Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape

Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of long...

Full description

Saved in:
Bibliographic Details
Published inInformation processing in medical imaging : proceedings of the ... conference Vol. 13939; p. 810
Main Authors Han, Ye, Vicory, Jared, Gerig, Guido, Sabin, Patricia, Dewey, Hannah, Amin, Silvani, Sulentic, Ana, Hertz, Christian, Jolley, Matthew, Paniagua, Beatriz, Fishbaugh, James
Format Journal Article Book Chapter
LanguageEnglish
Published Germany 01.01.2023
Subjects
Online AccessGet full text
ISSN1011-2499
1611-3349
0302-9743
DOI10.1007/978-3-031-34048-2_62

Cover

Abstract Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject's shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease.
AbstractList Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its trajectory of shape change over time. Whereas mixed-effects (or hierarchical) modeling is the statistical method of choice for analysis of longitudinal data, we here propose its extension as hierarchical geodesic polynomial model (HGPM) for multilevel analyses of longitudinal shape data. 3D shapes are transformed to a non-Euclidean shape space for regression analysis using geodesics on a high dimensional Riemannian manifold. At the subject-wise level, each individual trajectory of shape change is represented by a univariate geodesic polynomial model on timestamps. At the population level, multivariate polynomial expansion is applied to uni/multivariate geodesic polynomial models for both anchor points and tangent vectors. As such, the trajectory of an individual subject's shape changes over time can be modeled accurately with a reduced number of parameters, and population-level effects from multiple covariates on trajectories can be well captured. The implemented HGPM is validated on synthetic examples of points on a unit 3D sphere. Further tests on clinical 4D right ventricular data show that HGPM is capable of capturing observable effects on shapes attributed to changes in covariates, which are consistent with qualitative clinical evaluations. HGPM demonstrates its effectiveness in modeling shape changes at both subject-wise and population levels, which is promising for future studies of the relationship between shape changes over time and the level of dysfunction severity on anatomical objects associated with disease.
Author Amin, Silvani
Jolley, Matthew
Sabin, Patricia
Paniagua, Beatriz
Fishbaugh, James
Dewey, Hannah
Gerig, Guido
Hertz, Christian
Han, Ye
Vicory, Jared
Sulentic, Ana
Author_xml – sequence: 1
  givenname: Ye
  orcidid: 0000-0002-7001-4753
  surname: Han
  fullname: Han, Ye
  organization: Kitware, Inc., Clifton Park, NY, 12065, USA
– sequence: 2
  givenname: Jared
  orcidid: 0000-0001-6041-5580
  surname: Vicory
  fullname: Vicory, Jared
  organization: Kitware, Inc., Clifton Park, NY, 12065, USA
– sequence: 3
  givenname: Guido
  orcidid: 0000-0002-9547-6233
  surname: Gerig
  fullname: Gerig, Guido
  organization: NYU Tandon School of Engineering, Brooklyn, NY, 11201, USA
– sequence: 4
  givenname: Patricia
  orcidid: 0000-0002-5847-8862
  surname: Sabin
  fullname: Sabin, Patricia
  organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– sequence: 5
  givenname: Hannah
  surname: Dewey
  fullname: Dewey, Hannah
  organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– sequence: 6
  givenname: Silvani
  surname: Amin
  fullname: Amin, Silvani
  organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– sequence: 7
  givenname: Ana
  surname: Sulentic
  fullname: Sulentic, Ana
  organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– sequence: 8
  givenname: Christian
  orcidid: 0000-0001-5783-7811
  surname: Hertz
  fullname: Hertz, Christian
  organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– sequence: 9
  givenname: Matthew
  orcidid: 0000-0002-5626-0130
  surname: Jolley
  fullname: Jolley, Matthew
  organization: Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
– sequence: 10
  givenname: Beatriz
  orcidid: 0000-0002-8437-6632
  surname: Paniagua
  fullname: Paniagua, Beatriz
  organization: Kitware, Inc., Clifton Park, NY, 12065, USA
– sequence: 11
  givenname: James
  orcidid: 0009-0003-9675-6776
  surname: Fishbaugh
  fullname: Fishbaugh, James
  organization: Kitware, Inc., Clifton Park, NY, 12065, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37416485$$D View this record in MEDLINE/PubMed
BookMark eNo9kNFOwjAUhnuBEUTewJi-QLVdO9peEqJAAtFEvG667lSalG3ZmGZvbxH16uT8__nOxXeDRlVdAUJ3jD4wSuWjlopwQjkjXFChSGbm2QhNGGWMZELrMZp1XSgoFRlXislrNOZSsLlQ-QTt1wFa27pDcDbiFdQldMHh1zoOVX0MKdulKGJft3jXx1OI8JnWRWXj0IUO1x5v6-ojnPoypAy_HWwDt-jK29jB7HdO0fvz0365JtuX1Wa52JJCSHUi2kPBeS6U8iDzwhW6VExTWzILkOmsdE643EHmrYTUU-X4HJT0yqcD6vgU5Ze_fdXY4cvGaJo2HG07GEbNWY5Jcgw3SY75kWPOchJ3f-GavjhC-Q_9aeHfRX9mOg
ContentType Journal Article
Book Chapter
DBID NPM
ABOKW
UNPAY
DOI 10.1007/978-3-031-34048-2_62
DatabaseName PubMed
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID oai:pubmedcentral.nih.gov:10323213
37416485
Genre Journal Article
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB021391
– fundername: NHLBI NIH HHS
  grantid: R01 HL153166
GroupedDBID ---
F5P
NPM
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ABOKW
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
FEDTE
HVGLF
LAS
LDH
P2P
RNI
RSU
SVGTG
UNPAY
VI1
~02
ID FETCH-LOGICAL-b478t-9feb335488fe75bcb9d8190ad1aee292dcc4c5ce2fa7e5bc08c36e87f8faee0c3
IEDL.DBID UNPAY
ISSN 1011-2499
1611-3349
0302-9743
IngestDate Sun Oct 26 04:16:39 EDT 2025
Thu Apr 03 06:52:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords geodesic regression
statistical shape analysis
hierarchical modeling
longitudinal data
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b478t-9feb335488fe75bcb9d8190ad1aee292dcc4c5ce2fa7e5bc08c36e87f8faee0c3
ORCID 0000-0002-7001-4753
0000-0002-5847-8862
0000-0002-9547-6233
0000-0001-5783-7811
0000-0001-6041-5580
0000-0002-5626-0130
0000-0002-8437-6632
0009-0003-9675-6776
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pmc.ncbi.nlm.nih.gov/articles/PMC10323213/pdf/nihms-1912654.pdf
PMID 37416485
ParticipantIDs unpaywall_primary_10_1007_978_3_031_34048_2_62
pubmed_primary_37416485
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Information processing in medical imaging : proceedings of the ... conference
PublicationTitleAlternate Inf Process Med Imaging
PublicationYear 2023
SSID ssib004238817
ssib006573086
Score 2.129163
Snippet Longitudinal analysis is a core aspect of many medical applications for understanding the relationship between an anatomical subject's function and its...
SourceID unpaywall
pubmed
SourceType Open Access Repository
Index Database
StartPage 810
Title Hierarchical Geodesic Polynomial Model for Multilevel Analysis of Longitudinal Shape
URI https://www.ncbi.nlm.nih.gov/pubmed/37416485
https://pmc.ncbi.nlm.nih.gov/articles/PMC10323213/pdf/nihms-1912654.pdf
UnpaywallVersion submittedVersion
Volume 13939
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtswEFwkzqFFD-m76SPgoVfKNklJ1LEImhhFYxhoXaQnQSRXiBFZMhobQfo1-ZZ8WXclywh6K9CLDuTqOYS4lGZ2AD6WvnBmhGMZkkxLEyxKh4kiQNI4pKXVtGG2xTSZzM2Xi_hiD856LcxqSUfxbhHV1TKqF5ctt7LniA1n5ydcAE6rsR6uQjmkgOW1pCWHSmITUcs-HCQxJeUDOJhPZ59-dv8QlMy2VPuEi_Zpkz0Q0XX8ABrbUhsazlLl7Jyzm44ebepVcXtTVNWDeef0EC53V9zSTa6izdpF_vdfxRz_wy09hScsexCsR6BH_Qz2sH4Oh73pg9i-A17Aj8mCNcuthUolzrAJSECLWVPdssKZ2therRKUDN_ftfLeinlJoq9-Ipry_u5rwzZJm8CWXOIbnRJfwvz08_eTidyaM0hnUruWWUnLcE3rHVtiGjvvssDJRRHGBaLKVPDe-NijKosUqX9kvU7QEvwlBYy8fgWDuqnxDQhKobzWFGoUO2Eba5xOTZHFaIMuFB7B6w6NfNVV4Mg155HGxkcQ7eDZdfaFmAnYXOcEbN4CmzOwb_91h3fwmA3mu48u72Gw_rXBD5SGrN0x7E9n58fbgfYHZKfapA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2V7aGIQ6GFUlqQD706u2s7iXNEFe0KQbUSLCqnKLYn6qrZZAW7QuXX9Lf0lzGTbFYVNyQuOdiTz2fF4-S9eQBnpS-cGeFYhiTT0gSL0mGiCJA0DmlpNW2YbXGVTGbm43V8vQOXvRZmuaCjeDeP6moR1fObllvZc8SG08_nXABOq7EeLkM5pIDFT0lLDpXEJqKWJ7CbxJSUD2B3djV9_737h6BktqHaJ1y0T5vskYiu4wfQ2Jba0HCWKmfnnO10tLeul8Xdr6KqHs07F_tws73ilm5yG61XLvK__yrm-B9u6Tk8Y9mDYD0CPeoXsIP1Aez3pg9i8w44hG-TOWuWWwuVSlxiE5CAFtOmumOFM7WxvVolKBl-uG_lvRXzkkRf_UQ05cP9p4ZtktaBLbnEFzolvoTZxYev5xO5MWeQzqR2JbOSluGa1ju2xDR23mWBk4sijAtElangvfGxR1UWKVL_yHqdoCX4SwoYef0KBnVT42sQlEJ5rSnUKHbCNtY4nZoii9EGXSg8hqMOjXzZVeDINeeRxsbHEG3h2Xb2hZgJ2FznBGzeApszsG_-dYcTeMoG891Hl1MYrH6s8S2lISv3bjPE_gBJ9dmY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Lecture+notes+in+computer+science&rft.atitle=Hierarchical+Geodesic+Polynomial+Model+for%C2%A0Multilevel+Analysis+of%C2%A0Longitudinal+Shape&rft.date=2023-01-01&rft.issn=1611-3349&rft_id=info:doi/10.1007%2F978-3-031-34048-2_62&rft.externalDocID=oai%3Apubmedcentral.nih.gov%3A10323213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1011-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1011-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1011-2499&client=summon