Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke
AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.MethodsAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB)...
Saved in:
Published in | British journal of ophthalmology Vol. 106; no. 12; pp. 1722 - 1729 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
BMA House, Tavistock Square, London, WC1H 9JR
BMJ Publishing Group Ltd
01.12.2022
BMJ Publishing Group LTD BMJ Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 0007-1161 1468-2079 1468-2079 |
DOI | 10.1136/bjo-2022-321842 |
Cover
Abstract | AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.MethodsAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40–69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48–92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).ResultsUKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75–0.77 and 0.33–0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.ConclusionRV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk. |
---|---|
AbstractList | AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.MethodsAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40–69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48–92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).ResultsUKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75–0.77 and 0.33–0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.ConclusionRV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk. We examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.AIMSWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.AI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40-69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48-92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).METHODSAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40-69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48-92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).UKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75-0.77 and 0.33-0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.RESULTSUKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75-0.77 and 0.33-0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.RV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk.CONCLUSIONRV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk. We examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality. AI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40-69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48-92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI). UKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R statistics between 0.75-0.77 and 0.33-0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS. RV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk. |
Author | Barman, Sarah Whincup, Peter Strachan, David Welikala, Roshan Rudnicka, Alicja Regina Hayat, Shabina Khaw, Kay-Tee Owen, Christopher G Foster, Paul J Luben, Robert |
AuthorAffiliation | 5 Department of Psychiatry, Cambridge Public Health , University of Cambridge School of Clinical Medicine , Cambridge , UK 2 Faculty of Science, Engineering and Computing , Kingston University , Kingston-Upon-Thames , UK 3 NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology , University College London , London , UK 4 MRC Epidemiology Unit , Cambridge University , Cambridge , UK 1 Population Health Research Institute , St George's University of London , London , UK |
AuthorAffiliation_xml | – name: 4 MRC Epidemiology Unit , Cambridge University , Cambridge , UK – name: 2 Faculty of Science, Engineering and Computing , Kingston University , Kingston-Upon-Thames , UK – name: 3 NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology , University College London , London , UK – name: 5 Department of Psychiatry, Cambridge Public Health , University of Cambridge School of Clinical Medicine , Cambridge , UK – name: 1 Population Health Research Institute , St George's University of London , London , UK |
Author_xml | – sequence: 1 givenname: Alicja Regina orcidid: 0000-0003-0369-8574 surname: Rudnicka fullname: Rudnicka, Alicja Regina email: arudnick@sgul.ac.uk organization: Population Health Research Institute, St George's University of London, London, UK – sequence: 2 givenname: Roshan surname: Welikala fullname: Welikala, Roshan organization: Faculty of Science, Engineering and Computing, Kingston University, Kingston-Upon-Thames, UK – sequence: 3 givenname: Sarah surname: Barman fullname: Barman, Sarah organization: Faculty of Science, Engineering and Computing, Kingston University, Kingston-Upon-Thames, UK – sequence: 4 givenname: Paul J orcidid: 0000-0002-4755-177X surname: Foster fullname: Foster, Paul J organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, University College London, London, UK – sequence: 5 givenname: Robert orcidid: 0000-0002-5088-6343 surname: Luben fullname: Luben, Robert organization: MRC Epidemiology Unit, Cambridge University, Cambridge, UK – sequence: 6 givenname: Shabina orcidid: 0000-0001-9068-8723 surname: Hayat fullname: Hayat, Shabina organization: Department of Psychiatry, Cambridge Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK – sequence: 7 givenname: Kay-Tee surname: Khaw fullname: Khaw, Kay-Tee organization: MRC Epidemiology Unit, Cambridge University, Cambridge, UK – sequence: 8 givenname: Peter surname: Whincup fullname: Whincup, Peter organization: Population Health Research Institute, St George's University of London, London, UK – sequence: 9 givenname: David surname: Strachan fullname: Strachan, David organization: Population Health Research Institute, St George's University of London, London, UK – sequence: 10 givenname: Christopher G orcidid: 0000-0003-1135-5977 surname: Owen fullname: Owen, Christopher G organization: Population Health Research Institute, St George's University of London, London, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36195457$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1rFTEUxYNU7Gt17U4G3Ag6NsnkY2ZTKMUvKLjRdbjJJDXPmeSZZApv499uHlOrFuwqJOd3T25uzgk6CjFYhJ4T_JaQTpzpbWwpprTtKOkZfYQ2hIm-HsnhCG0wxrIlRJBjdJLztm6pIPIJOu4EGTjjcoN-XqTinTcepsaHYqfJX9tgbGsD6MmOTbLFhyreQDbLFGdb0r5xMTW7ZEdvio-hia4xPlUZSqzqHFOByZf9m2beRwNpXN0dpJWHMDa5pPjdPkWPHUzZPrtdT9HX9---XH5srz5_-HR5cdVq1vPSjhTjUXPNORtAUCIk4YJpPYygMXP9IDgGIFZrQ4TtGDZsEEAcl84KcLI7Reer727Rsx2NDSXBpHbJz5D2KoJX_yrBf1PX8UYNouf1smrw6tYgxR-LzUXNPps6Lgg2LllRWbvqpKSioi_vodu4pDrDA9XVuYsO84cp2g3VjuFKvfi777uGf39gBc5WwKSYc7LuDiFYHSKiakTUISJqjUit4PcqjC9w-Jf6cD89UPd6rdPz9k-v_6N_AaK50DQ |
CitedBy_id | crossref_primary_10_1136_bjo_2023_323308 crossref_primary_10_1136_bmjopen_2022_069258 crossref_primary_10_1186_s12886_025_03854_x crossref_primary_10_2147_IJGM_S507016 crossref_primary_10_1038_s41598_024_54412_2 crossref_primary_10_5469_neuroint_2025_00052 crossref_primary_10_1038_s41433_023_02724_4 crossref_primary_10_1177_10935266241299073 crossref_primary_10_1016_j_eclinm_2025_103089 crossref_primary_10_1002_dad2_70087 crossref_primary_10_1016_j_cmet_2024_02_002 crossref_primary_10_1016_j_jdiacomp_2024_108721 crossref_primary_10_1038_s41598_024_78587_w crossref_primary_10_1177_11206721231199848 crossref_primary_10_1080_14779072_2023_2223978 crossref_primary_10_1016_j_xops_2025_100723 crossref_primary_10_1016_j_ijmedinf_2023_105072 crossref_primary_10_1016_j_preghy_2023_12_004 crossref_primary_10_3390_jpm14010045 crossref_primary_10_1007_s00415_023_12171_6 crossref_primary_10_2478_rjim_2023_0019 crossref_primary_10_3390_diagnostics14090928 crossref_primary_10_1371_journal_pone_0290278 crossref_primary_10_1038_s41597_024_03086_6 crossref_primary_10_1007_s40123_024_00981_4 crossref_primary_10_1159_000542492 crossref_primary_10_1016_j_preteyeres_2025_101350 crossref_primary_10_1038_s41569_024_01060_8 crossref_primary_10_1007_s00417_023_06223_w crossref_primary_10_1167_iovs_65_14_7 crossref_primary_10_1038_s41467_024_52334_1 crossref_primary_10_12968_opti_2024_269_6954_25 crossref_primary_10_1055_a_2026_2911 crossref_primary_10_1055_s_0045_1802310 crossref_primary_10_1186_s12933_024_02367_z crossref_primary_10_1167_iovs_64_15_47 crossref_primary_10_1186_s40662_024_00384_3 crossref_primary_10_3389_fmed_2023_1222022 |
Cites_doi | 10.1167/iovs.13-12512 10.1161/CIRCULATIONAHA.121.057709 10.1161/STROKEAHA.113.001741 10.1016/j.amjcard.2008.02.094 10.1161/CIRCRESAHA.116.307547 10.1016/j.ophtha.2018.07.022 10.1161/CIRCULATIONAHA.116.023425 10.1016/j.compbiomed.2016.01.027 10.1007/BF00175988 10.7326/0003-4819-151-6-200909150-00005 10.1161/01.cir.0000437741.48606.98 10.1161/CIRCULATIONAHA.115.021275 10.1001/jama.287.9.1153 10.1016/S0140-6736(18)32203-7 10.1161/CIRCULATIONAHA.119.041149 10.1016/j.gheart.2013.02.001 10.1111/j.2517-6161.1972.tb00899.x 10.1136/bmjopen-2015-008105 10.1038/s41551-020-00626-4 10.1136/bmj.i2416 10.1016/j.jacc.2005.09.023 10.2337/dc19-1683 10.1016/j.atherosclerosis.2017.10.008 10.1177/1536867X0600600105 10.1093/aje/kwm255 10.1093/ije/26.suppl_1.S6 10.1161/HYPERTENSIONAHA.119.13752 10.1161/01.CIR.97.18.1837 10.1093/aje/kwp306 10.1371/journal.pmed.1001779 10.1002/oby.22885 10.1113/JP270947 10.1093/eurheartj/ehw106 10.1136/bmj.j2099 10.1097/EDE.0b013e3181c30fb2 10.1038/ajh.2008.201 10.1001/archinte.168.21.2304 10.1056/NEJMoa1107477 10.1136/bmjopen-2018-025077 10.1371/journal.pone.0213653 10.1161/ATVBAHA.111.225219 10.1093/eurheartj/ehm221 10.1016/S2589-7500(21)00043-1 10.1016/S0140-6736(18)32335-3 10.7326/L15-5093-2 10.1016/j.compbiomed.2017.09.005 10.1093/ije/dyt086 10.1038/s42256-021-00427-7 10.7326/L15-5093 10.1109/IPTA.2017.8310108 |
ContentType | Journal Article |
Copyright | Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. 2022 |
Copyright_xml | – notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. – notice: 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. 2022 |
DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA BENPR BTHHO CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1136/bjo-2022-321842 |
DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central BMJ Journals ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection PML(ProQuest Medical Library) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) BMJ Journals Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Public Health |
EISSN | 1468-2079 |
EndPage | 1729 |
ExternalDocumentID | PMC9685715 36195457 10_1136_bjo_2022_321842 bjophthalmol |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/15/101/31889 funderid: http://dx.doi.org/10.13039/501100000274 – fundername: Cancer Research UK grantid: C864/A8257 funderid: http://dx.doi.org/10.13039/501100000289 – fundername: Richard Desmond Charitable Trust (via Fight for Sight) grantid: N/A – fundername: Medical Research Council grantid: MR/L02005X/1; MR/N003284/1 funderid: http://dx.doi.org/10.13039/501100000265 – fundername: NIHR Biomedical Research Centre Moorfields Eye Hospital and the UCL Institute of Ophthalmology grantid: N/A – fundername: Age UK grantid: 262 funderid: http://dx.doi.org/10.13039/501100000629 – fundername: Medical Research Council grantid: G0401527 – fundername: British Heart Foundation grantid: PG/15/101/31889 – fundername: Medical Research Council grantid: MR/N003284/1 – fundername: Cancer Research UK grantid: 14136 – fundername: Medical Research Council grantid: MC_PC_17228 – fundername: Medical Research Council grantid: G1000143 – fundername: Medical Research Council grantid: MR/L02005X/1 – fundername: Medical Research Council grantid: MC_QA137853 – fundername: ; grantid: PG/15/101/31889 – fundername: ; grantid: MR/L02005X/1; MR/N003284/1 – fundername: ; grantid: N/A – fundername: ; grantid: C864/A8257 – fundername: ; grantid: 262 |
GroupedDBID | --- -~X .55 .GJ .VT 0R~ 18M 23N 2WC 354 39C 3O- 4.4 40O 53G 5GY 5RE 5VS 6J9 7X7 7~S 88E 8FI 8FJ 8R4 8R5 9YT AAHLL AAKAS AAOJX AAWJN ABAAH ABJNI ABKDF ABMQD ABTFR ABUWG ABVAJ ACCCW ACGFO ACGFS ACGTL ACHTP ACMFJ ACMMV ACNCT ACOAB ACOFX ACQSR ACTZY ADBBV ADCEG ADZCM AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C1A C45 CAG CCPQU COF CS3 CXRWF DIK DU5 E3Z EBS EJD F5P FYUFA H13 HAJ HMCUK HYE HZ~ IAO IEA IHR IOF ITC J5H KQ8 L7B M1P N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 TEORI TR2 UAW UKHRP UYXKK V24 VM9 W8F WH7 WOQ X7M XOL YFH YQY ZGI AAFWJ AAYXX ACQHZ AERUA CITATION PHGZM CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-b485t-d200db5b5549a621671564bb9dab04f89650aa1ebbc16e340c496a1f57fe6af73 |
IEDL.DBID | 7X7 |
ISSN | 0007-1161 1468-2079 |
IngestDate | Thu Aug 21 18:39:29 EDT 2025 Fri Sep 05 04:46:47 EDT 2025 Sat Jul 26 00:06:26 EDT 2025 Fri Jul 25 05:37:19 EDT 2025 Mon Jul 21 06:08:01 EDT 2025 Tue Jul 01 01:48:17 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Thu Apr 24 22:50:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Retina Epidemiology Imaging Public health Diagnostic tests/Investigation |
Language | English |
License | This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/. Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b485t-d200db5b5549a621671564bb9dab04f89650aa1ebbc16e340c496a1f57fe6af73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4755-177X 0000-0002-5088-6343 0000-0001-9068-8723 0000-0003-0369-8574 0000-0003-1135-5977 |
OpenAccessLink | https://bjo.bmj.com/content/106/12/1722.full |
PMID | 36195457 |
PQID | 2723921640 |
PQPubID | 2041039 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685715 proquest_miscellaneous_2721637726 proquest_journals_2739546305 proquest_journals_2723921640 pubmed_primary_36195457 crossref_primary_10_1136_bjo_2022_321842 crossref_citationtrail_10_1136_bjo_2022_321842 bmj_journals_10_1136_bjo_2022_321842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | BMA House, Tavistock Square, London, WC1H 9JR |
PublicationPlace_xml | – name: BMA House, Tavistock Square, London, WC1H 9JR – name: England – name: London |
PublicationTitle | British journal of ophthalmology |
PublicationTitleAbbrev | Br J Ophthalmol |
PublicationTitleAlternate | Br J Ophthalmol |
PublicationYear | 2022 |
Publisher | BMJ Publishing Group Ltd BMJ Publishing Group LTD BMJ Publishing Group |
Publisher_xml | – name: BMJ Publishing Group Ltd – name: BMJ Publishing Group LTD – name: BMJ Publishing Group |
References | Alaa, Bolton, Di Angelantonio (R7) 2019; 14 Wang, Mitchell, Liew (R11) 2018; 268 Dufouil, Beiser, McLure (R21) 2017; 135 Diaz-Pinto, Ravikumar, Attar (R40) 2022; 4 (R2) 2018; 392 Zekavat, Raghu, Trinder (R39) 2022; 145 Pepine, Kerensky, Lambert (R36) 2006; 47 Hippisley-Cox, Coupland, Brindle (R41) 2017; 357 Seidelmann, Claggett, Bravo (R10) 2016; 134 Hayat, Luben, Keevil (R25) 2014; 43 Welsh, Welsh, Celis-Morales (R6) 2020; 43 Wang, Liew, Klein (R13) 2007; 28 Sudlow, Gallacher, Allen (R23) 2015; 12 Tapp, Owen, Barman (R35) 2020; 28 Rim, Lee, Tham (R42) 2021; 3 Ong, De Silva, Cheung (R43) 2013; 44 Li, Ikram, Wong (R34) 2016; 594 Damen, Hooft, Schuit (R3) 2016; 353 Goff, Lloyd-Jones, Bennett (R9) 2014; 129 McGeechan, Liew, Macaskill (R14) 2009; 151 Welikala, Fraz, Foster (R17) 2016; 71 Steyerberg, Vickers, Cook (R30) 2010; 21 Chua, Thomas, Allen (R20) 2019; 9 Collins, Reitsma, Altman (R31) 2015; 162 Sharma, Gulati (R37) 2013; 8 McGeechan, Liew, Wong (R45) 2008; 21 Bennett, Rudnicka, Edgar (R26) 1994; 232 Wong, Klein, Sharrett (R32) 2002; 287 Welikala, Foster, Whincup (R18) 2017; 90 Tapp, Owen, Barman (R27) 2019; 74 Welsh, Celis-Morales, Brown (R5) 2019; 140 (R1) 2018; 392 Riboli, Kaaks (R24) 1997; 26 Suppl 1 Yanagi, Misumi, Kawasaki (R48) 2014; 55 Piepoli, Hoes, Agewall (R8) 20162016; 37 Owen, Rudnicka, Welikala (R15) 2019; 126 Royston (R29) 2006; 6 Wilson, D'Agostino, Levy (R22) 1998; 97 Owen, Kapetanakis, Rudnicka (R49) 2015; 5 McGeechan, Macaskill, Irwig (R46) 2008; 168 McGeechan, Liew, Macaskill (R12) 2009; 170 Owen, Rudnicka, Nightingale (R16) 2011; 31 Cox (R28) 1972; 34 Kaptoge, Di Angelantonio (R4) 2012; 367 Garcia, Mulvagh, Merz (R38) 2016; 118 McGeechan, Liew, Macaskill (R44) 2008; 102 Kifley, Liew, Wang (R47) 2007; 166 Cheung, Xu, Cheng (R33) 2021; 5 2023030623100865000_106.12.1722.38 2023030623100865000_106.12.1722.36 2023030623100865000_106.12.1722.30 2023030623100865000_106.12.1722.31 2023030623100865000_106.12.1722.32 Rim (2023030623100865000_106.12.1722.42) 2021; 3 2023030623100865000_106.12.1722.6 Diaz-Pinto (2023030623100865000_106.12.1722.40) 2022; 4 2023030623100865000_106.12.1722.7 2023030623100865000_106.12.1722.4 2023030623100865000_106.12.1722.2 Li (2023030623100865000_106.12.1722.34) 2016; 594 2023030623100865000_106.12.1722.3 Riboli (2023030623100865000_106.12.1722.24) 1997; 26 Suppl 1 2023030623100865000_106.12.1722.1 Tapp (2023030623100865000_106.12.1722.35) 2020; 28 2023030623100865000_106.12.1722.48 Cheung (2023030623100865000_106.12.1722.33) 2021; 5 2023030623100865000_106.12.1722.49 Cox (2023030623100865000_106.12.1722.28) 1972; 34 2023030623100865000_106.12.1722.44 2023030623100865000_106.12.1722.45 2023030623100865000_106.12.1722.8 2023030623100865000_106.12.1722.46 2023030623100865000_106.12.1722.9 2023030623100865000_106.12.1722.47 2023030623100865000_106.12.1722.41 2023030623100865000_106.12.1722.43 Zekavat (2023030623100865000_106.12.1722.39) 2022; 145 2023030623100865000_106.12.1722.19 2023030623100865000_106.12.1722.15 2023030623100865000_106.12.1722.16 2023030623100865000_106.12.1722.17 2023030623100865000_106.12.1722.12 2023030623100865000_106.12.1722.13 2023030623100865000_106.12.1722.14 2023030623100865000_106.12.1722.10 Wang (2023030623100865000_106.12.1722.11) 2018; 268 2023030623100865000_106.12.1722.50 Welsh (2023030623100865000_106.12.1722.5) 2019; 140 2023030623100865000_106.12.1722.26 2023030623100865000_106.12.1722.27 2023030623100865000_106.12.1722.29 2023030623100865000_106.12.1722.22 Welikala (2023030623100865000_106.12.1722.18) 2017; 90 2023030623100865000_106.12.1722.23 2023030623100865000_106.12.1722.25 2023030623100865000_106.12.1722.20 2023030623100865000_106.12.1722.21 Sharma (2023030623100865000_106.12.1722.37) 2013; 8 |
References_xml | – volume: 55 start-page: 405 year: 2014 ident: R48 article-title: Is the association between smoking and the retinal venular diameter reversible following smoking cessation? publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-12512 – volume: 145 start-page: 134 year: 2022 ident: R39 article-title: Deep learning of the retina enables Phenome- and genome-wide analyses of the microvasculature publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.057709 – volume: 44 start-page: 2121 year: 2013 ident: R43 article-title: Microvascular structure and network in the retina of patients with ischemic stroke publication-title: Stroke doi: 10.1161/STROKEAHA.113.001741 – volume: 102 start-page: 58 year: 2008 ident: R44 article-title: Risk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk In Communities [ARIC] Study) publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2008.02.094 – volume: 118 start-page: 1273 year: 2016 ident: R38 article-title: Cardiovascular disease in women: clinical perspectives publication-title: Circ Res doi: 10.1161/CIRCRESAHA.116.307547 – volume: 126 start-page: 96 year: 2019 ident: R15 article-title: Retinal Vasculometry associations with cardiometabolic risk factors in the European prospective investigation of Cancer-Norfolk study publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.07.022 – volume: 134 start-page: 1328 year: 2016 ident: R10 article-title: Retinal vessel calibers in predicting long-term cardiovascular outcomes: the Atherosclerosis risk in Communities study publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.116.023425 – volume: 71 start-page: 67 year: 2016 ident: R17 article-title: Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.01.027 – volume: 232 start-page: 361 year: 1994 ident: R26 article-title: Improvements on Littmann's method of determining the size of retinal features by fundus photography publication-title: Graefes Arch Clin Exp Ophthalmol doi: 10.1007/BF00175988 – volume: 151 start-page: 404 year: 2009 ident: R14 article-title: Meta-Analysis: retinal vessel caliber and risk for coronary heart disease publication-title: Ann Intern Med doi: 10.7326/0003-4819-151-6-200909150-00005 – volume: 129 start-page: S49 year: 2014 ident: R9 article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American heart association Task force on practice guidelines publication-title: Circulation doi: 10.1161/01.cir.0000437741.48606.98 – volume: 135 start-page: 1145 year: 2017 ident: R21 article-title: Revised Framingham stroke risk profile to reflect temporal trends publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.115.021275 – volume: 287 start-page: 1153 year: 2002 ident: R32 article-title: Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis risk in Communities study publication-title: JAMA doi: 10.1001/jama.287.9.1153 – volume: 392 start-page: 1736 year: 2018 ident: R1 article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017 publication-title: Lancet doi: 10.1016/S0140-6736(18)32203-7 – volume: 140 start-page: 542 year: 2019 ident: R5 article-title: Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041149 – volume: 8 start-page: 105 year: 2013 ident: R37 article-title: Coronary artery disease in women: a 2013 update publication-title: Glob Heart doi: 10.1016/j.gheart.2013.02.001 – volume: 34 start-page: 187 year: 1972 ident: R28 article-title: Regression models and Life-Tables publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1972.tb00899.x – volume: 5 year: 2015 ident: R49 article-title: Body mass index in early and middle adult life: prospective associations with myocardial infarction, stroke and diabetes over a 30-year period: the British regional heart study publication-title: BMJ Open doi: 10.1136/bmjopen-2015-008105 – volume: 5 start-page: 498 year: 2021 ident: R33 article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00626-4 – volume: 353 year: 2016 ident: R3 article-title: Prediction models for cardiovascular disease risk in the general population: systematic review publication-title: BMJ doi: 10.1136/bmj.i2416 – volume: 47 start-page: S30 year: 2006 ident: R36 article-title: Some thoughts on the vasculopathy of women with ischemic heart disease publication-title: J Am Coll Cardiol doi: 10.1016/j.jacc.2005.09.023 – volume: 43 start-page: 440 year: 2020 ident: R6 article-title: Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK Biobank publication-title: Diabetes Care doi: 10.2337/dc19-1683 – volume: 268 start-page: 215 year: 2018 ident: R11 article-title: A spectrum of retinal vasculature measures and coronary artery disease publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.10.008 – volume: 6 start-page: 83 year: 2006 ident: R29 article-title: Explained variation for survival models publication-title: Stata J doi: 10.1177/1536867X0600600105 – volume: 166 start-page: 1288 year: 2007 ident: R47 article-title: Long-Term effects of smoking on retinal microvascular caliber publication-title: Am J Epidemiol doi: 10.1093/aje/kwm255 – volume: 26 Suppl 1 start-page: 6S year: 1997 ident: R24 article-title: The EPIC project: rationale and study design. European prospective investigation into cancer and nutrition publication-title: Int J Epidemiol doi: 10.1093/ije/26.suppl_1.S6 – volume: 74 start-page: 1383 year: 2019 ident: R27 article-title: Associations of retinal microvascular diameters and tortuosity with blood pressure and arterial stiffness: United Kingdom Biobank publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.119.13752 – volume: 97 start-page: 1837 year: 1998 ident: R22 article-title: Prediction of coronary heart disease using risk factor categories publication-title: Circulation doi: 10.1161/01.CIR.97.18.1837 – volume: 170 start-page: 1323 year: 2009 ident: R12 article-title: Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis publication-title: Am J Epidemiol doi: 10.1093/aje/kwp306 – volume: 12 year: 2015 ident: R23 article-title: Uk Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age publication-title: PLoS Med doi: 10.1371/journal.pmed.1001779 – volume: 28 start-page: 1750 year: 2020 ident: R35 article-title: Retinal vascular tortuosity and diameter associations with adiposity and components of body composition publication-title: Obesity doi: 10.1002/oby.22885 – volume: 594 start-page: 2175 year: 2016 ident: R34 article-title: Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease publication-title: J Physiol doi: 10.1113/JP270947 – volume: 37 start-page: 2315 year: 20162016 ident: R8 article-title: 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR) publication-title: Eur Heart J doi: 10.1093/eurheartj/ehw106 – volume: 357 start-page: j2099 year: 2017 ident: R41 article-title: Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study publication-title: BMJ doi: 10.1136/bmj.j2099 – volume: 21 start-page: 128 year: 2010 ident: R30 article-title: Assessing the performance of prediction models: a framework for traditional and novel measures publication-title: Epidemiology doi: 10.1097/EDE.0b013e3181c30fb2 – volume: 21 year: 2008 ident: R45 article-title: Are retinal examinations useful in assessing cardiovascular risk? publication-title: Am J Hypertens doi: 10.1038/ajh.2008.201 – volume: 168 start-page: 2304 year: 2008 ident: R46 article-title: Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide publication-title: Arch Intern Med doi: 10.1001/archinte.168.21.2304 – volume: 367 start-page: 1310 year: 2012 ident: R4 article-title: C-Reactive protein, fibrinogen, and cardiovascular disease prediction publication-title: N Engl J Med doi: 10.1056/NEJMoa1107477 – volume: 9 year: 2019 ident: R20 article-title: Cohort profile: design and methods in the eye and vision Consortium of UK Biobank publication-title: BMJ Open doi: 10.1136/bmjopen-2018-025077 – volume: 14 year: 2019 ident: R7 article-title: Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants publication-title: PLoS One doi: 10.1371/journal.pone.0213653 – volume: 31 start-page: 1933 year: 2011 ident: R16 article-title: Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the child heart and health study in England (Chase) publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/ATVBAHA.111.225219 – volume: 28 start-page: 1984 year: 2007 ident: R13 article-title: Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations publication-title: Eur Heart J doi: 10.1093/eurheartj/ehm221 – volume: 3 start-page: e306 year: 2021 ident: R42 article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal Photographs publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00043-1 – volume: 392 start-page: 1859 year: 2018 ident: R2 article-title: Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017 publication-title: Lancet doi: 10.1016/S0140-6736(18)32335-3 – volume: 162 start-page: 735 year: 2015 ident: R31 article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) publication-title: Ann Intern Med doi: 10.7326/L15-5093-2 – volume: 90 start-page: 23 year: 2017 ident: R18 article-title: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.09.005 – volume: 43 start-page: 1063 year: 2014 ident: R25 article-title: Cohort profile: a prospective cohort study of objective physical and cognitive capability and visual health in an ageing population of men and women in Norfolk (EPIC-Norfolk 3) publication-title: Int J Epidemiol doi: 10.1093/ije/dyt086 – volume: 4 start-page: 55 year: 2022 ident: R40 article-title: Predicting myocardial infarction through retinal scans and minimal personal information publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00427-7 – volume: 145 start-page: 134 year: 2022 ident: 2023030623100865000_106.12.1722.39 article-title: Deep learning of the retina enables Phenome- and genome-wide analyses of the microvasculature publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.121.057709 – ident: 2023030623100865000_106.12.1722.6 doi: 10.2337/dc19-1683 – ident: 2023030623100865000_106.12.1722.13 doi: 10.1093/eurheartj/ehm221 – ident: 2023030623100865000_106.12.1722.1 doi: 10.1016/S0140-6736(18)32203-7 – ident: 2023030623100865000_106.12.1722.46 doi: 10.1001/archinte.168.21.2304 – ident: 2023030623100865000_106.12.1722.26 doi: 10.1007/BF00175988 – ident: 2023030623100865000_106.12.1722.31 doi: 10.7326/L15-5093 – ident: 2023030623100865000_106.12.1722.48 doi: 10.1167/iovs.13-12512 – ident: 2023030623100865000_106.12.1722.16 doi: 10.1161/ATVBAHA.111.225219 – ident: 2023030623100865000_106.12.1722.43 doi: 10.1161/STROKEAHA.113.001741 – ident: 2023030623100865000_106.12.1722.44 doi: 10.1016/j.amjcard.2008.02.094 – ident: 2023030623100865000_106.12.1722.10 doi: 10.1161/CIRCULATIONAHA.116.023425 – ident: 2023030623100865000_106.12.1722.12 doi: 10.1093/aje/kwp306 – volume: 5 start-page: 498 year: 2021 ident: 2023030623100865000_106.12.1722.33 article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre publication-title: Nat Biomed Eng doi: 10.1038/s41551-020-00626-4 – ident: 2023030623100865000_106.12.1722.17 doi: 10.1016/j.compbiomed.2016.01.027 – ident: 2023030623100865000_106.12.1722.15 doi: 10.1016/j.ophtha.2018.07.022 – volume: 594 start-page: 2175 year: 2016 ident: 2023030623100865000_106.12.1722.34 article-title: Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease publication-title: J Physiol doi: 10.1113/JP270947 – ident: 2023030623100865000_106.12.1722.7 doi: 10.1371/journal.pone.0213653 – ident: 2023030623100865000_106.12.1722.38 doi: 10.1161/CIRCRESAHA.116.307547 – volume: 4 start-page: 55 year: 2022 ident: 2023030623100865000_106.12.1722.40 article-title: Predicting myocardial infarction through retinal scans and minimal personal information publication-title: Nat Mach Intell doi: 10.1038/s42256-021-00427-7 – ident: 2023030623100865000_106.12.1722.27 doi: 10.1161/HYPERTENSIONAHA.119.13752 – ident: 2023030623100865000_106.12.1722.9 doi: 10.1161/01.cir.0000437741.48606.98 – ident: 2023030623100865000_106.12.1722.50 – ident: 2023030623100865000_106.12.1722.23 doi: 10.1371/journal.pmed.1001779 – volume: 3 start-page: e306 year: 2021 ident: 2023030623100865000_106.12.1722.42 article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal Photographs publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(21)00043-1 – volume: 26 Suppl 1 start-page: 6S year: 1997 ident: 2023030623100865000_106.12.1722.24 article-title: The EPIC project: rationale and study design. European prospective investigation into cancer and nutrition publication-title: Int J Epidemiol doi: 10.1093/ije/26.suppl_1.S6 – volume: 90 start-page: 23 year: 2017 ident: 2023030623100865000_106.12.1722.18 article-title: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2017.09.005 – ident: 2023030623100865000_106.12.1722.45 doi: 10.1038/ajh.2008.201 – ident: 2023030623100865000_106.12.1722.29 doi: 10.1177/1536867X0600600105 – ident: 2023030623100865000_106.12.1722.3 doi: 10.1136/bmj.i2416 – ident: 2023030623100865000_106.12.1722.20 doi: 10.1136/bmjopen-2018-025077 – ident: 2023030623100865000_106.12.1722.25 doi: 10.1093/ije/dyt086 – volume: 8 start-page: 105 year: 2013 ident: 2023030623100865000_106.12.1722.37 article-title: Coronary artery disease in women: a 2013 update publication-title: Glob Heart doi: 10.1016/j.gheart.2013.02.001 – ident: 2023030623100865000_106.12.1722.47 doi: 10.1093/aje/kwm255 – ident: 2023030623100865000_106.12.1722.41 doi: 10.1136/bmj.j2099 – ident: 2023030623100865000_106.12.1722.4 doi: 10.1056/NEJMoa1107477 – volume: 140 start-page: 542 year: 2019 ident: 2023030623100865000_106.12.1722.5 article-title: Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.119.041149 – ident: 2023030623100865000_106.12.1722.14 doi: 10.7326/0003-4819-151-6-200909150-00005 – ident: 2023030623100865000_106.12.1722.32 doi: 10.1001/jama.287.9.1153 – ident: 2023030623100865000_106.12.1722.8 doi: 10.1093/eurheartj/ehw106 – ident: 2023030623100865000_106.12.1722.22 doi: 10.1161/01.CIR.97.18.1837 – ident: 2023030623100865000_106.12.1722.30 doi: 10.1097/EDE.0b013e3181c30fb2 – ident: 2023030623100865000_106.12.1722.36 doi: 10.1016/j.jacc.2005.09.023 – volume: 34 start-page: 187 year: 1972 ident: 2023030623100865000_106.12.1722.28 article-title: Regression models and Life-Tables publication-title: Journal of the Royal Statistical Society: Series B doi: 10.1111/j.2517-6161.1972.tb00899.x – ident: 2023030623100865000_106.12.1722.21 doi: 10.1161/CIRCULATIONAHA.115.021275 – ident: 2023030623100865000_106.12.1722.49 doi: 10.1136/bmjopen-2015-008105 – volume: 268 start-page: 215 year: 2018 ident: 2023030623100865000_106.12.1722.11 article-title: A spectrum of retinal vasculature measures and coronary artery disease publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2017.10.008 – ident: 2023030623100865000_106.12.1722.19 doi: 10.1109/IPTA.2017.8310108 – ident: 2023030623100865000_106.12.1722.2 doi: 10.1016/S0140-6736(18)32335-3 – volume: 28 start-page: 1750 year: 2020 ident: 2023030623100865000_106.12.1722.35 article-title: Retinal vascular tortuosity and diameter associations with adiposity and components of body composition publication-title: Obesity doi: 10.1002/oby.22885 |
SSID | ssj0002617 |
Score | 2.570145 |
Snippet | AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke,... We examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke,... |
SourceID | pubmedcentral proquest pubmed crossref bmj |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1722 |
SubjectTerms | Accuracy Artificial Intelligence Cardiovascular disease Clinical Science Diagnostic tests/Investigation Epidemiology Female Health risks Heart attacks Humans Imaging Incidence Male Medical diagnosis Middle Aged Mortality Myocardial Infarction - diagnosis Ophthalmology Proportional Hazards Models Prospective Studies Public health Retina Risk Factors Stroke Stroke - diagnosis Stroke - epidemiology Veins & arteries |
SummonAdditionalLinks | – databaseName: BMJ Open Access Journals dbid: 9YT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9UwDLbGkBASQjB-FQYK0g4c1re2SZPmiBDThDROmzROVdKk4g1eO3XdYRf-duykr-yBnsQ5qVvVdvw5sb8AHBgpnNAqS3H1D6TaPK2c8ql2TpQe8w3uaWvg9Ks8ORdfLsqLHThc98LYy35hV5exm4H4mToilJdHeXGEobZY0Kb0PbhPLFxUwKe_nc3rLnGLR7Cr0hyBzETkk3NJUtEcqG6dMhq6wYZLojoLQQlftxmU_kGafxdM3olAx0_g8QQd2ceo66ew47s9eHA6HY7vwaO4BcdiZ9Ez-EUzI0EEW95h3kx96JdyjBoYSWKsRu1XfhxuGYJYdjWQUFIZ61vWLAcqVqXTeLYKaB2R-yFb3WIYJPMi6S36S5hvOseux6H_4Z_D-fHns08n6XTdQmpFVY6pQ4dxtrQIMLSRRS4VEclYq52xmWgrjWDOmNxb2-TSc5E1QkuTt6VqvTSt4i9gt-s7_woY51w5U0qVGSWE8VbkuWm0axolcT2tEjjAv15P7nJdh0yEyxr1VJOe6qinBBZrtdTNRFlON2f83P7Ah_mBq8jWsX3q_lrPf76jUAXiRcwgsy3DXNP1AVmZwPt5GP2RDllM5_ubIAIhLuYsMoGX0WrmT1kbXQJqw57mCcT1vTnSLb8Hzm8tqxL18fr_ftwbeBjMPZTd7MPuONz4twieRvsu-Mxvwj8TwA priority: 102 providerName: BMJ Publishing Group Ltd |
Title | Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke |
URI | https://bjo.bmj.com/content/106/12/1722.full https://www.ncbi.nlm.nih.gov/pubmed/36195457 https://www.proquest.com/docview/2723921640 https://www.proquest.com/docview/2739546305 https://www.proquest.com/docview/2721637726 https://pubmed.ncbi.nlm.nih.gov/PMC9685715 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZakKpeUOkzLUWuxKGHpiTrV3yqKAKhSouqCqrtKbJjR11gkyUbDlz62zvjZANLtb0kBzuW5ZnxfGNPviFkz0juuFZJDLt_INVmceaUj7VzXHiIN5jHo4HxqTw5598mYtIfuC36tMrlnhg2alcXeEa-P1IjcOUA7pMv8-sYq0bh7WpfQuMx2UwBiWDpBjUZAq7ANt7BXxWnAG16ap-UyX17UYOCYCY7xjgj8Cx2drHqm_4BnA_zJu85ouNnZKtHkPSgE_k2eeSr5-TJuL8jf0H-YEvHC0Gn9wg3Yx9-k3IU_1vEEbok1Hrm2-aWAnal8wYHQUnRuqTFtMEcVbyEp7MA0gGwf6KzW_B-qFU4eglmEvqbytFF29SX_iU5Pz46OzyJ-yoLseWZaGMHduKssIArtJGwwgr5Y6zVztiEl5kGDGdM6q0tUukZTwqupUlLoUovTanYK7JR1ZV_QyhjTDkjpEqM4tx4y9PUFNoVhZKwjWYR2YNVznsrWeQhAGEyB2HkKIy8E0ZEPi_FkBc9UzkWzLha_8HH4YN5R9KxvuvOUq5387jTrTXNTGPVgERE5MPQDGaIdyum8vVNGAKQLYQqMiKvOy0ZpsIk0uoJFRG1oj9DB6T4Xm2ppr8D1beWmQB5vP3_rN-Rp0GXQ5bNDtlomxv_HrBSa3eDQcBT_zrbJZsHh-PxT3h_PTr9_uMvsXQXdA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2ggJGKxIG0SezYyQEhBFRb2u2plfYW7NgR23aTJZsK7YWfxG9kxnm0C1puPdsZWZ5vPDPx-BtCtpXghqcy8OH0d6TazE-MtH5qDI8t5BvM4q-B8ZEYnfCvk3iyQX73b2GwrLI_E91Bbaoc_5HvRjICVw7BffBh_sPHrlF4u9q30GhhcWCXPyFlW7zf_wz6fRNFe1-OP438rquAr3kSN74BXBgda_CjqRIgUSJfitapUTrgRZJCzKJUaLXOQ2EZD3KeChUWsSysUIVkIPcGucnxihHsR06GBM-xm7fhtvRDCKU6KqGQiV19WgEgsXIec6oIPJmena76wn8C3L_rNK84vr175G4XsdKPLcTukw1bPiC3xt2d_EPyC0daHgo6vULw6Vv3LMtQfCeJEtqi12pmm3pJIVam8xqFIDJoVdB8WmNNLF7605lLCiBBeEdnS_C2iGKUXsD-u_mqNHTR1NWZfUROrmX_H5PNsirtU0IZY9KoWMhASc6V1TwMVZ6aPJcCju3EI9uwy1lnlYvMJTxMZKCMDJWRtcrwyE6vhizvmNGxQcf5-g_eDh_MW1KQ9VO3er1eruMSy2uGWYpdCoLYI6-HYTB7vMtRpa0unAiIpCE1Eh550qJkWAoTSOMXS4_IFfwME5BSfHWknH531OKpSGLQx7P_r_oVuT06Hh9mh_tHB8_JHYdrV-GzRTab-sK-gDit0S-dcVDy7bqt8Q8Du1Ax |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1VcEG8CBYxUJA6ETWLH3hwqBLSrltJVhajUW2rHjtjCJks2FdoLP5BfxYzzaBe03Hq2M7HyjecRj78hZFsJbngiAx-svyPVZv7QSOsnxvDYQr7BLP4aOBqL_RP-8TQ-XSO_u7swWFbZ2URnqE2Z4T_yQSQjcOUQ3AeDvC2LON4dvZ398LGDFJ60du00VNtmwew4urH2ksehXfyEdG6-c7AL2L-MotHelw_7fttxwNd8GNe-AZ0xOtbgYxMl4G0SuVS0TozSAc-HCcQzSoVW6ywUlvEg44lQYR7L3AqVSwZyb5ANCV4fEsGN93vj48-9X0Du8yYYl34IgVZLNBQyMdDnJagr1tVjxhWBn9PT82VP-U_4-3cV5xW3OLpNbrXxLH3XKOAdsmaLu2TzqD2xv0d-4UjDUkEnV-g_fesubRmKtyhRQlMSW05tXS0oRNJ0VqEQ1Bta5jSbVFgxiyUBdOpSBkgfXtPpAnwx6jhKzwEBN18Vhs7rqvxm75OTa0HgAVkvysI-IpQxJo2KhQyU5FxZzcNQZYnJMinAqA89sg1fOW337Dx16RATKYCRIhhpA4ZH3nQwpFnLm47tO76vfuBV_8CsoQxZPXWrw_VyHZeavmKYJdjDIIg98qIfBqOAJz2qsOWFEwFxNiROwiMPGy3pl8IEkvzF0iNySX_6CUg4vjxSTL464vFEDGPA4_H_V_2cbMLOTD8djA-fkJtOrV35zxZZr6sL-xSCuFo_a3cHJWfXvSH_AP8uWww |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enabled+retinal+vasculometry+for+prediction+of+circulatory+mortality%2C+myocardial+infarction+and+stroke&rft.jtitle=British+journal+of+ophthalmology&rft.au=Rudnicka%2C+Alicja+Regina&rft.au=Welikala%2C+Roshan&rft.au=Barman%2C+Sarah&rft.au=Foster%2C+Paul+J&rft.date=2022-12-01&rft.pub=BMJ+Publishing+Group&rft.issn=0007-1161&rft.eissn=1468-2079&rft.volume=106&rft.issue=12&rft.spage=1722&rft.epage=1729&rft_id=info:doi/10.1136%2Fbjo-2022-321842&rft_id=info%3Apmid%2F36195457&rft.externalDocID=PMC9685715 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon |