
Wiedemann (R3) 2013; 14
Rajtmajer, Simhachalam, Zhao (R30) 2020
Soleimani, Miller (R32) 2015; 27
Griffin, Bickel (R12) 2018
Guetterman, Chang, DeJonckheere (R5) 2018; 20
Leeson, Resnick, Alexander (R13) 2019; 18
O’Connor, Joffe (R24) 2020
Van Scoy, Miller, Snyder (R28) 2021; 19
Manning, Clark, Hewitt (R11) 2020; 117
Abram, Mancini, Parker (R7) 2020; 19
Bryman (R2) 2007; 1
Jolliffe, Cadima (R35) 2017; 374
Andrade, Takeda, Fukumizu (R34) 2020; 30
Graham, Kennedy (R16) 2010; 9
Landis, Koch (R25) 1977; 33
Smith, Chen, Liu (R23) 2008; 8
Chen, Martin, Daimon (R8) 2013; 4
Schulz, Hadlak, Schumann (R17) 2011; 17
O’Connor, Joffe (R26) 2020; 19
Hsieh, Shannon (R29) 2005; 15
Sacha, Zhang, Sedlmair (R15) 2017; 23
Angelov (R31) 2020
Bottou, Curtis, Nocedal (R38) 2018; 60
Chang, DeJonckheere, Vydiswaran (R6) 2021; 15
Higham, Kalna, Kibble (R33) 2007; 204
2021112508250813000_9.Suppl_1.e001287.10
2021112508250813000_9.Suppl_1.e001287.31
Chen (2021112508250813000_9.Suppl_1.e001287.8) 2013; 4
2021112508250813000_9.Suppl_1.e001287.30
2021112508250813000_9.Suppl_1.e001287.14
2021112508250813000_9.Suppl_1.e001287.36
2021112508250813000_9.Suppl_1.e001287.35
Guetterman (2021112508250813000_9.Suppl_1.e001287.5) 2018; 20
2021112508250813000_9.Suppl_1.e001287.12
2021112508250813000_9.Suppl_1.e001287.11
Leeson (2021112508250813000_9.Suppl_1.e001287.13) 2019; 18
2021112508250813000_9.Suppl_1.e001287.33
2021112508250813000_9.Suppl_1.e001287.18
2021112508250813000_9.Suppl_1.e001287.39
2021112508250813000_9.Suppl_1.e001287.16
2021112508250813000_9.Suppl_1.e001287.37
2021112508250813000_9.Suppl_1.e001287.19
Schulz (2021112508250813000_9.Suppl_1.e001287.17) 2011; 17
2021112508250813000_9.Suppl_1.e001287.1
2021112508250813000_9.Suppl_1.e001287.3
2021112508250813000_9.Suppl_1.e001287.2
2021112508250813000_9.Suppl_1.e001287.9
2021112508250813000_9.Suppl_1.e001287.21
2021112508250813000_9.Suppl_1.e001287.20
Smith (2021112508250813000_9.Suppl_1.e001287.23) 2008; 8
Chang (2021112508250813000_9.Suppl_1.e001287.6) 2021; 15
2021112508250813000_9.Suppl_1.e001287.25
2021112508250813000_9.Suppl_1.e001287.4
2021112508250813000_9.Suppl_1.e001287.24
2021112508250813000_9.Suppl_1.e001287.22
Soleimani (2021112508250813000_9.Suppl_1.e001287.32) 2015; 27
2021112508250813000_9.Suppl_1.e001287.29
2021112508250813000_9.Suppl_1.e001287.28
Andrade (2021112508250813000_9.Suppl_1.e001287.34) 2020; 30
2021112508250813000_9.Suppl_1.e001287.27
2021112508250813000_9.Suppl_1.e001287.26
Bottou (2021112508250813000_9.Suppl_1.e001287.38) 2018; 60
Abram (2021112508250813000_9.Suppl_1.e001287.7) 2020; 19
Sacha (2021112508250813000_9.Suppl_1.e001287.15) 2017; 23
References_xml – volume: 15
  start-page: 1277
  year: 2005
  ident: R29
  article-title: Three approaches to qualitative content analysis
  publication-title: Qual Health Res
  doi: 10.1177/1049732305276687
– volume: 117
  start-page: 30046
  year: 2020
  ident: R11
  article-title: Emergent linguistic structure in artificial neural networks trained by self-supervision
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1907367117
– volume: 27
  start-page: 824
  year: 2015
  ident: R32
  article-title: Parsimonious topic models with salient word discovery
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2345378
– volume: 18
  start-page: 160940691988702
  year: 2019
  ident: R13
  article-title: Natural language processing (Nlp) in qualitative public health research: a proof of concept study
  publication-title: Int J Qual Methods
  doi: 10.1177/1609406919887021
– year: 2018
  ident: R12
  article-title: Unsupervised machine learning of open source Russian Twitter data reveals global scope and operational characteristics
  publication-title: ArXiv
– volume: 14
  year: 2013
  ident: R3
  article-title: Opening Up to Big Data : Computer-Assisted Analysis of Textual Data in Social Sciences
  publication-title: FQS
– volume: 204
  start-page: 25
  year: 2007
  ident: R33
  article-title: Spectral clustering and its use in bioinformatics
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2006.04.026
– volume: 1
  start-page: 8
  year: 2007
  ident: R2
  article-title: Barriers to integrating quantitative and qualitative research
  publication-title: J Mix Methods Res
  doi: 10.1177/2345678906290531
– year: 2021
  ident: R27
  article-title: Public anxiety and distrust due to perceived politicization and media sensationalism during early COVID-19 media messaging
  publication-title: J Commun Healthc
– volume: 19
  start-page: 160940692098460
  year: 2020
  ident: R7
  article-title: Methods to integrate natural language processing into qualitative research
  publication-title: Int J Qual Methods
  doi: 10.1177/1609406920984608
– volume: 16
  year: 2011
  ident: R19
  article-title: Compatibility between text mining and qualitative research in the perspectives of grounded theory, content analysis, and reliability
  publication-title: Qualitative Report
– year: 2020
  ident: R24
  article-title: Intercoder reliability in qualitative research: debates and practical guidelines
  publication-title: Int J Qual Met
– volume: 19
  year: 2020
  ident: R26
  article-title: Intercoder reliability in qualitative research: debates and practical guidelines
  publication-title: Int J Qual Methods
– volume: 9
  start-page: 235
  year: 2010
  ident: R16
  article-title: A survey of multiple tree visualisation
  publication-title: Inf Vis
  doi: 10.1057/ivs.2009.29
– volume: 15
  start-page: 398
  year: 2021
  ident: R6
  article-title: Accelerating mixed methods research with natural language processing of big text data
  publication-title: J Mix Methods Res
  doi: 10.1177/15586898211021196
– volume: 374
  year: 2017
  ident: R35
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philos Trans A Math Phys Eng Sci
– volume: 30
  start-page: 351
  year: 2020
  ident: R34
  article-title: Robust Bayesian model selection for variable clustering with the Gaussian graphical model
  publication-title: Stat Comput
  doi: 10.1007/s11222-019-09879-9
– volume: 23
  start-page: 241
  year: 2017
  ident: R15
  article-title: Visual interaction with dimensionality reduction: a structured literature analysis
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2016.2598495
– volume: 60
  start-page: 223
  year: 2018
  ident: R38
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev Soc Ind Appl Math
  doi: 10.1137/16M1080173
– volume: 368
  year: 2020
  ident: R14
  article-title: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics, and effectiveness
  publication-title: BMJ
  doi: 10.1136/bmj.l6927
– volume: 17
  start-page: 393
  year: 2011
  ident: R17
  article-title: The design space of implicit hierarchy visualization: a survey
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2010.79
– volume: 20
  year: 2018
  ident: R5
  article-title: Augmenting qualitative text analysis with natural language processing: methodological study
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.9702
– volume: 4
  year: 2013
  ident: R8
  article-title: Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications
  publication-title: Front Physiol
  doi: 10.3389/fphys.2013.00008
– volume: 19
  start-page: 293
  year: 2021
  ident: R28
  article-title: Knowledge, perceptions, and preferred information sources related to COVID-19 among central Pennsylvania adults early in the pandemic: a mixed methods cross-sectional survey
  publication-title: Ann Fam Med
  doi: 10.1370/afm.2674
– year: 2020
  ident: R30
  article-title: A dynamical systems perspective reveals coordination in Russian Twitter operations
  publication-title: ArXiv
– volume: 33
  start-page: 159
  year: 1977
  ident: R25
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
  doi: 10.2307/2529310
– year: 2020
  ident: R31
  article-title: Top2Vec: distributed representations of topics
  publication-title: ArXiv
– volume: 8
  year: 2008
  ident: R23
  article-title: Language and rigour in qualitative research: problems and principles in analyzing data collected in mandarin
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-8-44
– ident: 2021112508250813000_9.Suppl_1.e001287.21
– ident: 2021112508250813000_9.Suppl_1.e001287.19
– ident: 2021112508250813000_9.Suppl_1.e001287.25
  doi: 10.2307/2529310
– volume: 15
  start-page: 398
  year: 2021
  ident: 2021112508250813000_9.Suppl_1.e001287.6
  article-title: Accelerating mixed methods research with natural language processing of big text data
  publication-title: J Mix Methods Res
  doi: 10.1177/15586898211021196
– volume: 17
  start-page: 393
  year: 2011
  ident: 2021112508250813000_9.Suppl_1.e001287.17
  article-title: The design space of implicit hierarchy visualization: a survey
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2010.79
– ident: 2021112508250813000_9.Suppl_1.e001287.26
  doi: 10.1177/1609406919899220
– volume: 27
  start-page: 824
  year: 2015
  ident: 2021112508250813000_9.Suppl_1.e001287.32
  article-title: Parsimonious topic models with salient word discovery
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2014.2345378
– ident: 2021112508250813000_9.Suppl_1.e001287.18
  doi: 10.1145/1124772.1124851
– ident: 2021112508250813000_9.Suppl_1.e001287.36
  doi: 10.1007/978-1-84882-312-9
– ident: 2021112508250813000_9.Suppl_1.e001287.29
  doi: 10.1177/1049732305276687
– ident: 2021112508250813000_9.Suppl_1.e001287.35
  doi: 10.1098/rsta.2015.0202
– ident: 2021112508250813000_9.Suppl_1.e001287.10
  doi: 10.1007/978-3-030-22475-2_4
– ident: 2021112508250813000_9.Suppl_1.e001287.30
– ident: 2021112508250813000_9.Suppl_1.e001287.22
  doi: 10.4135/9781412963947
– ident: 2021112508250813000_9.Suppl_1.e001287.1
  doi: 10.1145/3173574.3173922
– ident: 2021112508250813000_9.Suppl_1.e001287.14
  doi: 10.1136/bmj.l6927
– ident: 2021112508250813000_9.Suppl_1.e001287.11
  doi: 10.1073/pnas.1907367117
– volume: 8
  year: 2008
  ident: 2021112508250813000_9.Suppl_1.e001287.23
  article-title: Language and rigour in qualitative research: problems and principles in analyzing data collected in mandarin
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-8-44
– volume: 20
  year: 2018
  ident: 2021112508250813000_9.Suppl_1.e001287.5
  article-title: Augmenting qualitative text analysis with natural language processing: methodological study
  publication-title: J Med Internet Res
  doi: 10.2196/jmir.9702
– volume: 23
  start-page: 241
  year: 2017
  ident: 2021112508250813000_9.Suppl_1.e001287.15
  article-title: Visual interaction with dimensionality reduction: a structured literature analysis
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2016.2598495
– volume: 60
  start-page: 223
  year: 2018
  ident: 2021112508250813000_9.Suppl_1.e001287.38
  article-title: Optimization methods for large-scale machine learning
  publication-title: SIAM Rev Soc Ind Appl Math
– volume: 4
  year: 2013
  ident: 2021112508250813000_9.Suppl_1.e001287.8
  article-title: Effective use of latent semantic indexing and computational linguistics in biological and biomedical applications
  publication-title: Front Physiol
  doi: 10.3389/fphys.2013.00008
– ident: 2021112508250813000_9.Suppl_1.e001287.28
  doi: 10.1370/afm.2674
– ident: 2021112508250813000_9.Suppl_1.e001287.20
  doi: 10.1109/MSPEC.2019.8678513
– ident: 2021112508250813000_9.Suppl_1.e001287.27
  doi: 10.1080/17538068.2021.1953934
– ident: 2021112508250813000_9.Suppl_1.e001287.4
  doi: 10.4135/9781473906907
– ident: 2021112508250813000_9.Suppl_1.e001287.33
  doi: 10.1016/j.cam.2006.04.026
– ident: 2021112508250813000_9.Suppl_1.e001287.2
  doi: 10.1177/2345678906290531
– ident: 2021112508250813000_9.Suppl_1.e001287.31
– volume: 19
  start-page: 160940692098460
  year: 2020
  ident: 2021112508250813000_9.Suppl_1.e001287.7
  article-title: Methods to integrate natural language processing into qualitative research
  publication-title: Int J Qual Methods
  doi: 10.1177/1609406920984608
– ident: 2021112508250813000_9.Suppl_1.e001287.12
– ident: 2021112508250813000_9.Suppl_1.e001287.24
  doi: 10.1177/1609406919899220
– ident: 2021112508250813000_9.Suppl_1.e001287.16
  doi: 10.1057/ivs.2009.29
– volume: 30
  start-page: 351
  year: 2020
  ident: 2021112508250813000_9.Suppl_1.e001287.34
  article-title: Robust Bayesian model selection for variable clustering with the Gaussian graphical model
  publication-title: Stat Comput
  doi: 10.1007/s11222-019-09879-9
– ident: 2021112508250813000_9.Suppl_1.e001287.37
  doi: 10.1002/9780471703778
– ident: 2021112508250813000_9.Suppl_1.e001287.3
– volume: 18
  start-page: 160940691988702
  year: 2019
  ident: 2021112508250813000_9.Suppl_1.e001287.13
  article-title: Natural language processing (Nlp) in qualitative public health research: a proof of concept study
  publication-title: Int J Qual Methods
  doi: 10.1177/1609406919887021
– ident: 2021112508250813000_9.Suppl_1.e001287.9
– ident: 2021112508250813000_9.Suppl_1.e001287.39
SSID ssib048324877
ssj0001793592
ssib025873065
ssib060517204
Score 2.3548944
Snippet Qualitative research remains underused, in part due to the time and cost of annotating qualitative data (coding). Artificial intelligence (AI) has been...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e001287
SubjectTerms Agreements
Algorithms
Artificial Intelligence
Automation
Cluster Analysis
Coronaviruses
COVID-19
Data analysis
Data collection
Datasets
Grounded theory
Humans
Linguistics
Machine Learning
Medical research
Methodology and Research Methods
Primary care
Public health
Qualitative Research
Reproducibility
Reproducibility of Results
Researchers
Software
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEF6kD-pL8d5olRUUrBCa7DX7WC-lCPXJQt_i3kItx5yDJ6H03zuzyYknKO2LbyHZQDLzTeab7O43hLxxkIJdkGVeQqjlQhcht96zPMgQUCANUi4Wiqdf1cmZ-HIuz7dafeGasEEeeDDcYYQw4EpZZkonbOGsNTxWzkKms8HaVPgUldkqpgBJAnAKTHxKrAqVqMZuLMPfF407UlnqPFfIXJmKb-YwuQKX-guAD4NCG7_fmLncz8tZ5koC__9ipX8vrrzXtyt7fWUXi63MdfyA7I6Ukx4Nr_qQ3IntI3L3dJxUf0y-f5o2TlHbBtqh8EY6prbvlkBpY6DD5sukEk6BbyPrbDv67ggY8QHtlnTdr5DJz8eNgidPyNnx528fT_Kx8ULuJNNdrr1uCm-NclJ4y2WIXqqIlU9RxKjBCZVtZICIbRzX3AnTNJLZiNlQcOf5U7LTLtu4R6jQXkVVRFEJI5xRJvDgmrIIslG6bHhG3oJp6zFw1nWqSbiq0QU1uqAeXJCRw43xaz-ql2MTjcUNdxxMd6wG5Y4bxn5Af07jUHM7nQAk1iMS69uQmJH9DRr-vA8YDTgScC6WkdfTZQhhnJexbVz2aQxUuUwylZFnA3imJ0HtIeAZMiN6BqvZo86vtD8ukkx4ldoqVRl5PwHwVkM8_x-GeEHup-BJOzb3yU73q48vgbp17lWK0t83tzqV
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ta9RAEB7qFVQQ0Wo1WmUFBSuEJtmXJB9EWm0pQg8RC_0Wd7Mbq5zJ2SaI_96ZzUs9lPPbcdlAsvPMzjO7mWcAnhsMwcbKOIzR1UKRRjbUZZmEVlpLAmkYcilRPJmr41Px_kyebcB8rIWhzyrHNdEv1LYpaY98D3k3BhsMXsmb5Y-QukbR6erYQkMPrRXsay8xdg02E1LGmsHmweH8w8cRYQLxiwx9CriKFKqGLi39rkxKlaqJ70gXyVDlGR_PNrlCU5fnCKsEE3Ba1ymime_fViKaF_7_F1v9-6PLG1291L9-6sXij4h2dAduD1SU7ffYuQsbrt6C6yfDYfsW3Oq39FhfqXQPPr-bCqyYri1rSaDD_2a6axukvs6yvkjTq4kz5OXETuuWvdxH5rzL2oZddkti_KvjBmGU-3B6dPjp7XE4NGgIjUzSNkzLtIpKnSsjRam5tK6UylGGFEXOpZHRma6kRc-uDE-5EXlVyUQ7ipqCm5Jvw6xuavcQmEhL5VTkRCZyYXKVW25NFUdWViqNKx7AC5zqYnCwy8LnLlwVZJKCTFL0JglgbzRGUQ4q59RsY7Hmjt3pjmWv8LFm7AHZdxpH2tz-j-biSzG4euFw4eZK6SSPjdA4CTrnLjMauZm2WscB7IzouHqfK3gH8Gy6jK5O5ze6dk3nx2A2nMhEBfCgB9P0JKRRhHxEBpCuwGzlUVev1F_PvZx45tsvZQG8mgD534l4tP4dHsNN7ya-ZnMHZu1F554geWvN08EjfwNZzjy5
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRceJcGCjISSBQpu0kc24nEZXlUFVIrDqxUDijYsc2j22TVJkLw6xk7D1hARXCLkklij2c838SZzwAPFYZgpVkcxuhqYSoiHcqyTELNtHYEaRhyXaJ4cMj3F-mrI3a0AU-HWhh7gqOrTj535QyOoKlq_MlZPvP7XBbxzPj1HzF1H6inK20vwCZniMQnsLk4fD1_6_aTc9_8M-FJmBFks5DnGR1WKSn3T0QDSTCV9s_CyIIvXYtNnsL_T7jz998nL7XVSn79IpfLn2LT3lV4N_Sq-yXleNo2alp--4Xw8X-7fQ2u9KCVzDsruw4bproBFw_6Zfmb8P7FWHpFZKVJ46g7_DGRbVMjKDaadOWbnmecIGJ3uLVqyOM5Yupd0tTkDBuAucC6XE-ZcgsWey_fPN8P-60bQsUS0YSiFDYqZc4VS0tJmTYl48blTlFkjIiUzKRlGn3eKiqoSnNrWSKNi6cpVSXdgklVV2YbSCpKbnhk0izNU5XzXFOtbBxpZrmILQ3gESqu6F3vrPBZDeWF017hhrjo9BbAbBjcouz5z902HMtz7tgd71h13B_nyD5z9jLKOdZuf6I-_VD0k0BhcEqnnMskj1UqUQkypyZTElGb1FLGAewM1vajP6g0RFmI2pIAHoyXcRJwKzuyMnXrZTBPTljCA7jdGefYEsdehEiFBSDWzHatqetXqk8fPdF45jdmygJ4Mhr4XxVx51-E78Jl74S-tnMHJs1pa-4hyGvU_d6XvwP64U3t
  priority: 102
  providerName: Unpaywall
Title Developing and testing an automated qualitative assistant (AQUA) to support qualitative analysis
URI https://fmch.bmj.com/content/9/Suppl_1/e001287.full
https://www.ncbi.nlm.nih.gov/pubmed/34824135
https://www.proquest.com/docview/2602410152
https://www.proquest.com/docview/2604012526
https://pubmed.ncbi.nlm.nih.gov/PMC8627418
https://fmch.bmj.com/content/fmch/9/Suppl_1/e001287.full.pdf
https://doaj.org/article/e088366a291b4a0baa93e8ba750adaa1
UnpaywallVersion publishedVersion
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: RPM
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: 7X7
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 2009-8774
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001793592
  issn: 2009-8774
  databaseCode: 8C1
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9sC7Uv4nejNURQsEJ6SfYrebyeLUW4o4gn16e4m92o5ZqUNof43zu7yaUNSvXl7kg2ZG8-Mr_dyfwG4I3CEKw0i8MYXS2kItKhLIok1ExrS5CGIdcuFKczfjKnHxds0dVx21qY8gK1qy7O23IGS9BUNaNs5Fpc5vHIuNSPOLB70xuwhfCauLYFZ70RJywV5FbqjqLJIigXNxsvwhajJq7pXMRCnqVknb4k3N0fLSfBNba70w5sW_oXfNTb6IMTG8QvR_P_N2z65yuW91fVpfz1Uy6Xt-LX8UN40AHPYNxayiO4Z6rHsD3tUutP4OuHvnwqkJUOGku_4X4HctXUCGyNDtoSTMcVHiDqttizaoJ3Y8TF-0FTB9coQMTzw3Ed7clTmB8ffZ6chF37hVCxRDShKEQZFTLjitFCEqZNwbix658oMkZESqayZBr9tlREEEWzsmSJNDYmUqIK8gw2q7oyuxBQUXDDI0NTmlGV8UwTrco40qzkIi6JB29RtHnnPte5W5kQnltt5FYbeasND0Zr4edFx2FuW2ks77hiv7_isuXvuGPsodVnP84yb7sD9dW3vHPk3OBjmXAukyxWVKIQZEZMqiQiL6mljD3YW1vDzf9BoaEJIfJKPHjdn0ZHttkZWZl65cbgWjdhCffgeWs8_UzWJuiBGJjVYKrDM9WP744sPHXNlVIP3vcG-E9BvPhPdbyEHecqrjRzDzabq5V5hRitUT5siIXAz3QS-84_fdgaT6bTL_h9eDQ7_eS73Q_fba_hsfnsdHz2G8GrOOs
linkProvider BMJ Publishing Group Ltd
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9RAFD5BSMTEGMVbFXVMJBGShrZzaftADAhkEXZjDCS8lZnOVDRru7LdEP6cv80z0wtuNPjEW9NOm3bO7TszPd8BeKcwBCvNQz9EU_NZHGhf5nnka661JUjDkGsTxeFIDE7Yp1N-ugC_uloY-1tl5xOdo9ZVbtfINxF3Y7DB4BV9mPz0bdcou7vatdCQbWsFveUoxtrCjkNzdYkp3HTrYBflvRZF-3vHHwd-22XAVzyKaz_O4yLIZSoUZ7mkXJucC2NhfhAYEwdKJrLgGtWzUDSmiqVFwSNprOtnVOUUn3sHlhhlKSZ_Szt7o89fOo1maC-YEfQBXlhGrLYrTLMKFNvK2Mh1wAu4L9KEdnupVKBq5eeoxhEm_DaO2Aiqfnyfi6Cu0cC_0PHfP3kuz8qJvLqU4_EfEXT_ITxooS_ZbnT1ESyYcgXuDtvN_RW43ywhkqYy6jGc7fYFXUSWmtSWEMQdEzmrK4TaRpOmKNSxlxPMAywaLmvyfhuR-jqpKzKdTWyGMT-uJWJ5Aie3IqqnsFhWpXkOhMW5MCIwLGEpU6lINdWqCAPNCxGHBfVgDac6aw16mrlciYrMiiSzIskakXiw2Qkjy1tWddvcY3zDHev9HZOGUeSGsTtWvv04ywXuTlQXX7PWtWQGAwUVQkZpqJjESZApNYmSiAWlljL0YLXTjuvvuTYnD972l9G12P0iWZpq5sZg9h3xSHjwrFGm_k0sJxLiH-5BPKdmc686f6X8du7oyxPX7inxYKNXyP9OxIubv-ENLA-Oh0fZ0cHo8CXccybj6kVXYbG-mJlXCBxr9bq1TgJnt-0QfgP8xnrH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aQxpICMG4BQYYiUkMKWoSx3bygNCgVBtjEw9M6ltmxw4DlaSsiab9NX4dx85lVKDytLe2carE5_KdY_t8B-ClQghWmoV-iKbmxyLQvszzyNdMa0uQhpBrE8XDI753HH-csuka_OprYeyxyt4nOketq9yukY8w7kawQfCKRkV3LOLzePJ2_tO3HaTsTmvfTqNVkQNzcY7p2-LN_hhlvR1Fkw9f3u_5XYcBX7FI1L7IRRHkMuWKxbmkTJuccWND_CAwRgRKJrJgGlWzUFRQFadFwSJprNuPqcop_u81uC4oTe1xQjEdoDxGS8FcYPjOLRdW1w-mXf8RtiY2cr3vAubzNKH9LirlqFT5KSpwhKm-RRCLnerH9yXsdC0G_hUX_32880ZTzuXFuZzN_sDOyR243QW9ZLfV0ruwZspN2DjstvU34Va7eEjamqh7cDIeSrmILDWpLRWI-0xkU1cYZBtN2nJQx1tOMAOwcXBZk1e7GKPvkLoii2Zuc4vlcR0Fy304vhJBPYD1sirNIyCxyLnhgYmTOI1VylNNtSrCQLOCi7CgHmzjVGedKS8ylyVRnlmRZFYkWSsSD0a9MLK841O3bT1mK-7YGe6Yt1wiK8a-s_IdxlkWcPdDdfY165xKZhAiKOcySkMVS5wEmVKTKIlRoNRShh5s9dpx-T6XhuTBi-EyOhW7UyRLUzVuDObdEYu4Bw9bZRqexLIhYeTDPBBLarb0qMtXym-njrg8cY2eEg9eDwr534l4vPodnsMGuoHs0_7RwRO46SzGFYpuwXp91pinGDHW6pkzTQInV-0LfgOKn3hh
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VrQRceJcGCjISSBQpu0kc24nEZXlUFVIrDqxUDijYsc2j22TVJkLw6xk7D1hARXCLkklij2c838SZzwAPFYZgpVkcxuhqYSoiHcqyTELNtHYEaRhyXaJ4cMj3F-mrI3a0AU-HWhh7gqOrTj535QyOoKlq_MlZPvP7XBbxzPj1HzF1H6inK20vwCZniMQnsLk4fD1_6_aTc9_8M-FJmBFks5DnGR1WKSn3T0QDSTCV9s_CyIIvXYtNnsL_T7jz998nL7XVSn79IpfLn2LT3lV4N_Sq-yXleNo2alp--4Xw8X-7fQ2u9KCVzDsruw4bproBFw_6Zfmb8P7FWHpFZKVJ46g7_DGRbVMjKDaadOWbnmecIGJ3uLVqyOM5Yupd0tTkDBuAucC6XE-ZcgsWey_fPN8P-60bQsUS0YSiFDYqZc4VS0tJmTYl48blTlFkjIiUzKRlGn3eKiqoSnNrWSKNi6cpVSXdgklVV2YbSCpKbnhk0izNU5XzXFOtbBxpZrmILQ3gESqu6F3vrPBZDeWF017hhrjo9BbAbBjcouz5z902HMtz7tgd71h13B_nyD5z9jLKOdZuf6I-_VD0k0BhcEqnnMskj1UqUQkypyZTElGb1FLGAewM1vajP6g0RFmI2pIAHoyXcRJwKzuyMnXrZTBPTljCA7jdGefYEsdehEiFBSDWzHatqetXqk8fPdF45jdmygJ4Mhr4XxVx51-E78Jl74S-tnMHJs1pa-4hyGvU_d6XvwP64U3t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Developing+and+testing+an+automated+qualitative+assistant+%28AQUA%29+to+support+qualitative+analysis&rft.jtitle=Family+medicine+and+community+health&rft.au=Lennon%2C+Robert+P&rft.au=Fraleigh%2C+Robbie&rft.au=Van+Scoy%2C+Lauren+J&rft.au=Keshaviah%2C+Aparna&rft.date=2021-11-01&rft.issn=2009-8774&rft.eissn=2009-8774&rft.volume=9&rft.issue=Suppl+1&rft_id=info:doi/10.1136%2Ffmch-2021-001287&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2305-6983&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2305-6983&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2305-6983&client=summon