Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape
Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of long...
Saved in:
| Published in | Information processing in medical imaging : proceedings of the ... conference Vol. 13939; p. 810 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article Book Chapter |
| Language | English |
| Published |
Germany
01.01.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1011-2499 1611-3349 0302-9743 |
| DOI | 10.1007/978-3-031-34048-2_62 |
Cover
| Abstract | Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject's shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease. |
|---|---|
| AbstractList | Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject's shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease. |
| Author | Amin, Silvani Jolley, Matthew Sabin, Patricia Paniagua, Beatriz Fishbaugh, James Dewey, Hannah Gerig, Guido Hertz, Christian Han, Ye Vicory, Jared Sulentic, Ana |
| Author_xml | – sequence: 1 givenname: Ye orcidid: 0000-0002-7001-4753 surname: Han fullname: Han, Ye organization: Kitware, Inc., Clifton Park, NY, 12065, USA – sequence: 2 givenname: Jared orcidid: 0000-0001-6041-5580 surname: Vicory fullname: Vicory, Jared organization: Kitware, Inc., Clifton Park, NY, 12065, USA – sequence: 3 givenname: Guido orcidid: 0000-0002-9547-6233 surname: Gerig fullname: Gerig, Guido organization: NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA – sequence: 4 givenname: Patricia orcidid: 0000-0002-5847-8862 surname: Sabin fullname: Sabin, Patricia organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA – sequence: 5 givenname: Hannah surname: Dewey fullname: Dewey, Hannah organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA – sequence: 6 givenname: Silvani surname: Amin fullname: Amin, Silvani organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA – sequence: 7 givenname: Ana surname: Sulentic fullname: Sulentic, Ana organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA – sequence: 8 givenname: Christian orcidid: 0000-0001-5783-7811 surname: Hertz fullname: Hertz, Christian organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA – sequence: 9 givenname: Matthew orcidid: 0000-0002-5626-0130 surname: Jolley fullname: Jolley, Matthew organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA – sequence: 10 givenname: Beatriz orcidid: 0000-0002-8437-6632 surname: Paniagua fullname: Paniagua, Beatriz organization: Kitware, Inc., Clifton Park, NY, 12065, USA – sequence: 11 givenname: James orcidid: 0009-0003-9675-6776 surname: Fishbaugh fullname: Fishbaugh, James organization: Kitware, Inc., Clifton Park, NY, 12065, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37416485$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kNFOwjAUhnuBEUTewJi-QLVdO9peEqJAAtFEvG667lSalG3ZmGZvbxH16uT8__nOxXeDRlVdAUJ3jD4wSuWjlopwQjkjXFChSGbm2QhNGGWMZELrMZp1XSgoFRlXislrNOZSsLlQ-QTt1wFa27pDcDbiFdQldMHh1zoOVX0MKdulKGJft3jXx1OI8JnWRWXj0IUO1x5v6-ojnPoypAy_HWwDt-jK29jB7HdO0fvz0365JtuX1Wa52JJCSHUi2kPBeS6U8iDzwhW6VExTWzILkOmsdE643EHmrYTUU-X4HJT0yqcD6vgU5Ze_fdXY4cvGaJo2HG07GEbNWY5Jcgw3SY75kWPOchJ3f-GavjhC-Q_9aeHfRX9mOg |
| ContentType | Journal Article Book Chapter |
| DBID | NPM ABOKW UNPAY |
| DOI | 10.1007/978-3-031-34048-2_62 |
| DatabaseName | PubMed Unpaywall for CDI: Monographs and Miscellaneous Content Unpaywall |
| DatabaseTitle | PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:10323213 37416485 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB021391 – fundername: NHLBI NIH HHS grantid: R01 HL153166 |
| GroupedDBID | --- F5P NPM -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ABOKW ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD FEDTE HVGLF LAS LDH P2P RNI RSU SVGTG UNPAY VI1 ~02 |
| ID | FETCH-LOGICAL-b478t-9feb335488fe75bcb9d8190ad1aee292dcc4c5ce2fa7e5bc08c36e87f8faee0c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1011-2499 1611-3349 0302-9743 |
| IngestDate | Sun Oct 26 04:16:39 EDT 2025 Thu Apr 03 06:52:02 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | geodesic regression statistical shape analysis hierarchical modeling longitudinal data |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b478t-9feb335488fe75bcb9d8190ad1aee292dcc4c5ce2fa7e5bc08c36e87f8faee0c3 |
| ORCID | 0000-0002-7001-4753 0000-0002-5847-8862 0000-0002-9547-6233 0000-0001-5783-7811 0000-0001-6041-5580 0000-0002-5626-0130 0000-0002-8437-6632 0009-0003-9675-6776 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10323213/pdf/nihms-1912654.pdf |
| PMID | 37416485 |
| ParticipantIDs | unpaywall_primary_10_1007_978_3_031_34048_2_62 pubmed_primary_37416485 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Information processing in medical imaging : proceedings of the ... conference |
| PublicationTitleAlternate | Inf Process Med Imaging |
| PublicationYear | 2023 |
| SSID | ssib004238817 ssib006573086 |
| Score | 2.129163 |
| Snippet | Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its... |
| SourceID | unpaywall pubmed |
| SourceType | Open Access Repository Index Database |
| StartPage | 810 |
| Title | Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/37416485 https://pmc.ncbi.nlm.nih.gov/articles/PMC10323213/pdf/nihms-1912654.pdf |
| UnpaywallVersion | submittedVersion |
| Volume | 13939 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtswEFwkzqFFD-m76SPgoVfKNklJ1LEImhhFYxhoXaQnQSRXiBFZMhobQfo1-ZZ8WXclywh6K9CLDuTqOYS4lGZ2AD6WvnBmhGMZkkxLEyxKh4kiQNI4pKXVtGG2xTSZzM2Xi_hiD856LcxqSUfxbhHV1TKqF5ctt7LniA1n5ydcAE6rsR6uQjmkgOW1pCWHSmITUcs-HCQxJeUDOJhPZ59-dv8QlMy2VPuEi_Zpkz0Q0XX8ABrbUhsazlLl7Jyzm44ebepVcXtTVNWDeef0EC53V9zSTa6izdpF_vdfxRz_wy09hScsexCsR6BH_Qz2sH4Oh73pg9i-A17Aj8mCNcuthUolzrAJSECLWVPdssKZ2therRKUDN_ftfLeinlJoq9-Ipry_u5rwzZJm8CWXOIbnRJfwvz08_eTidyaM0hnUruWWUnLcE3rHVtiGjvvssDJRRHGBaLKVPDe-NijKosUqX9kvU7QEvwlBYy8fgWDuqnxDQhKobzWFGoUO2Eba5xOTZHFaIMuFB7B6w6NfNVV4Mg155HGxkcQ7eDZdfaFmAnYXOcEbN4CmzOwb_91h3fwmA3mu48u72Gw_rXBD5SGrN0x7E9n58fbgfYHZKfapA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7aGIQ6GFUlqQD706u2s7iXNEFe0KQbUSLCqnKLYn6qrZZAW7QuXX9Lf0lzGTbFYVNyQuOdiTz2fF4-S9eQBnpS-cGeFYhiTT0gSL0mGiCJA0DmlpNW2YbXGVTGbm43V8vQOXvRZmuaCjeDeP6moR1fObllvZc8SG08_nXABOq7EeLkM5pIDFT0lLDpXEJqKWJ7CbxJSUD2B3djV9_737h6BktqHaJ1y0T5vskYiu4wfQ2Jba0HCWKmfnnO10tLeul8Xdr6KqHs07F_tws73ilm5yG61XLvK__yrm-B9u6Tk8Y9mDYD0CPeoXsIP1Aez3pg9i8w44hG-TOWuWWwuVSlxiE5CAFtOmumOFM7WxvVolKBl-uG_lvRXzkkRf_UQ05cP9p4ZtktaBLbnEFzolvoTZxYev5xO5MWeQzqR2JbOSluGa1ju2xDR23mWBk4sijAtElangvfGxR1UWKVL_yHqdoCX4SwoYef0KBnVT42sQlEJ5rSnUKHbCNtY4nZoii9EGXSg8hqMOjXzZVeDINeeRxsbHEG3h2Xb2hZgJ2FznBGzeApszsG_-dYcTeMoG891Hl1MYrH6s8S2lISv3bjPE_gBJ9dmY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Lecture+notes+in+computer+science&rft.atitle=Hierarchical+Geodesic+Polynomial+Model+for%C2%A0Multilevel+Analysis+of%C2%A0Longitudinal+Shape&rft.date=2023-01-01&rft.issn=1611-3349&rft_id=info:doi/10.1007%2F978-3-031-34048-2_62&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A10323213 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon |