Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation
Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced...
Saved in:
| Published in | Information processing in medical imaging : proceedings of the ... conference Vol. 13939; p. 641 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article Book Chapter |
| Language | English |
| Published |
Germany
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1011-2499 1611-3349 0302-9743 |
| DOI | 10.1007/978-3-031-34048-2_49 |
Cover
| Abstract | Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced (
., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present
, an
natomical-aware
on
rastive d
stillati
framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the
in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods. |
|---|---|
| AbstractList | Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced (
., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present
, an
natomical-aware
on
rastive d
stillati
framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the
in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods. |
| Author | Dai, Weicheng Min, Yifei Staib, Lawrence You, Chenyu Duncan, James S |
| Author_xml | – sequence: 1 givenname: Chenyu surname: You fullname: You, Chenyu organization: Department of Electrical Engineering, Yale University, New Haven, USA – sequence: 2 givenname: Weicheng surname: Dai fullname: Dai, Weicheng organization: Department of Computer Science and Engineering, New York University, New York, USA – sequence: 3 givenname: Yifei surname: Min fullname: Min, Yifei organization: Department of Statistics and Data Science, Yale University, New Haven, USA – sequence: 4 givenname: Lawrence surname: Staib fullname: Staib, Lawrence organization: Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA – sequence: 5 givenname: James S surname: Duncan fullname: Duncan, James S organization: Department of Statistics and Data Science, Yale University, New Haven, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37409056$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kM1OwzAQhH0ooqX0DRDKCxjs2I7tYyl_lYo4AGdrE7vFUuJEiduqb4_bAqfRaGdG2u8KjUIbHEI3lNxRQuS9lgozTBjFjBOucG64HqEJJZTinGs9RrNh8CUhPGdKUXmJxkxyookoJmjz0LZxiD10nQ-b7MM1Hg_bzvU7PzibvTnrK6izZQMbl66bxoUI0bch2_v4nc0DxLY5RvB8D73LFm1IY0P0O5c9-qR1fYpfo4s11IOb_eoUfT0_fS5e8er9ZbmYr3DJpYoYCiWtUDbXYCnTyZWipCCqMgeoNBVcW1oVhCrOWbEmVjIhrFhbl37XpWRTJM6729DBYQ91bbreN9AfDCXmyMskXoaZxMuceJkjr9S7Pfe6bdk4-1_6I8V-ACpebAQ |
| ContentType | Journal Article Book Chapter |
| DBID | NPM ABOKW UNPAY |
| DOI | 10.1007/978-3-031-34048-2_49 |
| DatabaseName | PubMed Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10322187 37409056 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR001863 – fundername: NCI NIH HHS grantid: R01 CA206180 |
| GroupedDBID | --- F5P NPM -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ABOKW ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG UNPAY VI1 ~02 |
| ID | FETCH-LOGICAL-b478t-a687d58d29ad139687b5b1a5cb2aac91549d1c60184436f0d7355d5fde3409b73 |
| IEDL.DBID | UNPAY |
| ISSN | 1011-2499 1611-3349 0302-9743 |
| IngestDate | Sun Oct 26 02:59:38 EDT 2025 Thu Jan 02 22:33:29 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Knowledge Distillation Contrastive Learning Active Sampling Medical Image Segmentation Semi-Supervised Learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b478t-a687d58d29ad139687b5b1a5cb2aac91549d1c60184436f0d7355d5fde3409b73 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10322187/pdf/nihms-1913000.pdf |
| PMID | 37409056 |
| ParticipantIDs | unpaywall_primary_10_1007_978_3_031_34048_2_49 pubmed_primary_37409056 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Information processing in medical imaging : proceedings of the ... conference |
| PublicationTitleAlternate | Inf Process Med Imaging |
| PublicationYear | 2023 |
| SSID | ssib004238817 ssib006573086 |
| Score | 2.4323747 |
| Snippet | Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| StartPage | 641 |
| Title | Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37409056 https://pmc.ncbi.nlm.nih.gov/articles/PMC10322187/pdf/nihms-1913000.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 13939 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED4kzpAiQ9r0laYNOHSlLIsUJY5GmjQtYMNAYyCdBL7kGLVUwZYRJL8-Rz2MIFuBDhokUgTF73Q8Hu8-AnxViTVedKjiSUS5y0MqDXc0HzETaiPw8q6ByVRcz_nP2_h2D773uTBVga0YvQzKVRGUy7smtrKPERvOJheeAA6npWRY2XyIFYoNxSUHwz87wCf7cCBiNMoHcDCfzsa_2z2EiMou1F540j7G5bMkujY-AGWbMo7iTKOs4dXsp6PDbVmph3u1Wj2bd66O4W7X4ybc5E-wrXVgHl-QOf6HT3oNRz7tgfh8BBzqN7DnyhM47g99IJ0OeAsLrFZ7_4gndliQX65Y0s228ipn4yzpNn7IjwIVFZYuii65qSTe5UvGJa7yG4oCOr5Xa0c8PdZabbzWJd-8wlm10XnvYH51eXNxTbvTGqjmSVpTJdLExqmNpLJoVuKdjvVIxUZHShnpqeDsCMHHJSVnIg9tgqaOjXPrcNylTth7GJR_S_cRCEuNtiINWS5DnkdCulShXjLCjYxMc3MKH1p4sqql5MhYgm2gLXcKwQ6vXWHPzIxIZyxDpLMG6cwj_elfXziDV_7E-dYL8xkG9XrrvqBdUutz2J_OJued5D0B3CfeYw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BcijiQEuBUtrKB67OZmPHiY8rCqWVQEhlJThFfmVZsUmj3awQ_HrGeawQN6QeckjsWI6_yXg8nvkMcKISa7zoUMWTiHKXh1Qa7mg-YibURuDlXQOXV-Jiwv_cxrcb8KvPhakKbMXoWVDOi6Cc3TexlX2M2PD68tQTwOG0lAwrmw-xQrGkuORg-GcH-GQTtkSMRvkAtiZX1-O7dg8horILtReetI9x-SqJro0PQNmmjKM40yhreDX76ejDqqzU06Oaz1_NO-e7cL_ucRNu8hCsah2Y5zdkjv_hkz7Cjk97ID4fAYf6E2y4cg92-0MfSKcDPsMUq9XeP-KJHabkrytmdLmqvMpZOku6jR_yu0BFhaXToktuKol3-ZJxiav8hqKAjh_VwhFPj7VQS691yU-vcOZtdN4-TM7Pbk4vaHdaA9U8SWuqRJrYOLWRVBbNSrzTsR6p2OhIKSM9FZwdIfi4pORM5KFN0NSxcW4djrvUCTuAQfmvdF-AsNRoK9KQ5TLkeSSkSxXqJSPcyMg0N0dw2MKTVS0lR8YSbANtuSMI1nitC3tmZkQ6YxkinTVIZx7pr-994Ri2_YnzrRfmGwzqxcp9R7uk1j86mXsBqvvdVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Lecture+notes+in+computer+science&rft.atitle=Bootstrapping+Semi-supervised+Medical+Image+Segmentation+with+Anatomical-Aware+Contrastive+Distillation&rft.date=2023-01-01&rft.issn=1611-3349&rft_id=info:doi/10.1007%2F978-3-031-34048-2_49&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A10322187 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon |