Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation

Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in medical imaging : proceedings of the ... conference Vol. 13939; p. 641
Main Authors You, Chenyu, Dai, Weicheng, Min, Yifei, Staib, Lawrence, Duncan, James S
Format Journal Article Book Chapter
LanguageEnglish
Published Germany 01.01.2023
Subjects
Online AccessGet full text
ISSN1011-2499
1611-3349
0302-9743
DOI10.1007/978-3-031-34048-2_49

Cover

Abstract Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced ( ., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present , an natomical-aware on rastive d stillati framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods.
AbstractList Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically assume a balanced class distribution for both labeled and unlabeled medical images. However, medical image data in reality is commonly imbalanced ( ., multi-class label imbalance), which naturally yields blurry contours and usually incorrectly labels rare objects. Moreover, it remains unclear whether all negative samples are equally negative. In this work, we present , an natomical-aware on rastive d stillati framework, for semi-supervised medical image segmentation. Specifically, we first develop an iterative contrastive distillation algorithm by softly labeling the negatives rather than binary supervision between positive and negative pairs. We also capture more semantically similar features from the randomly chosen negative set compared to the positives to enforce the diversity of the sampled data. Second, we raise a more important question: Can we really handle imbalanced samples to yield better performance? Hence, the in ACTION is to learn global semantic relationship across the entire dataset and local anatomical features among the neighbouring pixels with minimal additional memory footprint. During the training, we introduce anatomical contrast by actively sampling a sparse set of hard negative pixels, which can generate smoother segmentation boundaries and more accurate predictions. Extensive experiments across two benchmark datasets and different unlabeled settings show that ACTION significantly outperforms the current state-of-the-art semi-supervised methods.
Author Dai, Weicheng
Min, Yifei
Staib, Lawrence
You, Chenyu
Duncan, James S
Author_xml – sequence: 1
  givenname: Chenyu
  surname: You
  fullname: You, Chenyu
  organization: Department of Electrical Engineering, Yale University, New Haven, USA
– sequence: 2
  givenname: Weicheng
  surname: Dai
  fullname: Dai, Weicheng
  organization: Department of Computer Science and Engineering, New York University, New York, USA
– sequence: 3
  givenname: Yifei
  surname: Min
  fullname: Min, Yifei
  organization: Department of Statistics and Data Science, Yale University, New Haven, USA
– sequence: 4
  givenname: Lawrence
  surname: Staib
  fullname: Staib, Lawrence
  organization: Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
– sequence: 5
  givenname: James S
  surname: Duncan
  fullname: Duncan, James S
  organization: Department of Statistics and Data Science, Yale University, New Haven, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37409056$$D View this record in MEDLINE/PubMed
BookMark eNo9kM1OwzAQhH0ooqX0DRDKCxjs2I7tYyl_lYo4AGdrE7vFUuJEiduqb4_bAqfRaGdG2u8KjUIbHEI3lNxRQuS9lgozTBjFjBOucG64HqEJJZTinGs9RrNh8CUhPGdKUXmJxkxyookoJmjz0LZxiD10nQ-b7MM1Hg_bzvU7PzibvTnrK6izZQMbl66bxoUI0bch2_v4nc0DxLY5RvB8D73LFm1IY0P0O5c9-qR1fYpfo4s11IOb_eoUfT0_fS5e8er9ZbmYr3DJpYoYCiWtUDbXYCnTyZWipCCqMgeoNBVcW1oVhCrOWbEmVjIhrFhbl37XpWRTJM6729DBYQ91bbreN9AfDCXmyMskXoaZxMuceJkjr9S7Pfe6bdk4-1_6I8V-ACpebAQ
ContentType Journal Article
Book Chapter
DBID NPM
ABOKW
UNPAY
DOI 10.1007/978-3-031-34048-2_49
DatabaseName PubMed
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID oai:pubmedcentral.nih.gov:10322187
37409056
Genre Journal Article
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR001863
– fundername: NCI NIH HHS
  grantid: R01 CA206180
GroupedDBID ---
F5P
NPM
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ABOKW
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
UNPAY
VI1
~02
ID FETCH-LOGICAL-b478t-a687d58d29ad139687b5b1a5cb2aac91549d1c60184436f0d7355d5fde3409b73
IEDL.DBID UNPAY
ISSN 1011-2499
1611-3349
0302-9743
IngestDate Sun Oct 26 02:59:38 EDT 2025
Thu Jan 02 22:33:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Knowledge Distillation
Contrastive Learning
Active Sampling
Medical Image Segmentation
Semi-Supervised Learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b478t-a687d58d29ad139687b5b1a5cb2aac91549d1c60184436f0d7355d5fde3409b73
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10322187/pdf/nihms-1913000.pdf
PMID 37409056
ParticipantIDs unpaywall_primary_10_1007_978_3_031_34048_2_49
pubmed_primary_37409056
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Information processing in medical imaging : proceedings of the ... conference
PublicationTitleAlternate Inf Process Med Imaging
PublicationYear 2023
SSID ssib004238817
ssib006573086
Score 2.4323747
Snippet Contrastive learning has shown great promise over annotation scarcity problems in the context of medical image segmentation. Existing approaches typically...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 641
Title Bootstrapping Semi-supervised Medical Image Segmentation with Anatomical-Aware Contrastive Distillation
URI https://www.ncbi.nlm.nih.gov/pubmed/37409056
https://pmc.ncbi.nlm.nih.gov/articles/PMC10322187/pdf/nihms-1913000.pdf
UnpaywallVersion submittedVersion
Volume 13939
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07b9swED4kzpAiQ9r0laYNOHSlLIsUJY5GmjQtYMNAYyCdBL7kGLVUwZYRJL8-Rz2MIFuBDhokUgTF73Q8Hu8-AnxViTVedKjiSUS5y0MqDXc0HzETaiPw8q6ByVRcz_nP2_h2D773uTBVga0YvQzKVRGUy7smtrKPERvOJheeAA6npWRY2XyIFYoNxSUHwz87wCf7cCBiNMoHcDCfzsa_2z2EiMou1F540j7G5bMkujY-AGWbMo7iTKOs4dXsp6PDbVmph3u1Wj2bd66O4W7X4ybc5E-wrXVgHl-QOf6HT3oNRz7tgfh8BBzqN7DnyhM47g99IJ0OeAsLrFZ7_4gndliQX65Y0s228ipn4yzpNn7IjwIVFZYuii65qSTe5UvGJa7yG4oCOr5Xa0c8PdZabbzWJd-8wlm10XnvYH51eXNxTbvTGqjmSVpTJdLExqmNpLJoVuKdjvVIxUZHShnpqeDsCMHHJSVnIg9tgqaOjXPrcNylTth7GJR_S_cRCEuNtiINWS5DnkdCulShXjLCjYxMc3MKH1p4sqql5MhYgm2gLXcKwQ6vXWHPzIxIZyxDpLMG6cwj_elfXziDV_7E-dYL8xkG9XrrvqBdUutz2J_OJued5D0B3CfeYw
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7BcijiQEuBUtrKB67OZmPHiY8rCqWVQEhlJThFfmVZsUmj3awQ_HrGeawQN6QeckjsWI6_yXg8nvkMcKISa7zoUMWTiHKXh1Qa7mg-YibURuDlXQOXV-Jiwv_cxrcb8KvPhakKbMXoWVDOi6Cc3TexlX2M2PD68tQTwOG0lAwrmw-xQrGkuORg-GcH-GQTtkSMRvkAtiZX1-O7dg8horILtReetI9x-SqJro0PQNmmjKM40yhreDX76ejDqqzU06Oaz1_NO-e7cL_ucRNu8hCsah2Y5zdkjv_hkz7Cjk97ID4fAYf6E2y4cg92-0MfSKcDPsMUq9XeP-KJHabkrytmdLmqvMpZOku6jR_yu0BFhaXToktuKol3-ZJxiav8hqKAjh_VwhFPj7VQS691yU-vcOZtdN4-TM7Pbk4vaHdaA9U8SWuqRJrYOLWRVBbNSrzTsR6p2OhIKSM9FZwdIfi4pORM5KFN0NSxcW4djrvUCTuAQfmvdF-AsNRoK9KQ5TLkeSSkSxXqJSPcyMg0N0dw2MKTVS0lR8YSbANtuSMI1nitC3tmZkQ6YxkinTVIZx7pr-994Ri2_YnzrRfmGwzqxcp9R7uk1j86mXsBqvvdVw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Lecture+notes+in+computer+science&rft.atitle=Bootstrapping+Semi-supervised+Medical+Image+Segmentation+with+Anatomical-Aware+Contrastive+Distillation&rft.date=2023-01-01&rft.issn=1611-3349&rft_id=info:doi/10.1007%2F978-3-031-34048-2_49&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A10322187
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon