A novel prediction method for lymph node involvement in endometrial cancer: machine learning

ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of gynecological cancer Vol. 29; no. 2; pp. 320 - 324
Main Authors Günakan, Emre, Atan, Suat, Haberal, Asuman Nihan, Küçükyıldız, İrem Alyazıcı, Gökçe, Ehad, Ayhan, Ali
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2019
by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology
Elsevier Limited
Subjects
Online AccessGet full text
ISSN1048-891X
1525-1438
1525-1438
DOI10.1136/ijgc-2018-000033

Cover

Abstract ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.MethodsThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.ResultsThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).ConclusionsMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.
AbstractList The necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.OBJECTIVEThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.The study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.METHODSThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.The mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).RESULTSThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).Machine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.CONCLUSIONSMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.
ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.MethodsThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.ResultsThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).ConclusionsMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.
The necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction. The study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI. The mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all). Machine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.
OBJECTIVEThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction. METHODSThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factorsV1final histology; V2presence of lymphovascular space invasion (LVSI); V3grade; V4tumor diameter; V5depth of myometrial invasion (MI); V6cervical glandular stromal invasion (CGSI); V7tubal or ovarian involvement; and V8pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI. RESULTSThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all). CONCLUSIONSMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.
Author Ayhan, Ali
Gökçe, Ehad
Haberal, Asuman Nihan
Küçükyıldız, İrem Alyazıcı
Günakan, Emre
Atan, Suat
AuthorAffiliation Software Developer, Ankara, Turkey
Department of Obstetrics and Gynecology, University of Medical Sciences, Keçioren Training and Research Hospital, Ankara, Turkey
Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey
Department of Pathology, Başkent University, School of Medicine, Ankara, Turkey
AuthorAffiliation_xml – name: Software Developer, Ankara, Turkey
– name: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey
– name: Department of Obstetrics and Gynecology, University of Medical Sciences, Keçioren Training and Research Hospital, Ankara, Turkey
– name: Department of Pathology, Başkent University, School of Medicine, Ankara, Turkey
Author_xml – sequence: 1
  givenname: Emre
  surname: Günakan
  fullname: Günakan, Emre
  email: emreg43@hotmail.com
  organization: Department of Obstetrics and Gynecology, University of Medical Sciences, Keçioren Training and Research Hospital, Ankara, Turkey
– sequence: 2
  givenname: Suat
  surname: Atan
  fullname: Atan, Suat
  email: emreg43@hotmail.com
  organization: Software Developer, Ankara, Turkey
– sequence: 3
  givenname: Asuman Nihan
  surname: Haberal
  fullname: Haberal, Asuman Nihan
  email: emreg43@hotmail.com
  organization: Department of Pathology, Başkent University, School of Medicine, Ankara, Turkey
– sequence: 4
  givenname: İrem Alyazıcı
  surname: Küçükyıldız
  fullname: Küçükyıldız, İrem Alyazıcı
  email: emreg43@hotmail.com
  organization: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey
– sequence: 5
  givenname: Ehad
  surname: Gökçe
  fullname: Gökçe, Ehad
  email: emreg43@hotmail.com
  organization: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey
– sequence: 6
  givenname: Ali
  surname: Ayhan
  fullname: Ayhan, Ali
  email: emreg43@hotmail.com
  organization: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30718313$$D View this record in MEDLINE/PubMed
BookMark eNqFkktr3TAQhU1JaR7tvqti6CZQ3OphWVJ2IfQFgW5a6KIgZGkc61aWbiX7hvz7ynWyySLVRiP4zsxozpxWRyEGqKrXGL3HmHYf3O7GNARh0aByKH1WnWBGWINbKo5KjFrRCIl_HlenOe8KIgmSL6pjijgWFNOT6tdlHeIBfL1PYJ2ZXQz1BPMYbT3EVPu7aT8WwkLtwiH6A0wQ5hLXEGwsYHLa10YHA-minrQZXYDag07BhZuX1fNB-wyv7u-z6senj9-vvjTX3z5_vbq8bvqWMdZIoXtru6EbpEGlK0y1ZNKavgVChOZCE9oKbqwAbQihvNNUYEMG1nEmCaNn1fmWd5_inwXyrCaXDXivA8QlK4K5ZIRwjgv69hG6i0sKpTtFGCOiZZytCd_cU0s_gVX75Cad7tTD3ArQbYBJMecEgzJu1uv05qSdVxip1SC1GqRWg9RmUBGiR8KH3E9I2k1yG_0MKf_2yy0kNYL28_gPkozzdQ0kIuW17gJe_3CxyaBM_uCKIhsHxSjrEphZ2eieqvluE_fT7v8d_gWBg8JE
CitedBy_id crossref_primary_10_1007_s00330_020_06870_1
crossref_primary_10_61186_ijbc_15_3_13
crossref_primary_10_1016_j_jclinepi_2023_03_012
crossref_primary_10_2174_0113862073265604231106112203
crossref_primary_10_2139_ssrn_4191367
crossref_primary_10_1016_j_biopha_2020_110255
crossref_primary_10_1007_s00261_021_03210_9
crossref_primary_10_1007_s11831_024_10209_0
crossref_primary_10_1016_j_aprim_2020_04_014
crossref_primary_10_1111_jog_14818
crossref_primary_10_3389_fonc_2022_881850
crossref_primary_10_1016_j_drup_2022_100811
crossref_primary_10_1016_j_artmed_2021_102164
crossref_primary_10_3389_fonc_2022_852746
crossref_primary_10_1007_s10552_024_01942_9
crossref_primary_10_1186_s12874_022_01577_x
crossref_primary_10_1109_ACCESS_2020_3008473
crossref_primary_10_3389_fonc_2021_762329
crossref_primary_10_3389_fonc_2023_1289050
crossref_primary_10_1007_s11831_023_09886_0
crossref_primary_10_1080_1061186X_2024_2448711
crossref_primary_10_1136_ijgc_2023_004622
crossref_primary_10_2174_1386207325666220304112914
crossref_primary_10_3892_ijo_2023_5555
crossref_primary_10_1097_OGX_0000000000000902
crossref_primary_10_58252_artukluhealth_1497539
Cites_doi 10.1007/s13304-017-0418-z
10.1111/j.1471-0528.1989.tb03341.x
10.1002/ijc.30707
10.1016/j.ygyno.2006.03.055
10.1080/01443615.2017.1281895
10.1021/acs.jctc.5b00099
10.1097/PGP.0000000000000246
10.1002/1097-0142(19901015)60:8+<2035::AID-CNCR2820601515>3.0.CO;2-8
10.1016/j.ijgo.2009.02.012
10.1002/ijgo.12010
10.1245/s10434-015-4548-6
10.1002/ijgo.12103
10.1097/IGC.0000000000000145
10.1109/JPROC.2015.2494198
10.1142/S0218271810017160
10.1016/j.ygyno.2012.08.024
10.1016/S0933-3657(01)00077-X
10.1002/ijc.29210
10.1111/j.1447-0756.2012.02062.x
10.1006/gyno.1999.5688
10.1097/IGC.0000000000000692
10.1016/S0140-6736(08)61766-3
10.1016/j.ajog.2016.11.1033
10.3892/ol.2016.5262
10.3892/ol.2015.3883
10.1097/IGC.0000000000000566
ContentType Journal Article
Copyright IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ.
2019 IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ.
2019 by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology.
Copyright_xml – notice: IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2019 IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2019 by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
M0S
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.1136/ijgc-2018-000033
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
ProQuest Health & Medical Research Collection
Health Research Premium Collection
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
ProQuest One Academic
ProQuest Central (New)
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest One Academic Middle East (New)



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X7
  name: Health & Medical Collection
  url: https://search.proquest.com/healthcomplete
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1525-1438
EndPage 324
ExternalDocumentID 30718313
10_1136_ijgc_2018_000033
00009577-201902000-00015
S1048891X24010740
ijgc
Genre Clinical Trial
Journal Article
GroupedDBID ---
.3N
.Z2
0R~
1OC
29J
31~
36B
4.4
53G
5GY
5VS
7X7
8-1
8FI
8FJ
AAHLL
AAKAS
AARTV
AAXUO
ABBUW
ABJNI
ABUWG
ABXVJ
ABZAD
ACDDN
ACEWG
ACGFO
ACGFS
ACWDW
ACWRI
ACXNZ
ACXQS
ADZCM
AENEX
AFBPY
AFEBI
AFKRA
AFTRI
AFZJQ
AGINI
AHEFC
AIZYK
AJAOE
AJNYG
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BFHJK
BQLVK
CAG
CCPQU
CO8
COF
CS3
CXRWF
DC6
DCZOG
E.X
EBS
EJD
EX3
F5P
FDB
FL-
FYUFA
FZ0
HAJ
HMCUK
HZI
HZ~
IHE
IN~
KD2
L-C
LH4
LW6
M41
O9-
OCUKA
OHYEH
ORVUJ
OUVQU
OVD
OXXIT
P2P
RMJ
ROL
S4S
TEORI
UDS
UKHRP
V2I
W3M
W99
WOW
X3V
X3W
YUY
6I.
AAFTH
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
PHGZM
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
AMRAJ
K9.
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
ID FETCH-LOGICAL-b4555-98abdd6f6f9c031313a959dcb4e228a78a23487cd8eac22376a381c2f56759253
IEDL.DBID BENPR
ISSN 1048-891X
1525-1438
IngestDate Sun Sep 28 14:26:53 EDT 2025
Tue Oct 07 07:20:35 EDT 2025
Mon Jul 21 06:04:11 EDT 2025
Wed Oct 01 05:43:29 EDT 2025
Thu Apr 24 22:56:42 EDT 2025
Fri May 16 03:53:33 EDT 2025
Sat Mar 01 15:46:15 EST 2025
Thu Apr 24 23:05:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords endometrial cancer
lymph node status
machine learning
lymph node involvement
Language English
License This is an open access article under the CC BY-NC-ND license.
IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b4555-98abdd6f6f9c031313a959dcb4e228a78a23487cd8eac22376a381c2f56759253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dx.doi.org/10.1136/ijgc-2018-000033
PMID 30718313
PQID 2552845755
PQPubID 5161120
PageCount 5
ParticipantIDs proquest_miscellaneous_2179522771
proquest_journals_2552845755
pubmed_primary_30718313
crossref_citationtrail_10_1136_ijgc_2018_000033
crossref_primary_10_1136_ijgc_2018_000033
wolterskluwer_health_00009577-201902000-00015
elsevier_sciencedirect_doi_10_1136_ijgc_2018_000033
bmj_primary_10_1136_ijgc_2018_000033
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190200
February 2019
2019-February
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 20190200
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Kidlington
PublicationTitle International journal of gynecological cancer
PublicationTitleAlternate Int J Gynecol Cancer
PublicationYear 2019
Publisher Elsevier Inc
by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology
Elsevier Limited
Publisher_xml – name: Elsevier Inc
– name: by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology
– name: Elsevier Limited
References Shepherd 1989; 96
Pollom, Conklin, von Eyben 2016; 35
Wang, Han, Teng 2017; 136
Pecorelli 2009; 105
Kumar, Medeiros, Dowdy 2012; 127
Bendifallah, Canlorbe, Laas 2015; 22
Kadan, Calvino, Katz 2017; 37
Wang, Li, Cragun 2016; 26
Mariani, Webb, Galli 2000; 76
Weegar, Kvist, Sundström 2015; 2015
Bou Zgheib, Marchion, Bush 2016; 11
Ma, Ha, Bai 2016; 12
Abu-Rustum, Alektiar, Iasonos 2006; 103
Teixeira, Ribeiro, Schmeler 2017; 137
Cignini, Vitale, Laganà 2017; 69
Park, Choi, Kim 2016; 26
Leung, Delong, Alipanahi; 104
Ferlay, Soerjomataram, Dikshit 2015; 136
Sari, İ, Sahin 2017
Ramakrishnan, Dral, Rupp 2015; 11
Todo, Sakuragi 2013; 39
Kononenko 2001; 23
Atan 2016; 19
Kitchener, Swart 2009; 373
Creasman, Morrow, Bundy 1987; 60
Reich 1996; 12
Stålberg, Kjølhede, Bjurberg 2017; 140
Lantz 2013
Sala, Morotti, Menada 2014; 24
Bodurtha Smith, Fader, Tanner 2017; 216
Ball, Brunner 2010; 19
Ma, Ha, Bai (bb0045) 2016; 12
Ball, Brunner (bb0070) 2010; 19
Shepherd (bb0095) 1989; 96
Mariani, Webb, Galli (bb0100) 2000; 76
Todo, Sakuragi (bb0115) 2013; 39
Cignini, Vitale, Laganà (bb0030) 2017; 69
Sari, İ, Sahin (bb0135) 2017
Bendifallah, Canlorbe, Laas (bb0015) 2015; 22
Weegar, Kvist, Sundström (bb0130) 2015; 2015
Atan (bb0055) 2016; 19
Wang, Li, Cragun (bb0150) 2016; 26
Pecorelli (bb0085) 2009; 105
Teixeira, Ribeiro, Schmeler (bb0025) 2017; 137
Bou Zgheib, Marchion, Bush (bb0040) 2016; 11
Stålberg, Kjølhede, Bjurberg (bb0140) 2017; 140
MKK Leung , ADelong, BAlipanahi, et al . Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE Inst Electr Electron Eng;104:176–97.
Park, Choi, Kim (bb0125) 2016; 26
Wang, Han, Teng (bb0035) 2017; 136
Pollom, Conklin, von Eyben (bb0020) 2016; 35
Bodurtha Smith, Fader, Tanner (bb0165) 2017; 216
Ramakrishnan, Dral, Rupp (bb0075) 2015; 11
Lantz (bb0080) 2013
Creasman, Morrow, Bundy (bb0010) 1987; 60
Reich (bb0065) 1996; 12
Abu-Rustum, Alektiar, Iasonos (bb0110) 2006; 103
Kelleher, Mac Namee, D’Arcy (bb0050) 2015
Kononenko (bb0120) 2001; 23
Kadan, Calvino, Katz (bb0145) 2017; 37
Kumar, Medeiros, Dowdy (bb0160) 2012; 127
Ferlay, Soerjomataram, Dikshit (bb0090) 2015; 136
Sala, Morotti, Menada (bb0155) 2014; 24
ASTEC study group (bb0105) 2009; 373
Bendifallah (10.1136/ijgc-2018-000033_bb0015) 2015; 22
Bodurtha Smith (10.1136/ijgc-2018-000033_bb0165) 2017; 216
Reich (10.1136/ijgc-2018-000033_bb0065) 1996; 12
Pollom (10.1136/ijgc-2018-000033_bb0020) 2016; 35
Wang (10.1136/ijgc-2018-000033_bb0035) 2017; 136
Kelleher (10.1136/ijgc-2018-000033_bb0050) 2015
Kumar (10.1136/ijgc-2018-000033_bb0160) 2012; 127
Sala (10.1136/ijgc-2018-000033_bb0155) 2014; 24
Creasman (10.1136/ijgc-2018-000033_bb0010) 1987; 60
10.1136/ijgc-2018-000033_bb0060
Todo (10.1136/ijgc-2018-000033_bb0115) 2013; 39
Mariani (10.1136/ijgc-2018-000033_bb0100) 2000; 76
Kononenko (10.1136/ijgc-2018-000033_bb0120) 2001; 23
Park (10.1136/ijgc-2018-000033_bb0125) 2016; 26
Bou Zgheib (10.1136/ijgc-2018-000033_bb0040) 2016; 11
Atan (10.1136/ijgc-2018-000033_bb0055) 2016; 19
Lantz (10.1136/ijgc-2018-000033_bb0080) 2013
Teixeira (10.1136/ijgc-2018-000033_bb0025) 2017; 137
Abu-Rustum (10.1136/ijgc-2018-000033_bb0110) 2006; 103
Sari (10.1136/ijgc-2018-000033_bb0135) 2017
Ferlay (10.1136/ijgc-2018-000033_bb0090) 2015; 136
ASTEC study group (10.1136/ijgc-2018-000033_bb0105) 2009; 373
Weegar (10.1136/ijgc-2018-000033_bb0130) 2015; 2015
Cignini (10.1136/ijgc-2018-000033_bb0030) 2017; 69
Stålberg (10.1136/ijgc-2018-000033_bb0140) 2017; 140
Ramakrishnan (10.1136/ijgc-2018-000033_bb0075) 2015; 11
Ball (10.1136/ijgc-2018-000033_bb0070) 2010; 19
Ma (10.1136/ijgc-2018-000033_bb0045) 2016; 12
Pecorelli (10.1136/ijgc-2018-000033_bb0085) 2009; 105
Wang (10.1136/ijgc-2018-000033_bb0150) 2016; 26
Kadan (10.1136/ijgc-2018-000033_bb0145) 2017; 37
Shepherd (10.1136/ijgc-2018-000033_bb0095) 1989; 96
References_xml – volume: 69
  start-page: 75
  year: 2017
  article-title: Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up
  publication-title: Updates Surg
  doi: 10.1007/s13304-017-0418-z
– volume: 96
  start-page: 889
  year: 1989
  article-title: Revised FIGO staging for gynaecological cancer
  publication-title: Br J Obstet Gynaecol
  doi: 10.1111/j.1471-0528.1989.tb03341.x
– volume: 140
  start-page: 2693
  year: 2017
  article-title: Risk factors for lymph node metastases in women with endometrial cancer: a population-based, nation-wide register study-On behalf of the Swedish Gynecological Cancer Group
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30707
– year: 2013
  article-title: Machine learning with R. Packt Publishing Ltd
– volume: 103
  start-page: 714
  year: 2006
  article-title: The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2006.03.055
– volume: 37
  start-page: 514
  year: 2017
  article-title: Predictors for lymph nodes involvement in low risk endometrial cancer
  publication-title: J Obstet Gynaecol
  doi: 10.1080/01443615.2017.1281895
– volume: 11
  start-page: 2087
  year: 2015
  article-title: Big data meets quantum chemistry approximations: the Δ-Machine learning approach
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00099
– volume: 35
  start-page: 395
  year: 2016
  article-title: Nomogram to predict risk of lymph node metastases in patients with endometrioid endometrial cancer
  publication-title: Int J Gynecol Pathol
  doi: 10.1097/PGP.0000000000000246
– volume: 60
  start-page: 2035
  issue: 8 Suppl
  year: 1987
  article-title: Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study
  publication-title: Cancer
  doi: 10.1002/1097-0142(19901015)60:8+<2035::AID-CNCR2820601515>3.0.CO;2-8
– volume: 105
  start-page: 103
  year: 2009
  article-title: Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium
  publication-title: Int J Gynaecol Obstet
  doi: 10.1016/j.ijgo.2009.02.012
– volume: 136
  start-page: 58
  year: 2017
  article-title: Predictive value of serum HE4 and CA125 concentrations for lymphatic metastasis of endometrial cancer
  publication-title: Int J Gynaecol Obstet
  doi: 10.1002/ijgo.12010
– volume: 22
  start-page: 4224
  year: 2015
  article-title: A predictive model using histopathologic characteristics of early-stage type 1 endometrial cancer to identify patients at high risk for lymph node metastasis
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-015-4548-6
– volume: 137
  start-page: 78
  year: 2017
  article-title: A preoperative and intraoperative scoring system to predict nodal metastasis in endometrial cancer
  publication-title: Int J Gynaecol Obstet
  doi: 10.1002/ijgo.12103
– volume: 19
  start-page: 137
  year: 2016
  article-title: Veri,BüyükVeriveİşletmecilik.BalıkesirÜniversitesiSosyalBilimlerDergisi
– volume: 24
  start-page: 1021
  year: 2014
  article-title: Intraoperative frozen section risk assessment accurately tailors the surgical staging in patients affected by early-stage endometrial cancer: the application of 2 different risk algorithms
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0000000000000145
– volume: 104
  start-page: 176
  article-title: Machine learning in genomic medicine: a review of computational problems and data sets
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/JPROC.2015.2494198
– volume: 19
  start-page: 1049
  year: 2010
  article-title: Data mining and machine learning in astronomy
  publication-title: International Journal of Modern Physics D
  doi: 10.1142/S0218271810017160
– volume: 127
  start-page: 525
  year: 2012
  article-title: A prospective assessment of the reliability of frozen section to direct intraoperative decision making in endometrial cancer
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2012.08.024
– volume: 12
  year: 1996
  article-title: Machine learning techniques for civil engineering problems
  publication-title: Research Gate
– volume: 23
  start-page: 89
  year: 2001
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00077-X
– volume: 136
  start-page: E359
  year: 2015
  article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29210
– volume: 39
  start-page: 471
  year: 2013
  article-title: Systematic lymphadenectomy in endometrial cancer
  publication-title: J Obstet Gynaecol Res
  doi: 10.1111/j.1447-0756.2012.02062.x
– volume: 76
  start-page: 348
  year: 2000
  article-title: Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer
  publication-title: Gynecol Oncol
  doi: 10.1006/gyno.1999.5688
– volume: 26
  start-page: 918
  year: 2016
  article-title: Assessment of the role of intraoperative frozen section in guiding surgical staging for endometrial cancer
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0000000000000692
– volume: 373
  start-page: 125
  year: 2009
  article-title: Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61766-3
– volume: 216
  start-page: 459
  year: 2017
  article-title: Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2016.11.1033
– volume: 2015
  start-page: 1296
  year: 2015
  article-title: Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and negEx
  publication-title: AMIA Annu Symp Proc
– volume: 12
  start-page: 4403
  year: 2016
  article-title: Overexpression of microRNA-205 predicts lymph node metastasis and indicates an unfavorable prognosis in endometrial cancer
  publication-title: Oncol Lett
  doi: 10.3892/ol.2016.5262
– year: 2017
  article-title: Risk factors for paraaortic lymph node metastasis in endometrial cancer
  publication-title: Int J ClinOncol
– volume: 11
  start-page: 323
  year: 2016
  article-title: Molecular determinants for lymph node metastasis in clinically early-stage endometrial cancer
  publication-title: Oncol Lett
  doi: 10.3892/ol.2015.3883
– volume: 26
  start-page: 104
  year: 2016
  article-title: Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0000000000000566
– volume: 22
  start-page: 4224
  year: 2015
  end-page: 32
  ident: bb0015
  article-title: A predictive model using histopathologic characteristics of early-stage type 1 endometrial cancer to identify patients at high risk for lymph node metastasis
  publication-title: Ann Surg Oncol
– volume: 76
  start-page: 348
  year: 2000
  end-page: 56
  ident: bb0100
  article-title: Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer
  publication-title: Gynecol Oncol
– volume: 60
  start-page: 2035
  year: 1987
  end-page: 41
  ident: bb0010
  article-title: Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study
  publication-title: Cancer
– volume: 103
  start-page: 714
  year: 2006
  end-page: 8
  ident: bb0110
  article-title: The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center
  publication-title: Gynecol Oncol
– volume: 39
  start-page: 471
  year: 2013
  end-page: 7
  ident: bb0115
  article-title: Systematic lymphadenectomy in endometrial cancer
  publication-title: J Obstet Gynaecol Res
– volume: 26
  start-page: 104
  year: 2016
  end-page: 13
  ident: bb0125
  article-title: Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning
  publication-title: Int J Gynecol Cancer
– volume: 35
  start-page: 395
  year: 2016
  end-page: 401
  ident: bb0020
  article-title: Nomogram to predict risk of lymph node metastases in patients with endometrioid endometrial cancer
  publication-title: Int J Gynecol Pathol
– volume: 12
  year: 1996
  ident: bb0065
  article-title: Machine learning techniques for civil engineering problems
  publication-title: Research Gate
– volume: 37
  start-page: 514
  year: 2017
  end-page: 8
  ident: bb0145
  article-title: Predictors for lymph nodes involvement in low risk endometrial cancer
  publication-title: J Obstet Gynaecol
– volume: 19
  start-page: 137
  year: 2016
  end-page: 53
  ident: bb0055
  article-title: Veri,BüyükVeriveİşletmecilik.BalıkesirÜniversitesiSosyalBilimlerDergisi
– year: 2017
  ident: bb0135
  article-title: Risk factors for paraaortic lymph node metastasis in endometrial cancer
  publication-title: Int J ClinOncol
– volume: 136
  start-page: 58
  year: 2017
  end-page: 63
  ident: bb0035
  article-title: Predictive value of serum HE4 and CA125 concentrations for lymphatic metastasis of endometrial cancer
  publication-title: Int J Gynaecol Obstet
– reference: MKK Leung , ADelong, BAlipanahi, et al . Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE Inst Electr Electron Eng;104:176–97.
– volume: 136
  start-page: E359
  year: 2015
  end-page: E386
  ident: bb0090
  article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int J Cancer
– volume: 11
  start-page: 323
  year: 2016
  end-page: 9
  ident: bb0040
  article-title: Molecular determinants for lymph node metastasis in clinically early-stage endometrial cancer
  publication-title: Oncol Lett
– volume: 140
  start-page: 2693
  year: 2017
  end-page: 700
  ident: bb0140
  article-title: Risk factors for lymph node metastases in women with endometrial cancer: a population-based, nation-wide register study-On behalf of the Swedish Gynecological Cancer Group
  publication-title: Int J Cancer
– volume: 96
  start-page: 889
  year: 1989
  end-page: 92
  ident: bb0095
  article-title: Revised FIGO staging for gynaecological cancer
  publication-title: Br J Obstet Gynaecol
– volume: 137
  start-page: 78
  year: 2017
  end-page: 85
  ident: bb0025
  article-title: A preoperative and intraoperative scoring system to predict nodal metastasis in endometrial cancer
  publication-title: Int J Gynaecol Obstet
– volume: 26
  start-page: 918
  year: 2016
  end-page: 23
  ident: bb0150
  article-title: Assessment of the role of intraoperative frozen section in guiding surgical staging for endometrial cancer
  publication-title: Int J Gynecol Cancer
– volume: 105
  start-page: 103
  year: 2009
  end-page: 4
  ident: bb0085
  article-title: Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium
  publication-title: Int J Gynaecol Obstet
– volume: 69
  start-page: 75
  year: 2017
  end-page: 82
  ident: bb0030
  article-title: Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up
  publication-title: Updates Surg
– volume: 11
  start-page: 2087
  year: 2015
  end-page: 96
  ident: bb0075
  article-title: Big data meets quantum chemistry approximations: the Δ-Machine learning approach
  publication-title: J Chem Theory Comput
– volume: 24
  start-page: 1021
  year: 2014
  end-page: 6
  ident: bb0155
  article-title: Intraoperative frozen section risk assessment accurately tailors the surgical staging in patients affected by early-stage endometrial cancer: the application of 2 different risk algorithms
  publication-title: Int J Gynecol Cancer
– volume: 19
  start-page: 1049
  year: 2010
  end-page: 106
  ident: bb0070
  article-title: Data mining and machine learning in astronomy
  publication-title: International Journal of Modern Physics D
– volume: 373
  start-page: 125
  year: 2009
  end-page: 36
  ident: bb0105
  article-title: Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study
  publication-title: Lancet
– year: 2013
  ident: bb0080
  publication-title: Machine learning with R. Packt Publishing Ltd
– volume: 2015
  start-page: 1296
  year: 2015
  end-page: 305
  ident: bb0130
  article-title: Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and negEx
  publication-title: AMIA Annu Symp Proc
– volume: 216
  start-page: 459
  year: 2017
  end-page: 76
  ident: bb0165
  article-title: Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis
  publication-title: Am J Obstet Gynecol
– year: 2015
  ident: bb0050
– volume: 12
  start-page: 4403
  year: 2016
  end-page: 10
  ident: bb0045
  article-title: Overexpression of microRNA-205 predicts lymph node metastasis and indicates an unfavorable prognosis in endometrial cancer
  publication-title: Oncol Lett
– volume: 127
  start-page: 525
  year: 2012
  end-page: 31
  ident: bb0160
  article-title: A prospective assessment of the reliability of frozen section to direct intraoperative decision making in endometrial cancer
  publication-title: Gynecol Oncol
– volume: 23
  start-page: 89
  year: 2001
  end-page: 109
  ident: bb0120
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
– volume: 11
  start-page: 323
  year: 2016
  ident: 10.1136/ijgc-2018-000033_bb0040
  article-title: Molecular determinants for lymph node metastasis in clinically early-stage endometrial cancer
  publication-title: Oncol Lett
  doi: 10.3892/ol.2015.3883
– volume: 103
  start-page: 714
  year: 2006
  ident: 10.1136/ijgc-2018-000033_bb0110
  article-title: The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2006.03.055
– volume: 35
  start-page: 395
  year: 2016
  ident: 10.1136/ijgc-2018-000033_bb0020
  article-title: Nomogram to predict risk of lymph node metastases in patients with endometrioid endometrial cancer
  publication-title: Int J Gynecol Pathol
  doi: 10.1097/PGP.0000000000000246
– volume: 96
  start-page: 889
  year: 1989
  ident: 10.1136/ijgc-2018-000033_bb0095
  article-title: Revised FIGO staging for gynaecological cancer
  publication-title: Br J Obstet Gynaecol
  doi: 10.1111/j.1471-0528.1989.tb03341.x
– volume: 19
  start-page: 137
  year: 2016
  ident: 10.1136/ijgc-2018-000033_bb0055
  article-title: Veri,BüyükVeriveİşletmecilik.BalıkesirÜniversitesiSosyalBilimlerDergisi
– volume: 216
  start-page: 459
  year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0165
  article-title: Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2016.11.1033
– volume: 39
  start-page: 471
  year: 2013
  ident: 10.1136/ijgc-2018-000033_bb0115
  article-title: Systematic lymphadenectomy in endometrial cancer
  publication-title: J Obstet Gynaecol Res
  doi: 10.1111/j.1447-0756.2012.02062.x
– volume: 136
  start-page: 58
  year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0035
  article-title: Predictive value of serum HE4 and CA125 concentrations for lymphatic metastasis of endometrial cancer
  publication-title: Int J Gynaecol Obstet
  doi: 10.1002/ijgo.12010
– year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0135
  article-title: Risk factors for paraaortic lymph node metastasis in endometrial cancer
  publication-title: Int J ClinOncol
– volume: 2015
  start-page: 1296
  year: 2015
  ident: 10.1136/ijgc-2018-000033_bb0130
  article-title: Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and negEx
  publication-title: AMIA Annu Symp Proc
– volume: 12
  start-page: 4403
  year: 2016
  ident: 10.1136/ijgc-2018-000033_bb0045
  article-title: Overexpression of microRNA-205 predicts lymph node metastasis and indicates an unfavorable prognosis in endometrial cancer
  publication-title: Oncol Lett
  doi: 10.3892/ol.2016.5262
– volume: 24
  start-page: 1021
  year: 2014
  ident: 10.1136/ijgc-2018-000033_bb0155
  article-title: Intraoperative frozen section risk assessment accurately tailors the surgical staging in patients affected by early-stage endometrial cancer: the application of 2 different risk algorithms
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0000000000000145
– volume: 60
  start-page: 2035
  issue: 8 Suppl
  year: 1987
  ident: 10.1136/ijgc-2018-000033_bb0010
  article-title: Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study
  publication-title: Cancer
  doi: 10.1002/1097-0142(19901015)60:8+<2035::AID-CNCR2820601515>3.0.CO;2-8
– year: 2015
  ident: 10.1136/ijgc-2018-000033_bb0050
– volume: 37
  start-page: 514
  year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0145
  article-title: Predictors for lymph nodes involvement in low risk endometrial cancer
  publication-title: J Obstet Gynaecol
  doi: 10.1080/01443615.2017.1281895
– volume: 136
  start-page: E359
  year: 2015
  ident: 10.1136/ijgc-2018-000033_bb0090
  article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012
  publication-title: Int J Cancer
  doi: 10.1002/ijc.29210
– year: 2013
  ident: 10.1136/ijgc-2018-000033_bb0080
  publication-title: Machine learning with R. Packt Publishing Ltd
– ident: 10.1136/ijgc-2018-000033_bb0060
  doi: 10.1109/JPROC.2015.2494198
– volume: 11
  start-page: 2087
  year: 2015
  ident: 10.1136/ijgc-2018-000033_bb0075
  article-title: Big data meets quantum chemistry approximations: the Δ-Machine learning approach
  publication-title: J Chem Theory Comput
  doi: 10.1021/acs.jctc.5b00099
– volume: 23
  start-page: 89
  year: 2001
  ident: 10.1136/ijgc-2018-000033_bb0120
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00077-X
– volume: 105
  start-page: 103
  year: 2009
  ident: 10.1136/ijgc-2018-000033_bb0085
  article-title: Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium
  publication-title: Int J Gynaecol Obstet
  doi: 10.1016/j.ijgo.2009.02.012
– volume: 137
  start-page: 78
  year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0025
  article-title: A preoperative and intraoperative scoring system to predict nodal metastasis in endometrial cancer
  publication-title: Int J Gynaecol Obstet
  doi: 10.1002/ijgo.12103
– volume: 373
  start-page: 125
  year: 2009
  ident: 10.1136/ijgc-2018-000033_bb0105
  article-title: Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study
  publication-title: Lancet
  doi: 10.1016/S0140-6736(08)61766-3
– volume: 26
  start-page: 918
  year: 2016
  ident: 10.1136/ijgc-2018-000033_bb0150
  article-title: Assessment of the role of intraoperative frozen section in guiding surgical staging for endometrial cancer
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0000000000000692
– volume: 127
  start-page: 525
  year: 2012
  ident: 10.1136/ijgc-2018-000033_bb0160
  article-title: A prospective assessment of the reliability of frozen section to direct intraoperative decision making in endometrial cancer
  publication-title: Gynecol Oncol
  doi: 10.1016/j.ygyno.2012.08.024
– volume: 69
  start-page: 75
  year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0030
  article-title: Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up
  publication-title: Updates Surg
  doi: 10.1007/s13304-017-0418-z
– volume: 76
  start-page: 348
  year: 2000
  ident: 10.1136/ijgc-2018-000033_bb0100
  article-title: Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer
  publication-title: Gynecol Oncol
  doi: 10.1006/gyno.1999.5688
– volume: 140
  start-page: 2693
  year: 2017
  ident: 10.1136/ijgc-2018-000033_bb0140
  article-title: Risk factors for lymph node metastases in women with endometrial cancer: a population-based, nation-wide register study-On behalf of the Swedish Gynecological Cancer Group
  publication-title: Int J Cancer
  doi: 10.1002/ijc.30707
– volume: 26
  start-page: 104
  year: 2016
  ident: 10.1136/ijgc-2018-000033_bb0125
  article-title: Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning
  publication-title: Int J Gynecol Cancer
  doi: 10.1097/IGC.0000000000000566
– volume: 22
  start-page: 4224
  year: 2015
  ident: 10.1136/ijgc-2018-000033_bb0015
  article-title: A predictive model using histopathologic characteristics of early-stage type 1 endometrial cancer to identify patients at high risk for lymph node metastasis
  publication-title: Ann Surg Oncol
  doi: 10.1245/s10434-015-4548-6
– volume: 19
  start-page: 1049
  year: 2010
  ident: 10.1136/ijgc-2018-000033_bb0070
  article-title: Data mining and machine learning in astronomy
  publication-title: International Journal of Modern Physics D
  doi: 10.1142/S0218271810017160
– volume: 12
  year: 1996
  ident: 10.1136/ijgc-2018-000033_bb0065
  article-title: Machine learning techniques for civil engineering problems
  publication-title: Research Gate
SSID ssj0009209
Score 2.3555021
Snippet ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in...
The necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent...
OBJECTIVEThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in...
SourceID proquest
pubmed
crossref
wolterskluwer
elsevier
bmj
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 320
SubjectTerms Accuracy
Adult
Aged
Aged, 80 and over
Algorithms
Datasets
Endometrial cancer
Endometrial Neoplasms - pathology
Endometrial Neoplasms - surgery
Female
Follow-Up Studies
Gynecology
Histology
Humans
Lymph Node Excision
lymph node involvement
lymph node status
Lymph Nodes - pathology
Lymph Nodes - surgery
Lymphatic system
Machine Learning
Middle Aged
Models, Statistical
Multivariate analysis
Ovaries
Patients
Predictive Value of Tests
Retrospective Studies
Statistical analysis
Surgery
Title A novel prediction method for lymph node involvement in endometrial cancer: machine learning
URI https://ijgc.bmj.com/content/29/2/320.full
https://dx.doi.org/10.1136/ijgc-2018-000033
https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00009577-201902000-00015
https://www.ncbi.nlm.nih.gov/pubmed/30718313
https://www.proquest.com/docview/2552845755
https://www.proquest.com/docview/2179522771
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1525-1438
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0009209
  issn: 1048-891X
  databaseCode: 7X7
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1525-1438
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0009209
  issn: 1048-891X
  databaseCode: BENPR
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB96VxBFxK_qaS0r9MWH5ZpNNtkVRKq0FKGHiIV7EJbdzW5pvUvO61Xxv3cmH1dFPN9CkknC7OzsbzKzvwHYz2yqo3OSC-8szwoMUDTaEbdOKedcSGSkXwOnk_zkLPswldMtmPR7YaissveJjaMua0__yMcIfdGTIriQbxffOHWNouxq30LDdq0VyjcNxdgAtgUxYw1h-93R5OOnGxretugDYxDFlU6mfeIyzccXl-cebSZRtNH6gBrpDtz88l_L1d9w9A7c_VFThvvqa1Pg_tsydXwf7nX4kh22BvEAtkL1EG6ddhn0R_DlkFX19zBjiyWdo2FhbRdphvCVzX7i6OIdZWAXFXquhk18hccsVGU9D02TD-bJVJav2bypxAysaz1x_hjOjo8-vz_hXYcF7jIpJdfKurLMYx61JxLHJLVa6tK7LAihbKGsSDGi8aVC_yyogMbiCu9FlBhnaCHTHRhWdRWeAou6tC5FORcjER7qRBVOa-GzGDQGJSPYR3WaRcuhYZrYI80Nad2Q1k2r9RGMe30b37GUU7OM2QaJV2uJ_z897YfQdAijRQ4GF5ANUrv9aJtuhl-ZG3scwcv1ZZyblHCxVaiv8R70dohviyIZwZPWStafiL4VvWmCD-d_mI1p9782r9ayKMgk9UFPAJDIZ5s_5jncJoG2rnwXhqvldXiBsGnl9mBQTIu9bkb8Ai3XEXA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJsEQQvza6BhgpPHAQ9TFiRMbaUIDNnVsrRDapD5MMrbjTNvapGs7pv1z_G3cJU4HQpSnvUVNLo3Ol---y53vCNmIdSRzY3jArNFBnEKAIsGOAm2EMMa4kOf4aaDbSzpH8Zc-7y-Qn81eGCyrbDCxAuqstPiNvA3UF5AUyAX_MLoIcGoUZlebERraj1bItqoWY35jx767voIQbrK19xnW-y1juzuHnzqBnzIQmJhzHkihTZYleZJLi40Mw0hLLjNrYseY0KnQLAJWbzMBGMWwiESDl7Ms58C1JcOpEeACluIolhD8LX3c6X39dtP2ty4ygZhHBEKG_SZRGiXt07MTCzYaCtzYvYmDe--Y4dm_3OPf9Pc-eXBVYkZ9cl4V1P_mFncfkYeez9Lt2gAfkwVXPCF3uz5j_5Qcb9Oi_OEGdDTG39AMaD21mgJdpoNrsCa4InP0tACkrLqXT-GYuiIrh64aKkItmub4PR1WlZ-O-lEXJ8_I0a3oeoUsFmXhnhOay0ybCORMnmODRRmK1EjJbJw7CUFQi2yAOtWo7tmhqlgnShRqXaHWVa31Fmk3-lbWd0XH4RyDORLvZhL_v3vULKHyjKZmKgoc1hyp9Wa1lUeUibqx_xZ5MzsNWIAJHl248hKuAXQFPp2mYYus1lYye0TAckDvEG4e_GE2qt5vW_215GmKJik3m4YDIV-b_zCvyb3OYfdAHez19l-QZRSua9rXyeJ0fOleAmWbmlf-vaDk-22_ir8A63hMKw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkCYQQvymMMBI44GHqIsTxzYSQhOj2hibeGBSH5A827GnjTYpbce0f42_jrs46UCI8rS3qs2l0fnz58-58x0hG7nJVLCWJ8xZk-QCNigKcJQYK6W11qc84KuB_YNi5zD_OOTDFfKzOwuDaZUdJzZEXdYO35H3QfoCk4K44P3QpkV83h68m3xPsIMURlq7dhoRInv-4hy2b7O3u9sw1q8YG3z48n4naTsMJDbnnCdKGluWRSiCcljEMM2M4qp0NveMSSOkYRkoeldK4CeGCSQGVjjHAgedrRh2jAD6vy6yTGE6oRiKy4K_Mb0EdjsykSoddiHSrOifnB47QGcq8Uj3JrbsvWbHp_9aGP8WvjfJrfMaY-mzb00q_W8L4uAOud0qWboVoXeXrPjqHlnbb2P198nXLVrVP_yITqb4HQKAxn7VFIQyHV0AjuCK0tOTCjiyqVs-h8_UV2U99k07EeoQlNM3dNzkfHraNrk4fkAOr8TTD8lqVVf-MaFBlcZmYGdDwNKKKpXCKsVcHryC7U-PbIA79SRW69DNLicrNHpdo9d19HqP9Dt_a9fWQ8e2HKMlFq8XFv-_e9YNoW61TNQoGpaqJVbr3Wjrlktm-hL5PfJy8TOwAIZ2TOXrM7gGeBWUtBBpjzyKKFk8IrA48HYKN0_-gI2OJ22bv1ZcCISk2uxKDaT8yfKHeUHWYALqT7sHe0_JDbSNyezrZHU-PfPPQKvN7fNmUlBydNWz8Beyu0nF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+prediction+method+for+lymph+node+involvement+in+endometrial+cancer%3A+machine+learning&rft.jtitle=International+journal+of+gynecological+cancer&rft.au=G%C3%BCnakan%2C+Emre&rft.au=Atan%2C+Suat&rft.au=Haberal%2C+Asuman+Nihan&rft.au=K%C3%BC%C3%A7%C3%BCky%C4%B1ld%C4%B1z%2C+%C4%B0rem+Alyaz%C4%B1c%C4%B1&rft.date=2019-02-01&rft.issn=1525-1438&rft.eissn=1525-1438&rft.volume=29&rft.issue=2&rft.spage=320&rft_id=info:doi/10.1136%2Fijgc-2018-000033&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-891X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-891X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-891X&client=summon