Mapping Lung Cancer Epithelial-Mesenchymal Transition States and Trajectories with Single-Cell Resolution
Elucidating a continuum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises new insights in cancer progression and drug response. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFβ-treatment...
Saved in:
| Published in | bioRxiv |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Paper |
| Language | English |
| Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
07.03.2019
Cold Spring Harbor Laboratory |
| Edition | 1.1 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2692-8205 2692-8205 |
| DOI | 10.1101/570341 |
Cover
| Summary: | Elucidating a continuum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises new insights in cancer progression and drug response. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFβ-treatment and identify through TGFβ-withdrawal, an MET state previously unrealized. We demonstrate significant differences between EMT and MET trajectories using a novel computational tool (TRACER) for reconstructing trajectories between cell states. Additionally, we construct a lung cancer reference map of EMT and MET states referred to as the EMT-MET STAte MaP (STAMP). Using a neural net algorithm, we project clinical samples onto the EMT-MET STAMP to characterize their phenotypic profile with single-cell resolution in terms of our in vitro EMT-MET analysis. In summary, we provide a framework that can be extended to phenotypically characterize clinical samples in the context of in vitro studies showing differential EMT-MET traits related to metastasis and drug sensitivity. |
|---|---|
| Bibliography: | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 |
| ISSN: | 2692-8205 2692-8205 |
| DOI: | 10.1101/570341 |