Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke

AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.MethodsAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB)...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of ophthalmology Vol. 106; no. 12; pp. 1722 - 1729
Main Authors Rudnicka, Alicja Regina, Welikala, Roshan, Barman, Sarah, Foster, Paul J, Luben, Robert, Hayat, Shabina, Khaw, Kay-Tee, Whincup, Peter, Strachan, David, Owen, Christopher G
Format Journal Article
LanguageEnglish
Published BMA House, Tavistock Square, London, WC1H 9JR BMJ Publishing Group Ltd 01.12.2022
BMJ Publishing Group LTD
BMJ Publishing Group
Subjects
Online AccessGet full text
ISSN0007-1161
1468-2079
1468-2079
DOI10.1136/bjo-2022-321842

Cover

Abstract AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.MethodsAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40–69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48–92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).ResultsUKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75–0.77 and 0.33–0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.ConclusionRV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk.
AbstractList AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.MethodsAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40–69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48–92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).ResultsUKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75–0.77 and 0.33–0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.ConclusionRV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk.
We examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.AIMSWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality.AI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40-69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48-92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).METHODSAI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40-69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48-92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R2 statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI).UKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75-0.77 and 0.33-0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.RESULTSUKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R2 statistics between 0.75-0.77 and 0.33-0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS.RV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk.CONCLUSIONRV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk.
We examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke, myocardial infarction (MI) and circulatory mortality. AI-enabled retinal vessel image analysis processed images from 88 052 UK Biobank (UKB) participants (aged 40-69 years at image capture) and 7411 European Prospective Investigation into Cancer (EPIC)-Norfolk participants (aged 48-92). Retinal arteriolar and venular width, tortuosity and area were extracted. Prediction models were developed in UKB using multivariable Cox proportional hazards regression for circulatory mortality, incident stroke and MI, and externally validated in EPIC-Norfolk. Model performance was assessed using optimism adjusted calibration, C-statistics and R statistics. Performance of Framingham risk scores (FRS) for incident stroke and incident MI, with addition of RV to FRS, were compared with a simpler model based on RV, age, smoking status and medical history (antihypertensive/cholesterol lowering medication, diabetes, prevalent stroke/MI). UKB prognostic models were developed on 65 144 participants (mean age 56.8; median follow-up 7.7 years) and validated in 5862 EPIC-Norfolk participants (67.6, 9.1 years, respectively). Prediction models for circulatory mortality in men and women had optimism adjusted C-statistics and R statistics between 0.75-0.77 and 0.33-0.44, respectively. For incident stroke and MI, addition of RV to FRS did not improve model performance in either cohort. However, the simpler RV model performed equally or better than FRS. RV offers an alternative predictive biomarker to traditional risk-scores for vascular health, without the need for blood sampling or blood pressure measurement. Further work is needed to examine RV in population screening to triage individuals at high-risk.
Author Barman, Sarah
Whincup, Peter
Strachan, David
Welikala, Roshan
Rudnicka, Alicja Regina
Hayat, Shabina
Khaw, Kay-Tee
Owen, Christopher G
Foster, Paul J
Luben, Robert
AuthorAffiliation 5 Department of Psychiatry, Cambridge Public Health , University of Cambridge School of Clinical Medicine , Cambridge , UK
2 Faculty of Science, Engineering and Computing , Kingston University , Kingston-Upon-Thames , UK
3 NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology , University College London , London , UK
4 MRC Epidemiology Unit , Cambridge University , Cambridge , UK
1 Population Health Research Institute , St George's University of London , London , UK
AuthorAffiliation_xml – name: 4 MRC Epidemiology Unit , Cambridge University , Cambridge , UK
– name: 2 Faculty of Science, Engineering and Computing , Kingston University , Kingston-Upon-Thames , UK
– name: 3 NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology , University College London , London , UK
– name: 5 Department of Psychiatry, Cambridge Public Health , University of Cambridge School of Clinical Medicine , Cambridge , UK
– name: 1 Population Health Research Institute , St George's University of London , London , UK
Author_xml – sequence: 1
  givenname: Alicja Regina
  orcidid: 0000-0003-0369-8574
  surname: Rudnicka
  fullname: Rudnicka, Alicja Regina
  email: arudnick@sgul.ac.uk
  organization: Population Health Research Institute, St George's University of London, London, UK
– sequence: 2
  givenname: Roshan
  surname: Welikala
  fullname: Welikala, Roshan
  organization: Faculty of Science, Engineering and Computing, Kingston University, Kingston-Upon-Thames, UK
– sequence: 3
  givenname: Sarah
  surname: Barman
  fullname: Barman, Sarah
  organization: Faculty of Science, Engineering and Computing, Kingston University, Kingston-Upon-Thames, UK
– sequence: 4
  givenname: Paul J
  orcidid: 0000-0002-4755-177X
  surname: Foster
  fullname: Foster, Paul J
  organization: NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, University College London, London, UK
– sequence: 5
  givenname: Robert
  orcidid: 0000-0002-5088-6343
  surname: Luben
  fullname: Luben, Robert
  organization: MRC Epidemiology Unit, Cambridge University, Cambridge, UK
– sequence: 6
  givenname: Shabina
  orcidid: 0000-0001-9068-8723
  surname: Hayat
  fullname: Hayat, Shabina
  organization: Department of Psychiatry, Cambridge Public Health, University of Cambridge School of Clinical Medicine, Cambridge, UK
– sequence: 7
  givenname: Kay-Tee
  surname: Khaw
  fullname: Khaw, Kay-Tee
  organization: MRC Epidemiology Unit, Cambridge University, Cambridge, UK
– sequence: 8
  givenname: Peter
  surname: Whincup
  fullname: Whincup, Peter
  organization: Population Health Research Institute, St George's University of London, London, UK
– sequence: 9
  givenname: David
  surname: Strachan
  fullname: Strachan, David
  organization: Population Health Research Institute, St George's University of London, London, UK
– sequence: 10
  givenname: Christopher G
  orcidid: 0000-0003-1135-5977
  surname: Owen
  fullname: Owen, Christopher G
  organization: Population Health Research Institute, St George's University of London, London, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36195457$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1rFTEUxYNU7Gt17U4G3Ag6NsnkY2ZTKMUvKLjRdbjJJDXPmeSZZApv499uHlOrFuwqJOd3T25uzgk6CjFYhJ4T_JaQTpzpbWwpprTtKOkZfYQ2hIm-HsnhCG0wxrIlRJBjdJLztm6pIPIJOu4EGTjjcoN-XqTinTcepsaHYqfJX9tgbGsD6MmOTbLFhyreQDbLFGdb0r5xMTW7ZEdvio-hia4xPlUZSqzqHFOByZf9m2beRwNpXN0dpJWHMDa5pPjdPkWPHUzZPrtdT9HX9---XH5srz5_-HR5cdVq1vPSjhTjUXPNORtAUCIk4YJpPYygMXP9IDgGIFZrQ4TtGDZsEEAcl84KcLI7Reer727Rsx2NDSXBpHbJz5D2KoJX_yrBf1PX8UYNouf1smrw6tYgxR-LzUXNPps6Lgg2LllRWbvqpKSioi_vodu4pDrDA9XVuYsO84cp2g3VjuFKvfi777uGf39gBc5WwKSYc7LuDiFYHSKiakTUISJqjUit4PcqjC9w-Jf6cD89UPd6rdPz9k-v_6N_AaK50DQ
CitedBy_id crossref_primary_10_1136_bjo_2023_323308
crossref_primary_10_1136_bmjopen_2022_069258
crossref_primary_10_1186_s12886_025_03854_x
crossref_primary_10_2147_IJGM_S507016
crossref_primary_10_1038_s41598_024_54412_2
crossref_primary_10_5469_neuroint_2025_00052
crossref_primary_10_1038_s41433_023_02724_4
crossref_primary_10_1177_10935266241299073
crossref_primary_10_1016_j_eclinm_2025_103089
crossref_primary_10_1002_dad2_70087
crossref_primary_10_1016_j_cmet_2024_02_002
crossref_primary_10_1016_j_jdiacomp_2024_108721
crossref_primary_10_1038_s41598_024_78587_w
crossref_primary_10_1177_11206721231199848
crossref_primary_10_1080_14779072_2023_2223978
crossref_primary_10_1016_j_xops_2025_100723
crossref_primary_10_1016_j_ijmedinf_2023_105072
crossref_primary_10_1016_j_preghy_2023_12_004
crossref_primary_10_3390_jpm14010045
crossref_primary_10_1007_s00415_023_12171_6
crossref_primary_10_2478_rjim_2023_0019
crossref_primary_10_3390_diagnostics14090928
crossref_primary_10_1371_journal_pone_0290278
crossref_primary_10_1038_s41597_024_03086_6
crossref_primary_10_1007_s40123_024_00981_4
crossref_primary_10_1159_000542492
crossref_primary_10_1016_j_preteyeres_2025_101350
crossref_primary_10_1038_s41569_024_01060_8
crossref_primary_10_1007_s00417_023_06223_w
crossref_primary_10_1167_iovs_65_14_7
crossref_primary_10_1038_s41467_024_52334_1
crossref_primary_10_12968_opti_2024_269_6954_25
crossref_primary_10_1055_a_2026_2911
crossref_primary_10_1055_s_0045_1802310
crossref_primary_10_1186_s12933_024_02367_z
crossref_primary_10_1167_iovs_64_15_47
crossref_primary_10_1186_s40662_024_00384_3
crossref_primary_10_3389_fmed_2023_1222022
Cites_doi 10.1167/iovs.13-12512
10.1161/CIRCULATIONAHA.121.057709
10.1161/STROKEAHA.113.001741
10.1016/j.amjcard.2008.02.094
10.1161/CIRCRESAHA.116.307547
10.1016/j.ophtha.2018.07.022
10.1161/CIRCULATIONAHA.116.023425
10.1016/j.compbiomed.2016.01.027
10.1007/BF00175988
10.7326/0003-4819-151-6-200909150-00005
10.1161/01.cir.0000437741.48606.98
10.1161/CIRCULATIONAHA.115.021275
10.1001/jama.287.9.1153
10.1016/S0140-6736(18)32203-7
10.1161/CIRCULATIONAHA.119.041149
10.1016/j.gheart.2013.02.001
10.1111/j.2517-6161.1972.tb00899.x
10.1136/bmjopen-2015-008105
10.1038/s41551-020-00626-4
10.1136/bmj.i2416
10.1016/j.jacc.2005.09.023
10.2337/dc19-1683
10.1016/j.atherosclerosis.2017.10.008
10.1177/1536867X0600600105
10.1093/aje/kwm255
10.1093/ije/26.suppl_1.S6
10.1161/HYPERTENSIONAHA.119.13752
10.1161/01.CIR.97.18.1837
10.1093/aje/kwp306
10.1371/journal.pmed.1001779
10.1002/oby.22885
10.1113/JP270947
10.1093/eurheartj/ehw106
10.1136/bmj.j2099
10.1097/EDE.0b013e3181c30fb2
10.1038/ajh.2008.201
10.1001/archinte.168.21.2304
10.1056/NEJMoa1107477
10.1136/bmjopen-2018-025077
10.1371/journal.pone.0213653
10.1161/ATVBAHA.111.225219
10.1093/eurheartj/ehm221
10.1016/S2589-7500(21)00043-1
10.1016/S0140-6736(18)32335-3
10.7326/L15-5093-2
10.1016/j.compbiomed.2017.09.005
10.1093/ije/dyt086
10.1038/s42256-021-00427-7
10.7326/L15-5093
10.1109/IPTA.2017.8310108
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.
2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. 2022
Copyright_xml – notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.
– notice: 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ. 2022
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BTHHO
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1136/bjo-2022-321842
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
BMJ Journals
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
BMJ Journals
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Academic Middle East (New)

MEDLINE - Academic
MEDLINE
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Public Health
EISSN 1468-2079
EndPage 1729
ExternalDocumentID PMC9685715
36195457
10_1136_bjo_2022_321842
bjophthalmol
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/15/101/31889
  funderid: http://dx.doi.org/10.13039/501100000274
– fundername: Cancer Research UK
  grantid: C864/A8257
  funderid: http://dx.doi.org/10.13039/501100000289
– fundername: Richard Desmond Charitable Trust (via Fight for Sight)
  grantid: N/A
– fundername: Medical Research Council
  grantid: MR/L02005X/1; MR/N003284/1
  funderid: http://dx.doi.org/10.13039/501100000265
– fundername: NIHR Biomedical Research Centre Moorfields Eye Hospital and the UCL Institute of Ophthalmology
  grantid: N/A
– fundername: Age UK
  grantid: 262
  funderid: http://dx.doi.org/10.13039/501100000629
– fundername: Medical Research Council
  grantid: G0401527
– fundername: British Heart Foundation
  grantid: PG/15/101/31889
– fundername: Medical Research Council
  grantid: MR/N003284/1
– fundername: Cancer Research UK
  grantid: 14136
– fundername: Medical Research Council
  grantid: MC_PC_17228
– fundername: Medical Research Council
  grantid: G1000143
– fundername: Medical Research Council
  grantid: MR/L02005X/1
– fundername: Medical Research Council
  grantid: MC_QA137853
– fundername: ;
  grantid: PG/15/101/31889
– fundername: ;
  grantid: MR/L02005X/1; MR/N003284/1
– fundername: ;
  grantid: N/A
– fundername: ;
  grantid: C864/A8257
– fundername: ;
  grantid: 262
GroupedDBID ---
-~X
.55
.GJ
.VT
0R~
18M
23N
2WC
354
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
8FI
8FJ
8R4
8R5
9YT
AAHLL
AAKAS
AAOJX
AAWJN
ABAAH
ABJNI
ABKDF
ABMQD
ABTFR
ABUWG
ABVAJ
ACCCW
ACGFO
ACGFS
ACGTL
ACHTP
ACMFJ
ACMMV
ACNCT
ACOAB
ACOFX
ACQSR
ACTZY
ADBBV
ADCEG
ADZCM
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DU5
E3Z
EBS
EJD
F5P
FYUFA
H13
HAJ
HMCUK
HYE
HZ~
IAO
IEA
IHR
IOF
ITC
J5H
KQ8
L7B
M1P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
W8F
WH7
WOQ
X7M
XOL
YFH
YQY
ZGI
AAFWJ
AAYXX
ACQHZ
AERUA
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-b485t-d200db5b5549a621671564bb9dab04f89650aa1ebbc16e340c496a1f57fe6af73
IEDL.DBID 7X7
ISSN 0007-1161
1468-2079
IngestDate Thu Aug 21 18:39:29 EDT 2025
Fri Sep 05 04:46:47 EDT 2025
Sat Jul 26 00:06:26 EDT 2025
Fri Jul 25 05:37:19 EDT 2025
Mon Jul 21 06:08:01 EDT 2025
Tue Jul 01 01:48:17 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Thu Apr 24 22:50:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Retina
Epidemiology
Imaging
Public health
Diagnostic tests/Investigation
Language English
License This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.
Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b485t-d200db5b5549a621671564bb9dab04f89650aa1ebbc16e340c496a1f57fe6af73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4755-177X
0000-0002-5088-6343
0000-0001-9068-8723
0000-0003-0369-8574
0000-0003-1135-5977
OpenAccessLink https://bjo.bmj.com/content/106/12/1722.full
PMID 36195457
PQID 2723921640
PQPubID 2041039
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9685715
proquest_miscellaneous_2721637726
proquest_journals_2739546305
proquest_journals_2723921640
pubmed_primary_36195457
crossref_primary_10_1136_bjo_2022_321842
crossref_citationtrail_10_1136_bjo_2022_321842
bmj_journals_10_1136_bjo_2022_321842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace BMA House, Tavistock Square, London, WC1H 9JR
PublicationPlace_xml – name: BMA House, Tavistock Square, London, WC1H 9JR
– name: England
– name: London
PublicationTitle British journal of ophthalmology
PublicationTitleAbbrev Br J Ophthalmol
PublicationTitleAlternate Br J Ophthalmol
PublicationYear 2022
Publisher BMJ Publishing Group Ltd
BMJ Publishing Group LTD
BMJ Publishing Group
Publisher_xml – name: BMJ Publishing Group Ltd
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group
References Alaa, Bolton, Di Angelantonio (R7) 2019; 14
Wang, Mitchell, Liew (R11) 2018; 268
Dufouil, Beiser, McLure (R21) 2017; 135
Diaz-Pinto, Ravikumar, Attar (R40) 2022; 4
(R2) 2018; 392
Zekavat, Raghu, Trinder (R39) 2022; 145
Pepine, Kerensky, Lambert (R36) 2006; 47
Hippisley-Cox, Coupland, Brindle (R41) 2017; 357
Seidelmann, Claggett, Bravo (R10) 2016; 134
Hayat, Luben, Keevil (R25) 2014; 43
Welsh, Welsh, Celis-Morales (R6) 2020; 43
Wang, Liew, Klein (R13) 2007; 28
Sudlow, Gallacher, Allen (R23) 2015; 12
Tapp, Owen, Barman (R35) 2020; 28
Rim, Lee, Tham (R42) 2021; 3
Ong, De Silva, Cheung (R43) 2013; 44
Li, Ikram, Wong (R34) 2016; 594
Damen, Hooft, Schuit (R3) 2016; 353
Goff, Lloyd-Jones, Bennett (R9) 2014; 129
McGeechan, Liew, Macaskill (R14) 2009; 151
Welikala, Fraz, Foster (R17) 2016; 71
Steyerberg, Vickers, Cook (R30) 2010; 21
Chua, Thomas, Allen (R20) 2019; 9
Collins, Reitsma, Altman (R31) 2015; 162
Sharma, Gulati (R37) 2013; 8
McGeechan, Liew, Wong (R45) 2008; 21
Bennett, Rudnicka, Edgar (R26) 1994; 232
Wong, Klein, Sharrett (R32) 2002; 287
Welikala, Foster, Whincup (R18) 2017; 90
Tapp, Owen, Barman (R27) 2019; 74
Welsh, Celis-Morales, Brown (R5) 2019; 140
(R1) 2018; 392
Riboli, Kaaks (R24) 1997; 26 Suppl 1
Yanagi, Misumi, Kawasaki (R48) 2014; 55
Piepoli, Hoes, Agewall (R8) 20162016; 37
Owen, Rudnicka, Welikala (R15) 2019; 126
Royston (R29) 2006; 6
Wilson, D'Agostino, Levy (R22) 1998; 97
Owen, Kapetanakis, Rudnicka (R49) 2015; 5
McGeechan, Macaskill, Irwig (R46) 2008; 168
McGeechan, Liew, Macaskill (R12) 2009; 170
Owen, Rudnicka, Nightingale (R16) 2011; 31
Cox (R28) 1972; 34
Kaptoge, Di Angelantonio (R4) 2012; 367
Garcia, Mulvagh, Merz (R38) 2016; 118
McGeechan, Liew, Macaskill (R44) 2008; 102
Kifley, Liew, Wang (R47) 2007; 166
Cheung, Xu, Cheng (R33) 2021; 5
2023030623100865000_106.12.1722.38
2023030623100865000_106.12.1722.36
2023030623100865000_106.12.1722.30
2023030623100865000_106.12.1722.31
2023030623100865000_106.12.1722.32
Rim (2023030623100865000_106.12.1722.42) 2021; 3
2023030623100865000_106.12.1722.6
Diaz-Pinto (2023030623100865000_106.12.1722.40) 2022; 4
2023030623100865000_106.12.1722.7
2023030623100865000_106.12.1722.4
2023030623100865000_106.12.1722.2
Li (2023030623100865000_106.12.1722.34) 2016; 594
2023030623100865000_106.12.1722.3
Riboli (2023030623100865000_106.12.1722.24) 1997; 26 Suppl 1
2023030623100865000_106.12.1722.1
Tapp (2023030623100865000_106.12.1722.35) 2020; 28
2023030623100865000_106.12.1722.48
Cheung (2023030623100865000_106.12.1722.33) 2021; 5
2023030623100865000_106.12.1722.49
Cox (2023030623100865000_106.12.1722.28) 1972; 34
2023030623100865000_106.12.1722.44
2023030623100865000_106.12.1722.45
2023030623100865000_106.12.1722.8
2023030623100865000_106.12.1722.46
2023030623100865000_106.12.1722.9
2023030623100865000_106.12.1722.47
2023030623100865000_106.12.1722.41
2023030623100865000_106.12.1722.43
Zekavat (2023030623100865000_106.12.1722.39) 2022; 145
2023030623100865000_106.12.1722.19
2023030623100865000_106.12.1722.15
2023030623100865000_106.12.1722.16
2023030623100865000_106.12.1722.17
2023030623100865000_106.12.1722.12
2023030623100865000_106.12.1722.13
2023030623100865000_106.12.1722.14
2023030623100865000_106.12.1722.10
Wang (2023030623100865000_106.12.1722.11) 2018; 268
2023030623100865000_106.12.1722.50
Welsh (2023030623100865000_106.12.1722.5) 2019; 140
2023030623100865000_106.12.1722.26
2023030623100865000_106.12.1722.27
2023030623100865000_106.12.1722.29
2023030623100865000_106.12.1722.22
Welikala (2023030623100865000_106.12.1722.18) 2017; 90
2023030623100865000_106.12.1722.23
2023030623100865000_106.12.1722.25
2023030623100865000_106.12.1722.20
2023030623100865000_106.12.1722.21
Sharma (2023030623100865000_106.12.1722.37) 2013; 8
References_xml – volume: 55
  start-page: 405
  year: 2014
  ident: R48
  article-title: Is the association between smoking and the retinal venular diameter reversible following smoking cessation?
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-12512
– volume: 145
  start-page: 134
  year: 2022
  ident: R39
  article-title: Deep learning of the retina enables Phenome- and genome-wide analyses of the microvasculature
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.057709
– volume: 44
  start-page: 2121
  year: 2013
  ident: R43
  article-title: Microvascular structure and network in the retina of patients with ischemic stroke
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.001741
– volume: 102
  start-page: 58
  year: 2008
  ident: R44
  article-title: Risk prediction of coronary heart disease based on retinal vascular caliber (from the Atherosclerosis Risk In Communities [ARIC] Study)
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2008.02.094
– volume: 118
  start-page: 1273
  year: 2016
  ident: R38
  article-title: Cardiovascular disease in women: clinical perspectives
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.116.307547
– volume: 126
  start-page: 96
  year: 2019
  ident: R15
  article-title: Retinal Vasculometry associations with cardiometabolic risk factors in the European prospective investigation of Cancer-Norfolk study
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.07.022
– volume: 134
  start-page: 1328
  year: 2016
  ident: R10
  article-title: Retinal vessel calibers in predicting long-term cardiovascular outcomes: the Atherosclerosis risk in Communities study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.116.023425
– volume: 71
  start-page: 67
  year: 2016
  ident: R17
  article-title: Automated retinal image quality assessment on the UK Biobank dataset for epidemiological studies
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.01.027
– volume: 232
  start-page: 361
  year: 1994
  ident: R26
  article-title: Improvements on Littmann's method of determining the size of retinal features by fundus photography
  publication-title: Graefes Arch Clin Exp Ophthalmol
  doi: 10.1007/BF00175988
– volume: 151
  start-page: 404
  year: 2009
  ident: R14
  article-title: Meta-Analysis: retinal vessel caliber and risk for coronary heart disease
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-151-6-200909150-00005
– volume: 129
  start-page: S49
  year: 2014
  ident: R9
  article-title: 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American heart association Task force on practice guidelines
  publication-title: Circulation
  doi: 10.1161/01.cir.0000437741.48606.98
– volume: 135
  start-page: 1145
  year: 2017
  ident: R21
  article-title: Revised Framingham stroke risk profile to reflect temporal trends
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.021275
– volume: 287
  start-page: 1153
  year: 2002
  ident: R32
  article-title: Retinal arteriolar narrowing and risk of coronary heart disease in men and women. The Atherosclerosis risk in Communities study
  publication-title: JAMA
  doi: 10.1001/jama.287.9.1153
– volume: 392
  start-page: 1736
  year: 2018
  ident: R1
  article-title: Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: a systematic analysis for the global burden of disease study 2017
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32203-7
– volume: 140
  start-page: 542
  year: 2019
  ident: R5
  article-title: Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041149
– volume: 8
  start-page: 105
  year: 2013
  ident: R37
  article-title: Coronary artery disease in women: a 2013 update
  publication-title: Glob Heart
  doi: 10.1016/j.gheart.2013.02.001
– volume: 34
  start-page: 187
  year: 1972
  ident: R28
  article-title: Regression models and Life-Tables
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– volume: 5
  year: 2015
  ident: R49
  article-title: Body mass index in early and middle adult life: prospective associations with myocardial infarction, stroke and diabetes over a 30-year period: the British regional heart study
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2015-008105
– volume: 5
  start-page: 498
  year: 2021
  ident: R33
  article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00626-4
– volume: 353
  year: 2016
  ident: R3
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
  doi: 10.1136/bmj.i2416
– volume: 47
  start-page: S30
  year: 2006
  ident: R36
  article-title: Some thoughts on the vasculopathy of women with ischemic heart disease
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2005.09.023
– volume: 43
  start-page: 440
  year: 2020
  ident: R6
  article-title: Glycated hemoglobin, prediabetes, and the links to cardiovascular disease: data from UK Biobank
  publication-title: Diabetes Care
  doi: 10.2337/dc19-1683
– volume: 268
  start-page: 215
  year: 2018
  ident: R11
  article-title: A spectrum of retinal vasculature measures and coronary artery disease
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2017.10.008
– volume: 6
  start-page: 83
  year: 2006
  ident: R29
  article-title: Explained variation for survival models
  publication-title: Stata J
  doi: 10.1177/1536867X0600600105
– volume: 166
  start-page: 1288
  year: 2007
  ident: R47
  article-title: Long-Term effects of smoking on retinal microvascular caliber
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwm255
– volume: 26 Suppl 1
  start-page: 6S
  year: 1997
  ident: R24
  article-title: The EPIC project: rationale and study design. European prospective investigation into cancer and nutrition
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/26.suppl_1.S6
– volume: 74
  start-page: 1383
  year: 2019
  ident: R27
  article-title: Associations of retinal microvascular diameters and tortuosity with blood pressure and arterial stiffness: United Kingdom Biobank
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.119.13752
– volume: 97
  start-page: 1837
  year: 1998
  ident: R22
  article-title: Prediction of coronary heart disease using risk factor categories
  publication-title: Circulation
  doi: 10.1161/01.CIR.97.18.1837
– volume: 170
  start-page: 1323
  year: 2009
  ident: R12
  article-title: Prediction of incident stroke events based on retinal vessel caliber: a systematic review and individual-participant meta-analysis
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwp306
– volume: 12
  year: 2015
  ident: R23
  article-title: Uk Biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age
  publication-title: PLoS Med
  doi: 10.1371/journal.pmed.1001779
– volume: 28
  start-page: 1750
  year: 2020
  ident: R35
  article-title: Retinal vascular tortuosity and diameter associations with adiposity and components of body composition
  publication-title: Obesity
  doi: 10.1002/oby.22885
– volume: 594
  start-page: 2175
  year: 2016
  ident: R34
  article-title: Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease
  publication-title: J Physiol
  doi: 10.1113/JP270947
– volume: 37
  start-page: 2315
  year: 20162016
  ident: R8
  article-title: 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts)Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR)
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehw106
– volume: 357
  start-page: j2099
  year: 2017
  ident: R41
  article-title: Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study
  publication-title: BMJ
  doi: 10.1136/bmj.j2099
– volume: 21
  start-page: 128
  year: 2010
  ident: R30
  article-title: Assessing the performance of prediction models: a framework for traditional and novel measures
  publication-title: Epidemiology
  doi: 10.1097/EDE.0b013e3181c30fb2
– volume: 21
  year: 2008
  ident: R45
  article-title: Are retinal examinations useful in assessing cardiovascular risk?
  publication-title: Am J Hypertens
  doi: 10.1038/ajh.2008.201
– volume: 168
  start-page: 2304
  year: 2008
  ident: R46
  article-title: Assessing new biomarkers and predictive models for use in clinical practice: a clinician's guide
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.168.21.2304
– volume: 367
  start-page: 1310
  year: 2012
  ident: R4
  article-title: C-Reactive protein, fibrinogen, and cardiovascular disease prediction
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1107477
– volume: 9
  year: 2019
  ident: R20
  article-title: Cohort profile: design and methods in the eye and vision Consortium of UK Biobank
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2018-025077
– volume: 14
  year: 2019
  ident: R7
  article-title: Cardiovascular disease risk prediction using automated machine learning: a prospective study of 423,604 UK Biobank participants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213653
– volume: 31
  start-page: 1933
  year: 2011
  ident: R16
  article-title: Retinal arteriolar tortuosity and cardiovascular risk factors in a multi-ethnic population study of 10-year-old children; the child heart and health study in England (Chase)
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/ATVBAHA.111.225219
– volume: 28
  start-page: 1984
  year: 2007
  ident: R13
  article-title: Retinal vessel diameter and cardiovascular mortality: pooled data analysis from two older populations
  publication-title: Eur Heart J
  doi: 10.1093/eurheartj/ehm221
– volume: 3
  start-page: e306
  year: 2021
  ident: R42
  article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal Photographs
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00043-1
– volume: 392
  start-page: 1859
  year: 2018
  ident: R2
  article-title: Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990-2017: a systematic analysis for the global burden of disease study 2017
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)32335-3
– volume: 162
  start-page: 735
  year: 2015
  ident: R31
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD)
  publication-title: Ann Intern Med
  doi: 10.7326/L15-5093-2
– volume: 90
  start-page: 23
  year: 2017
  ident: R18
  article-title: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.09.005
– volume: 43
  start-page: 1063
  year: 2014
  ident: R25
  article-title: Cohort profile: a prospective cohort study of objective physical and cognitive capability and visual health in an ageing population of men and women in Norfolk (EPIC-Norfolk 3)
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyt086
– volume: 4
  start-page: 55
  year: 2022
  ident: R40
  article-title: Predicting myocardial infarction through retinal scans and minimal personal information
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00427-7
– volume: 145
  start-page: 134
  year: 2022
  ident: 2023030623100865000_106.12.1722.39
  article-title: Deep learning of the retina enables Phenome- and genome-wide analyses of the microvasculature
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.121.057709
– ident: 2023030623100865000_106.12.1722.6
  doi: 10.2337/dc19-1683
– ident: 2023030623100865000_106.12.1722.13
  doi: 10.1093/eurheartj/ehm221
– ident: 2023030623100865000_106.12.1722.1
  doi: 10.1016/S0140-6736(18)32203-7
– ident: 2023030623100865000_106.12.1722.46
  doi: 10.1001/archinte.168.21.2304
– ident: 2023030623100865000_106.12.1722.26
  doi: 10.1007/BF00175988
– ident: 2023030623100865000_106.12.1722.31
  doi: 10.7326/L15-5093
– ident: 2023030623100865000_106.12.1722.48
  doi: 10.1167/iovs.13-12512
– ident: 2023030623100865000_106.12.1722.16
  doi: 10.1161/ATVBAHA.111.225219
– ident: 2023030623100865000_106.12.1722.43
  doi: 10.1161/STROKEAHA.113.001741
– ident: 2023030623100865000_106.12.1722.44
  doi: 10.1016/j.amjcard.2008.02.094
– ident: 2023030623100865000_106.12.1722.10
  doi: 10.1161/CIRCULATIONAHA.116.023425
– ident: 2023030623100865000_106.12.1722.12
  doi: 10.1093/aje/kwp306
– volume: 5
  start-page: 498
  year: 2021
  ident: 2023030623100865000_106.12.1722.33
  article-title: A deep-learning system for the assessment of cardiovascular disease risk via the measurement of retinal-vessel calibre
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-020-00626-4
– ident: 2023030623100865000_106.12.1722.17
  doi: 10.1016/j.compbiomed.2016.01.027
– ident: 2023030623100865000_106.12.1722.15
  doi: 10.1016/j.ophtha.2018.07.022
– volume: 594
  start-page: 2175
  year: 2016
  ident: 2023030623100865000_106.12.1722.34
  article-title: Retinal vascular imaging in early life: insights into processes and risk of cardiovascular disease
  publication-title: J Physiol
  doi: 10.1113/JP270947
– ident: 2023030623100865000_106.12.1722.7
  doi: 10.1371/journal.pone.0213653
– ident: 2023030623100865000_106.12.1722.38
  doi: 10.1161/CIRCRESAHA.116.307547
– volume: 4
  start-page: 55
  year: 2022
  ident: 2023030623100865000_106.12.1722.40
  article-title: Predicting myocardial infarction through retinal scans and minimal personal information
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-021-00427-7
– ident: 2023030623100865000_106.12.1722.27
  doi: 10.1161/HYPERTENSIONAHA.119.13752
– ident: 2023030623100865000_106.12.1722.9
  doi: 10.1161/01.cir.0000437741.48606.98
– ident: 2023030623100865000_106.12.1722.50
– ident: 2023030623100865000_106.12.1722.23
  doi: 10.1371/journal.pmed.1001779
– volume: 3
  start-page: e306
  year: 2021
  ident: 2023030623100865000_106.12.1722.42
  article-title: Deep-learning-based cardiovascular risk stratification using coronary artery calcium scores predicted from retinal Photographs
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(21)00043-1
– volume: 26 Suppl 1
  start-page: 6S
  year: 1997
  ident: 2023030623100865000_106.12.1722.24
  article-title: The EPIC project: rationale and study design. European prospective investigation into cancer and nutrition
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/26.suppl_1.S6
– volume: 90
  start-page: 23
  year: 2017
  ident: 2023030623100865000_106.12.1722.18
  article-title: Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2017.09.005
– ident: 2023030623100865000_106.12.1722.45
  doi: 10.1038/ajh.2008.201
– ident: 2023030623100865000_106.12.1722.29
  doi: 10.1177/1536867X0600600105
– ident: 2023030623100865000_106.12.1722.3
  doi: 10.1136/bmj.i2416
– ident: 2023030623100865000_106.12.1722.20
  doi: 10.1136/bmjopen-2018-025077
– ident: 2023030623100865000_106.12.1722.25
  doi: 10.1093/ije/dyt086
– volume: 8
  start-page: 105
  year: 2013
  ident: 2023030623100865000_106.12.1722.37
  article-title: Coronary artery disease in women: a 2013 update
  publication-title: Glob Heart
  doi: 10.1016/j.gheart.2013.02.001
– ident: 2023030623100865000_106.12.1722.47
  doi: 10.1093/aje/kwm255
– ident: 2023030623100865000_106.12.1722.41
  doi: 10.1136/bmj.j2099
– ident: 2023030623100865000_106.12.1722.4
  doi: 10.1056/NEJMoa1107477
– volume: 140
  start-page: 542
  year: 2019
  ident: 2023030623100865000_106.12.1722.5
  article-title: Comparison of conventional lipoprotein tests and apolipoproteins in the prediction of cardiovascular disease
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.119.041149
– ident: 2023030623100865000_106.12.1722.14
  doi: 10.7326/0003-4819-151-6-200909150-00005
– ident: 2023030623100865000_106.12.1722.32
  doi: 10.1001/jama.287.9.1153
– ident: 2023030623100865000_106.12.1722.8
  doi: 10.1093/eurheartj/ehw106
– ident: 2023030623100865000_106.12.1722.22
  doi: 10.1161/01.CIR.97.18.1837
– ident: 2023030623100865000_106.12.1722.30
  doi: 10.1097/EDE.0b013e3181c30fb2
– ident: 2023030623100865000_106.12.1722.36
  doi: 10.1016/j.jacc.2005.09.023
– volume: 34
  start-page: 187
  year: 1972
  ident: 2023030623100865000_106.12.1722.28
  article-title: Regression models and Life-Tables
  publication-title: Journal of the Royal Statistical Society: Series B
  doi: 10.1111/j.2517-6161.1972.tb00899.x
– ident: 2023030623100865000_106.12.1722.21
  doi: 10.1161/CIRCULATIONAHA.115.021275
– ident: 2023030623100865000_106.12.1722.49
  doi: 10.1136/bmjopen-2015-008105
– volume: 268
  start-page: 215
  year: 2018
  ident: 2023030623100865000_106.12.1722.11
  article-title: A spectrum of retinal vasculature measures and coronary artery disease
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2017.10.008
– ident: 2023030623100865000_106.12.1722.19
  doi: 10.1109/IPTA.2017.8310108
– ident: 2023030623100865000_106.12.1722.2
  doi: 10.1016/S0140-6736(18)32335-3
– volume: 28
  start-page: 1750
  year: 2020
  ident: 2023030623100865000_106.12.1722.35
  article-title: Retinal vascular tortuosity and diameter associations with adiposity and components of body composition
  publication-title: Obesity
  doi: 10.1002/oby.22885
SSID ssj0002617
Score 2.570145
Snippet AimsWe examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke,...
We examine whether inclusion of artificial intelligence (AI)-enabled retinal vasculometry (RV) improves existing risk algorithms for incident stroke,...
SourceID pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1722
SubjectTerms Accuracy
Artificial Intelligence
Cardiovascular disease
Clinical Science
Diagnostic tests/Investigation
Epidemiology
Female
Health risks
Heart attacks
Humans
Imaging
Incidence
Male
Medical diagnosis
Middle Aged
Mortality
Myocardial Infarction - diagnosis
Ophthalmology
Proportional Hazards Models
Prospective Studies
Public health
Retina
Risk Factors
Stroke
Stroke - diagnosis
Stroke - epidemiology
Veins & arteries
SummonAdditionalLinks – databaseName: BMJ Open Access Journals
  dbid: 9YT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Pb9UwDLbGkBASQjB-FQYK0g4c1re2SZPmiBDThDROmzROVdKk4g1eO3XdYRf-duykr-yBnsQ5qVvVdvw5sb8AHBgpnNAqS3H1D6TaPK2c8ql2TpQe8w3uaWvg9Ks8ORdfLsqLHThc98LYy35hV5exm4H4mToilJdHeXGEobZY0Kb0PbhPLFxUwKe_nc3rLnGLR7Cr0hyBzETkk3NJUtEcqG6dMhq6wYZLojoLQQlftxmU_kGafxdM3olAx0_g8QQd2ceo66ew47s9eHA6HY7vwaO4BcdiZ9Ez-EUzI0EEW95h3kx96JdyjBoYSWKsRu1XfhxuGYJYdjWQUFIZ61vWLAcqVqXTeLYKaB2R-yFb3WIYJPMi6S36S5hvOseux6H_4Z_D-fHns08n6XTdQmpFVY6pQ4dxtrQIMLSRRS4VEclYq52xmWgrjWDOmNxb2-TSc5E1QkuTt6VqvTSt4i9gt-s7_woY51w5U0qVGSWE8VbkuWm0axolcT2tEjjAv15P7nJdh0yEyxr1VJOe6qinBBZrtdTNRFlON2f83P7Ah_mBq8jWsX3q_lrPf76jUAXiRcwgsy3DXNP1AVmZwPt5GP2RDllM5_ubIAIhLuYsMoGX0WrmT1kbXQJqw57mCcT1vTnSLb8Hzm8tqxL18fr_ftwbeBjMPZTd7MPuONz4twieRvsu-Mxvwj8TwA
  priority: 102
  providerName: BMJ Publishing Group Ltd
Title Artificial intelligence-enabled retinal vasculometry for prediction of circulatory mortality, myocardial infarction and stroke
URI https://bjo.bmj.com/content/106/12/1722.full
https://www.ncbi.nlm.nih.gov/pubmed/36195457
https://www.proquest.com/docview/2723921640
https://www.proquest.com/docview/2739546305
https://www.proquest.com/docview/2721637726
https://pubmed.ncbi.nlm.nih.gov/PMC9685715
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELZakKpeUOkzLUWuxKGHpiTrV3yqKAKhSouqCqrtKbJjR11gkyUbDlz62zvjZANLtb0kBzuW5ZnxfGNPviFkz0juuFZJDLt_INVmceaUj7VzXHiIN5jHo4HxqTw5598mYtIfuC36tMrlnhg2alcXeEa-P1IjcOUA7pMv8-sYq0bh7WpfQuMx2UwBiWDpBjUZAq7ANt7BXxWnAG16ap-UyX17UYOCYCY7xjgj8Cx2drHqm_4BnA_zJu85ouNnZKtHkPSgE_k2eeSr5-TJuL8jf0H-YEvHC0Gn9wg3Yx9-k3IU_1vEEbok1Hrm2-aWAnal8wYHQUnRuqTFtMEcVbyEp7MA0gGwf6KzW_B-qFU4eglmEvqbytFF29SX_iU5Pz46OzyJ-yoLseWZaGMHduKssIArtJGwwgr5Y6zVztiEl5kGDGdM6q0tUukZTwqupUlLoUovTanYK7JR1ZV_QyhjTDkjpEqM4tx4y9PUFNoVhZKwjWYR2YNVznsrWeQhAGEyB2HkKIy8E0ZEPi_FkBc9UzkWzLha_8HH4YN5R9KxvuvOUq5387jTrTXNTGPVgERE5MPQDGaIdyum8vVNGAKQLYQqMiKvOy0ZpsIk0uoJFRG1oj9DB6T4Xm2ppr8D1beWmQB5vP3_rN-Rp0GXQ5bNDtlomxv_HrBSa3eDQcBT_zrbJZsHh-PxT3h_PTr9_uMvsXQXdA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkYAL4k2ggJGKxIG0SezYyQEhBFRb2u2plfYW7NgR23aTJZsK7YWfxG9kxnm0C1puPdsZWZ5vPDPx-BtCtpXghqcy8OH0d6TazE-MtH5qDI8t5BvM4q-B8ZEYnfCvk3iyQX73b2GwrLI_E91Bbaoc_5HvRjICVw7BffBh_sPHrlF4u9q30GhhcWCXPyFlW7zf_wz6fRNFe1-OP438rquAr3kSN74BXBgda_CjqRIgUSJfitapUTrgRZJCzKJUaLXOQ2EZD3KeChUWsSysUIVkIPcGucnxihHsR06GBM-xm7fhtvRDCKU6KqGQiV19WgEgsXIec6oIPJmena76wn8C3L_rNK84vr175G4XsdKPLcTukw1bPiC3xt2d_EPyC0daHgo6vULw6Vv3LMtQfCeJEtqi12pmm3pJIVam8xqFIDJoVdB8WmNNLF7605lLCiBBeEdnS_C2iGKUXsD-u_mqNHTR1NWZfUROrmX_H5PNsirtU0IZY9KoWMhASc6V1TwMVZ6aPJcCju3EI9uwy1lnlYvMJTxMZKCMDJWRtcrwyE6vhizvmNGxQcf5-g_eDh_MW1KQ9VO3er1eruMSy2uGWYpdCoLYI6-HYTB7vMtRpa0unAiIpCE1Eh550qJkWAoTSOMXS4_IFfwME5BSfHWknH531OKpSGLQx7P_r_oVuT06Hh9mh_tHB8_JHYdrV-GzRTab-sK-gDit0S-dcVDy7bqt8Q8Du1Ax
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1VcEG8CBYxUJA6ETWLH3hwqBLSrltJVhajUW2rHjtjCJks2FdoLP5BfxYzzaBe03Hq2M7HyjecRj78hZFsJbngiAx-svyPVZv7QSOsnxvDYQr7BLP4aOBqL_RP-8TQ-XSO_u7swWFbZ2URnqE2Z4T_yQSQjcOUQ3AeDvC2LON4dvZ398LGDFJ60du00VNtmwew4urH2ksehXfyEdG6-c7AL2L-MotHelw_7fttxwNd8GNe-AZ0xOtbgYxMl4G0SuVS0TozSAc-HCcQzSoVW6ywUlvEg44lQYR7L3AqVSwZyb5ANCV4fEsGN93vj48-9X0Du8yYYl34IgVZLNBQyMdDnJagr1tVjxhWBn9PT82VP-U_4-3cV5xW3OLpNbrXxLH3XKOAdsmaLu2TzqD2xv0d-4UjDUkEnV-g_fesubRmKtyhRQlMSW05tXS0oRNJ0VqEQ1Bta5jSbVFgxiyUBdOpSBkgfXtPpAnwx6jhKzwEBN18Vhs7rqvxm75OTa0HgAVkvysI-IpQxJo2KhQyU5FxZzcNQZYnJMinAqA89sg1fOW337Dx16RATKYCRIhhpA4ZH3nQwpFnLm47tO76vfuBV_8CsoQxZPXWrw_VyHZeavmKYJdjDIIg98qIfBqOAJz2qsOWFEwFxNiROwiMPGy3pl8IEkvzF0iNySX_6CUg4vjxSTL464vFEDGPA4_H_V_2cbMLOTD8djA-fkJtOrV35zxZZr6sL-xSCuFo_a3cHJWfXvSH_AP8uWww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence-enabled+retinal+vasculometry+for+prediction+of+circulatory+mortality%2C+myocardial+infarction+and+stroke&rft.jtitle=British+journal+of+ophthalmology&rft.au=Rudnicka%2C+Alicja+Regina&rft.au=Welikala%2C+Roshan&rft.au=Barman%2C+Sarah&rft.au=Foster%2C+Paul+J&rft.date=2022-12-01&rft.pub=BMJ+Publishing+Group&rft.issn=0007-1161&rft.eissn=1468-2079&rft.volume=106&rft.issue=12&rft.spage=1722&rft.epage=1729&rft_id=info:doi/10.1136%2Fbjo-2022-321842&rft_id=info%3Apmid%2F36195457&rft.externalDocID=PMC9685715
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-1161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-1161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-1161&client=summon