A novel prediction method for lymph node involvement in endometrial cancer: machine learning
ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC...
Saved in:
| Published in | International journal of gynecological cancer Vol. 29; no. 2; pp. 320 - 324 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.02.2019
by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology Elsevier Limited |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1048-891X 1525-1438 1525-1438 |
| DOI | 10.1136/ijgc-2018-000033 |
Cover
| Abstract | ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.MethodsThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.ResultsThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).ConclusionsMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC. |
|---|---|
| AbstractList | The necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.OBJECTIVEThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.The study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.METHODSThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.The mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).RESULTSThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).Machine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC.CONCLUSIONSMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC. ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction.MethodsThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI.ResultsThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all).ConclusionsMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC. The necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction. The study assessed 762 patients with EC. Algorithm models were based on the following histopathological factors: V1: final histology; V2: presence of lymphovascular space invasion (LVSI); V3: grade; V4: tumor diameter; V5: depth of myometrial invasion (MI); V6: cervical glandular stromal invasion (CGSI); V7: tubal or ovarian involvement; and V8: pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI. The mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all). Machine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC. OBJECTIVEThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent years. Machine learning is a broad field that can produce results and estimations. In this study we constructed prediction models for EC patients using the Naïve Bayes machine learning algorithm for LNI prediction. METHODSThe study assessed 762 patients with EC. Algorithm models were based on the following histopathological factorsV1final histology; V2presence of lymphovascular space invasion (LVSI); V3grade; V4tumor diameter; V5depth of myometrial invasion (MI); V6cervical glandular stromal invasion (CGSI); V7tubal or ovarian involvement; and V8pelvic LNI. Logistic regression analysis was also used to evaluate the independent factors affecting LNI. RESULTSThe mean age of patients was 59.1 years. LNI was detected in 102 (13.4%) patients. Para-aortic LNI (PaLNI) was detected in 54 (7.1%) patients, of which four patients had isolated PaLNI. The accuracy rate of the algorithm models was found to be between 84.2% and 88.9% and 85.0% and 97.6% for LNI and PaLNI, respectively. In multivariate analysis, the histologic type, LVSI, depth of MI, and CGSI were independently and significantly associated with LNI (p<0.001 for all). CONCLUSIONSMachine learning may have a place in the decision tree for the management of EC. This is a preliminary report about the use of a new statistical technique. Larger studies with the addition of sentinel lymph node status, laboratory findings, or imaging results with machine learning algorithms may herald a new era in the management of EC. |
| Author | Ayhan, Ali Gökçe, Ehad Haberal, Asuman Nihan Küçükyıldız, İrem Alyazıcı Günakan, Emre Atan, Suat |
| AuthorAffiliation | Software Developer, Ankara, Turkey Department of Obstetrics and Gynecology, University of Medical Sciences, Keçioren Training and Research Hospital, Ankara, Turkey Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey Department of Pathology, Başkent University, School of Medicine, Ankara, Turkey |
| AuthorAffiliation_xml | – name: Software Developer, Ankara, Turkey – name: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey – name: Department of Obstetrics and Gynecology, University of Medical Sciences, Keçioren Training and Research Hospital, Ankara, Turkey – name: Department of Pathology, Başkent University, School of Medicine, Ankara, Turkey |
| Author_xml | – sequence: 1 givenname: Emre surname: Günakan fullname: Günakan, Emre email: emreg43@hotmail.com organization: Department of Obstetrics and Gynecology, University of Medical Sciences, Keçioren Training and Research Hospital, Ankara, Turkey – sequence: 2 givenname: Suat surname: Atan fullname: Atan, Suat email: emreg43@hotmail.com organization: Software Developer, Ankara, Turkey – sequence: 3 givenname: Asuman Nihan surname: Haberal fullname: Haberal, Asuman Nihan email: emreg43@hotmail.com organization: Department of Pathology, Başkent University, School of Medicine, Ankara, Turkey – sequence: 4 givenname: İrem Alyazıcı surname: Küçükyıldız fullname: Küçükyıldız, İrem Alyazıcı email: emreg43@hotmail.com organization: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey – sequence: 5 givenname: Ehad surname: Gökçe fullname: Gökçe, Ehad email: emreg43@hotmail.com organization: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey – sequence: 6 givenname: Ali surname: Ayhan fullname: Ayhan, Ali email: emreg43@hotmail.com organization: Department of Obstetrics and Gynecology, Başkent University, School of Medicine, Ankara, Turkey |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30718313$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkktr3TAQhU1JaR7tvqti6CZQ3OphWVJ2IfQFgW5a6KIgZGkc61aWbiX7hvz7ynWyySLVRiP4zsxozpxWRyEGqKrXGL3HmHYf3O7GNARh0aByKH1WnWBGWINbKo5KjFrRCIl_HlenOe8KIgmSL6pjijgWFNOT6tdlHeIBfL1PYJ2ZXQz1BPMYbT3EVPu7aT8WwkLtwiH6A0wQ5hLXEGwsYHLa10YHA-minrQZXYDag07BhZuX1fNB-wyv7u-z6senj9-vvjTX3z5_vbq8bvqWMdZIoXtru6EbpEGlK0y1ZNKavgVChOZCE9oKbqwAbQihvNNUYEMG1nEmCaNn1fmWd5_inwXyrCaXDXivA8QlK4K5ZIRwjgv69hG6i0sKpTtFGCOiZZytCd_cU0s_gVX75Cad7tTD3ArQbYBJMecEgzJu1uv05qSdVxip1SC1GqRWg9RmUBGiR8KH3E9I2k1yG_0MKf_2yy0kNYL28_gPkozzdQ0kIuW17gJe_3CxyaBM_uCKIhsHxSjrEphZ2eieqvluE_fT7v8d_gWBg8JE |
| CitedBy_id | crossref_primary_10_1007_s00330_020_06870_1 crossref_primary_10_61186_ijbc_15_3_13 crossref_primary_10_1016_j_jclinepi_2023_03_012 crossref_primary_10_2174_0113862073265604231106112203 crossref_primary_10_2139_ssrn_4191367 crossref_primary_10_1016_j_biopha_2020_110255 crossref_primary_10_1007_s00261_021_03210_9 crossref_primary_10_1007_s11831_024_10209_0 crossref_primary_10_1016_j_aprim_2020_04_014 crossref_primary_10_1111_jog_14818 crossref_primary_10_3389_fonc_2022_881850 crossref_primary_10_1016_j_drup_2022_100811 crossref_primary_10_1016_j_artmed_2021_102164 crossref_primary_10_3389_fonc_2022_852746 crossref_primary_10_1007_s10552_024_01942_9 crossref_primary_10_1186_s12874_022_01577_x crossref_primary_10_1109_ACCESS_2020_3008473 crossref_primary_10_3389_fonc_2021_762329 crossref_primary_10_3389_fonc_2023_1289050 crossref_primary_10_1007_s11831_023_09886_0 crossref_primary_10_1080_1061186X_2024_2448711 crossref_primary_10_1136_ijgc_2023_004622 crossref_primary_10_2174_1386207325666220304112914 crossref_primary_10_3892_ijo_2023_5555 crossref_primary_10_1097_OGX_0000000000000902 crossref_primary_10_58252_artukluhealth_1497539 |
| Cites_doi | 10.1007/s13304-017-0418-z 10.1111/j.1471-0528.1989.tb03341.x 10.1002/ijc.30707 10.1016/j.ygyno.2006.03.055 10.1080/01443615.2017.1281895 10.1021/acs.jctc.5b00099 10.1097/PGP.0000000000000246 10.1002/1097-0142(19901015)60:8+<2035::AID-CNCR2820601515>3.0.CO;2-8 10.1016/j.ijgo.2009.02.012 10.1002/ijgo.12010 10.1245/s10434-015-4548-6 10.1002/ijgo.12103 10.1097/IGC.0000000000000145 10.1109/JPROC.2015.2494198 10.1142/S0218271810017160 10.1016/j.ygyno.2012.08.024 10.1016/S0933-3657(01)00077-X 10.1002/ijc.29210 10.1111/j.1447-0756.2012.02062.x 10.1006/gyno.1999.5688 10.1097/IGC.0000000000000692 10.1016/S0140-6736(08)61766-3 10.1016/j.ajog.2016.11.1033 10.3892/ol.2016.5262 10.3892/ol.2015.3883 10.1097/IGC.0000000000000566 |
| ContentType | Journal Article |
| Copyright | IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ. 2019 IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ. 2019 by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology. |
| Copyright_xml | – notice: IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2019 IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2019 by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. M0S PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| DOI | 10.1136/ijgc-2018-000033 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest One Health & Nursing ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete ProQuest Health & Medical Research Collection Health Research Premium Collection ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) ProQuest One Academic ProQuest Central (New) ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest One Academic Middle East (New) MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 7X7 name: Health & Medical Collection url: https://search.proquest.com/healthcomplete sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1525-1438 |
| EndPage | 324 |
| ExternalDocumentID | 30718313 10_1136_ijgc_2018_000033 00009577-201902000-00015 S1048891X24010740 ijgc |
| Genre | Clinical Trial Journal Article |
| GroupedDBID | --- .3N .Z2 0R~ 1OC 29J 31~ 36B 4.4 53G 5GY 5VS 7X7 8-1 8FI 8FJ AAHLL AAKAS AARTV AAXUO ABBUW ABJNI ABUWG ABXVJ ABZAD ACDDN ACEWG ACGFO ACGFS ACWDW ACWRI ACXNZ ACXQS ADZCM AENEX AFBPY AFEBI AFKRA AFTRI AFZJQ AGINI AHEFC AIZYK AJAOE AJNYG AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BFHJK BQLVK CAG CCPQU CO8 COF CS3 CXRWF DC6 DCZOG E.X EBS EJD EX3 F5P FDB FL- FYUFA FZ0 HAJ HMCUK HZI HZ~ IHE IN~ KD2 L-C LH4 LW6 M41 O9- OCUKA OHYEH ORVUJ OUVQU OVD OXXIT P2P RMJ ROL S4S TEORI UDS UKHRP V2I W3M W99 WOW X3V X3W YUY 6I. AAFTH AALRI AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION PHGZM CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK AMRAJ K9. PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
| ID | FETCH-LOGICAL-b4555-98abdd6f6f9c031313a959dcb4e228a78a23487cd8eac22376a381c2f56759253 |
| IEDL.DBID | BENPR |
| ISSN | 1048-891X 1525-1438 |
| IngestDate | Sun Sep 28 14:26:53 EDT 2025 Tue Oct 07 07:20:35 EDT 2025 Mon Jul 21 06:04:11 EDT 2025 Wed Oct 01 05:43:29 EDT 2025 Thu Apr 24 22:56:42 EDT 2025 Fri May 16 03:53:33 EDT 2025 Sat Mar 01 15:46:15 EST 2025 Thu Apr 24 23:05:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | endometrial cancer lymph node status machine learning lymph node involvement |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. IGCS and ESGO 2019. No commercial re-use. See rights and permissions. Published by BMJ. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b4555-98abdd6f6f9c031313a959dcb4e228a78a23487cd8eac22376a381c2f56759253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://dx.doi.org/10.1136/ijgc-2018-000033 |
| PMID | 30718313 |
| PQID | 2552845755 |
| PQPubID | 5161120 |
| PageCount | 5 |
| ParticipantIDs | proquest_miscellaneous_2179522771 proquest_journals_2552845755 pubmed_primary_30718313 crossref_citationtrail_10_1136_ijgc_2018_000033 crossref_primary_10_1136_ijgc_2018_000033 wolterskluwer_health_00009577-201902000-00015 elsevier_sciencedirect_doi_10_1136_ijgc_2018_000033 bmj_primary_10_1136_ijgc_2018_000033 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190200 February 2019 2019-February 2019-02-00 20190201 |
| PublicationDateYYYYMMDD | 2019-02-01 |
| PublicationDate_xml | – month: 02 year: 2019 text: 20190200 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Kidlington |
| PublicationTitle | International journal of gynecological cancer |
| PublicationTitleAlternate | Int J Gynecol Cancer |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology Elsevier Limited |
| Publisher_xml | – name: Elsevier Inc – name: by the International Gynecologic Cancer Society and the European Society of Gynaecological Oncology – name: Elsevier Limited |
| References | Shepherd 1989; 96 Pollom, Conklin, von Eyben 2016; 35 Wang, Han, Teng 2017; 136 Pecorelli 2009; 105 Kumar, Medeiros, Dowdy 2012; 127 Bendifallah, Canlorbe, Laas 2015; 22 Kadan, Calvino, Katz 2017; 37 Wang, Li, Cragun 2016; 26 Mariani, Webb, Galli 2000; 76 Weegar, Kvist, Sundström 2015; 2015 Bou Zgheib, Marchion, Bush 2016; 11 Ma, Ha, Bai 2016; 12 Abu-Rustum, Alektiar, Iasonos 2006; 103 Teixeira, Ribeiro, Schmeler 2017; 137 Cignini, Vitale, Laganà 2017; 69 Park, Choi, Kim 2016; 26 Leung, Delong, Alipanahi; 104 Ferlay, Soerjomataram, Dikshit 2015; 136 Sari, İ, Sahin 2017 Ramakrishnan, Dral, Rupp 2015; 11 Todo, Sakuragi 2013; 39 Kononenko 2001; 23 Atan 2016; 19 Kitchener, Swart 2009; 373 Creasman, Morrow, Bundy 1987; 60 Reich 1996; 12 Stålberg, Kjølhede, Bjurberg 2017; 140 Lantz 2013 Sala, Morotti, Menada 2014; 24 Bodurtha Smith, Fader, Tanner 2017; 216 Ball, Brunner 2010; 19 Ma, Ha, Bai (bb0045) 2016; 12 Ball, Brunner (bb0070) 2010; 19 Shepherd (bb0095) 1989; 96 Mariani, Webb, Galli (bb0100) 2000; 76 Todo, Sakuragi (bb0115) 2013; 39 Cignini, Vitale, Laganà (bb0030) 2017; 69 Sari, İ, Sahin (bb0135) 2017 Bendifallah, Canlorbe, Laas (bb0015) 2015; 22 Weegar, Kvist, Sundström (bb0130) 2015; 2015 Atan (bb0055) 2016; 19 Wang, Li, Cragun (bb0150) 2016; 26 Pecorelli (bb0085) 2009; 105 Teixeira, Ribeiro, Schmeler (bb0025) 2017; 137 Bou Zgheib, Marchion, Bush (bb0040) 2016; 11 Stålberg, Kjølhede, Bjurberg (bb0140) 2017; 140 MKK Leung , ADelong, BAlipanahi, et al . Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE Inst Electr Electron Eng;104:176–97. Park, Choi, Kim (bb0125) 2016; 26 Wang, Han, Teng (bb0035) 2017; 136 Pollom, Conklin, von Eyben (bb0020) 2016; 35 Bodurtha Smith, Fader, Tanner (bb0165) 2017; 216 Ramakrishnan, Dral, Rupp (bb0075) 2015; 11 Lantz (bb0080) 2013 Creasman, Morrow, Bundy (bb0010) 1987; 60 Reich (bb0065) 1996; 12 Abu-Rustum, Alektiar, Iasonos (bb0110) 2006; 103 Kelleher, Mac Namee, D’Arcy (bb0050) 2015 Kononenko (bb0120) 2001; 23 Kadan, Calvino, Katz (bb0145) 2017; 37 Kumar, Medeiros, Dowdy (bb0160) 2012; 127 Ferlay, Soerjomataram, Dikshit (bb0090) 2015; 136 Sala, Morotti, Menada (bb0155) 2014; 24 ASTEC study group (bb0105) 2009; 373 Bendifallah (10.1136/ijgc-2018-000033_bb0015) 2015; 22 Bodurtha Smith (10.1136/ijgc-2018-000033_bb0165) 2017; 216 Reich (10.1136/ijgc-2018-000033_bb0065) 1996; 12 Pollom (10.1136/ijgc-2018-000033_bb0020) 2016; 35 Wang (10.1136/ijgc-2018-000033_bb0035) 2017; 136 Kelleher (10.1136/ijgc-2018-000033_bb0050) 2015 Kumar (10.1136/ijgc-2018-000033_bb0160) 2012; 127 Sala (10.1136/ijgc-2018-000033_bb0155) 2014; 24 Creasman (10.1136/ijgc-2018-000033_bb0010) 1987; 60 10.1136/ijgc-2018-000033_bb0060 Todo (10.1136/ijgc-2018-000033_bb0115) 2013; 39 Mariani (10.1136/ijgc-2018-000033_bb0100) 2000; 76 Kononenko (10.1136/ijgc-2018-000033_bb0120) 2001; 23 Park (10.1136/ijgc-2018-000033_bb0125) 2016; 26 Bou Zgheib (10.1136/ijgc-2018-000033_bb0040) 2016; 11 Atan (10.1136/ijgc-2018-000033_bb0055) 2016; 19 Lantz (10.1136/ijgc-2018-000033_bb0080) 2013 Teixeira (10.1136/ijgc-2018-000033_bb0025) 2017; 137 Abu-Rustum (10.1136/ijgc-2018-000033_bb0110) 2006; 103 Sari (10.1136/ijgc-2018-000033_bb0135) 2017 Ferlay (10.1136/ijgc-2018-000033_bb0090) 2015; 136 ASTEC study group (10.1136/ijgc-2018-000033_bb0105) 2009; 373 Weegar (10.1136/ijgc-2018-000033_bb0130) 2015; 2015 Cignini (10.1136/ijgc-2018-000033_bb0030) 2017; 69 Stålberg (10.1136/ijgc-2018-000033_bb0140) 2017; 140 Ramakrishnan (10.1136/ijgc-2018-000033_bb0075) 2015; 11 Ball (10.1136/ijgc-2018-000033_bb0070) 2010; 19 Ma (10.1136/ijgc-2018-000033_bb0045) 2016; 12 Pecorelli (10.1136/ijgc-2018-000033_bb0085) 2009; 105 Wang (10.1136/ijgc-2018-000033_bb0150) 2016; 26 Kadan (10.1136/ijgc-2018-000033_bb0145) 2017; 37 Shepherd (10.1136/ijgc-2018-000033_bb0095) 1989; 96 |
| References_xml | – volume: 69 start-page: 75 year: 2017 article-title: Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up publication-title: Updates Surg doi: 10.1007/s13304-017-0418-z – volume: 96 start-page: 889 year: 1989 article-title: Revised FIGO staging for gynaecological cancer publication-title: Br J Obstet Gynaecol doi: 10.1111/j.1471-0528.1989.tb03341.x – volume: 140 start-page: 2693 year: 2017 article-title: Risk factors for lymph node metastases in women with endometrial cancer: a population-based, nation-wide register study-On behalf of the Swedish Gynecological Cancer Group publication-title: Int J Cancer doi: 10.1002/ijc.30707 – year: 2013 article-title: Machine learning with R. Packt Publishing Ltd – volume: 103 start-page: 714 year: 2006 article-title: The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2006.03.055 – volume: 37 start-page: 514 year: 2017 article-title: Predictors for lymph nodes involvement in low risk endometrial cancer publication-title: J Obstet Gynaecol doi: 10.1080/01443615.2017.1281895 – volume: 11 start-page: 2087 year: 2015 article-title: Big data meets quantum chemistry approximations: the Δ-Machine learning approach publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00099 – volume: 35 start-page: 395 year: 2016 article-title: Nomogram to predict risk of lymph node metastases in patients with endometrioid endometrial cancer publication-title: Int J Gynecol Pathol doi: 10.1097/PGP.0000000000000246 – volume: 60 start-page: 2035 issue: 8 Suppl year: 1987 article-title: Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study publication-title: Cancer doi: 10.1002/1097-0142(19901015)60:8+<2035::AID-CNCR2820601515>3.0.CO;2-8 – volume: 105 start-page: 103 year: 2009 article-title: Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium publication-title: Int J Gynaecol Obstet doi: 10.1016/j.ijgo.2009.02.012 – volume: 136 start-page: 58 year: 2017 article-title: Predictive value of serum HE4 and CA125 concentrations for lymphatic metastasis of endometrial cancer publication-title: Int J Gynaecol Obstet doi: 10.1002/ijgo.12010 – volume: 22 start-page: 4224 year: 2015 article-title: A predictive model using histopathologic characteristics of early-stage type 1 endometrial cancer to identify patients at high risk for lymph node metastasis publication-title: Ann Surg Oncol doi: 10.1245/s10434-015-4548-6 – volume: 137 start-page: 78 year: 2017 article-title: A preoperative and intraoperative scoring system to predict nodal metastasis in endometrial cancer publication-title: Int J Gynaecol Obstet doi: 10.1002/ijgo.12103 – volume: 19 start-page: 137 year: 2016 article-title: Veri,BüyükVeriveİşletmecilik.BalıkesirÜniversitesiSosyalBilimlerDergisi – volume: 24 start-page: 1021 year: 2014 article-title: Intraoperative frozen section risk assessment accurately tailors the surgical staging in patients affected by early-stage endometrial cancer: the application of 2 different risk algorithms publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0000000000000145 – volume: 104 start-page: 176 article-title: Machine learning in genomic medicine: a review of computational problems and data sets publication-title: Proc IEEE Inst Electr Electron Eng doi: 10.1109/JPROC.2015.2494198 – volume: 19 start-page: 1049 year: 2010 article-title: Data mining and machine learning in astronomy publication-title: International Journal of Modern Physics D doi: 10.1142/S0218271810017160 – volume: 127 start-page: 525 year: 2012 article-title: A prospective assessment of the reliability of frozen section to direct intraoperative decision making in endometrial cancer publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2012.08.024 – volume: 12 year: 1996 article-title: Machine learning techniques for civil engineering problems publication-title: Research Gate – volume: 23 start-page: 89 year: 2001 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00077-X – volume: 136 start-page: E359 year: 2015 article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 publication-title: Int J Cancer doi: 10.1002/ijc.29210 – volume: 39 start-page: 471 year: 2013 article-title: Systematic lymphadenectomy in endometrial cancer publication-title: J Obstet Gynaecol Res doi: 10.1111/j.1447-0756.2012.02062.x – volume: 76 start-page: 348 year: 2000 article-title: Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer publication-title: Gynecol Oncol doi: 10.1006/gyno.1999.5688 – volume: 26 start-page: 918 year: 2016 article-title: Assessment of the role of intraoperative frozen section in guiding surgical staging for endometrial cancer publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0000000000000692 – volume: 373 start-page: 125 year: 2009 article-title: Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study publication-title: Lancet doi: 10.1016/S0140-6736(08)61766-3 – volume: 216 start-page: 459 year: 2017 article-title: Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2016.11.1033 – volume: 2015 start-page: 1296 year: 2015 article-title: Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and negEx publication-title: AMIA Annu Symp Proc – volume: 12 start-page: 4403 year: 2016 article-title: Overexpression of microRNA-205 predicts lymph node metastasis and indicates an unfavorable prognosis in endometrial cancer publication-title: Oncol Lett doi: 10.3892/ol.2016.5262 – year: 2017 article-title: Risk factors for paraaortic lymph node metastasis in endometrial cancer publication-title: Int J ClinOncol – volume: 11 start-page: 323 year: 2016 article-title: Molecular determinants for lymph node metastasis in clinically early-stage endometrial cancer publication-title: Oncol Lett doi: 10.3892/ol.2015.3883 – volume: 26 start-page: 104 year: 2016 article-title: Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0000000000000566 – volume: 22 start-page: 4224 year: 2015 end-page: 32 ident: bb0015 article-title: A predictive model using histopathologic characteristics of early-stage type 1 endometrial cancer to identify patients at high risk for lymph node metastasis publication-title: Ann Surg Oncol – volume: 76 start-page: 348 year: 2000 end-page: 56 ident: bb0100 article-title: Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer publication-title: Gynecol Oncol – volume: 60 start-page: 2035 year: 1987 end-page: 41 ident: bb0010 article-title: Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study publication-title: Cancer – volume: 103 start-page: 714 year: 2006 end-page: 8 ident: bb0110 article-title: The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center publication-title: Gynecol Oncol – volume: 39 start-page: 471 year: 2013 end-page: 7 ident: bb0115 article-title: Systematic lymphadenectomy in endometrial cancer publication-title: J Obstet Gynaecol Res – volume: 26 start-page: 104 year: 2016 end-page: 13 ident: bb0125 article-title: Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning publication-title: Int J Gynecol Cancer – volume: 35 start-page: 395 year: 2016 end-page: 401 ident: bb0020 article-title: Nomogram to predict risk of lymph node metastases in patients with endometrioid endometrial cancer publication-title: Int J Gynecol Pathol – volume: 12 year: 1996 ident: bb0065 article-title: Machine learning techniques for civil engineering problems publication-title: Research Gate – volume: 37 start-page: 514 year: 2017 end-page: 8 ident: bb0145 article-title: Predictors for lymph nodes involvement in low risk endometrial cancer publication-title: J Obstet Gynaecol – volume: 19 start-page: 137 year: 2016 end-page: 53 ident: bb0055 article-title: Veri,BüyükVeriveİşletmecilik.BalıkesirÜniversitesiSosyalBilimlerDergisi – year: 2017 ident: bb0135 article-title: Risk factors for paraaortic lymph node metastasis in endometrial cancer publication-title: Int J ClinOncol – volume: 136 start-page: 58 year: 2017 end-page: 63 ident: bb0035 article-title: Predictive value of serum HE4 and CA125 concentrations for lymphatic metastasis of endometrial cancer publication-title: Int J Gynaecol Obstet – reference: MKK Leung , ADelong, BAlipanahi, et al . Machine learning in genomic medicine: a review of computational problems and data sets. Proc IEEE Inst Electr Electron Eng;104:176–97. – volume: 136 start-page: E359 year: 2015 end-page: E386 ident: bb0090 article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 publication-title: Int J Cancer – volume: 11 start-page: 323 year: 2016 end-page: 9 ident: bb0040 article-title: Molecular determinants for lymph node metastasis in clinically early-stage endometrial cancer publication-title: Oncol Lett – volume: 140 start-page: 2693 year: 2017 end-page: 700 ident: bb0140 article-title: Risk factors for lymph node metastases in women with endometrial cancer: a population-based, nation-wide register study-On behalf of the Swedish Gynecological Cancer Group publication-title: Int J Cancer – volume: 96 start-page: 889 year: 1989 end-page: 92 ident: bb0095 article-title: Revised FIGO staging for gynaecological cancer publication-title: Br J Obstet Gynaecol – volume: 137 start-page: 78 year: 2017 end-page: 85 ident: bb0025 article-title: A preoperative and intraoperative scoring system to predict nodal metastasis in endometrial cancer publication-title: Int J Gynaecol Obstet – volume: 26 start-page: 918 year: 2016 end-page: 23 ident: bb0150 article-title: Assessment of the role of intraoperative frozen section in guiding surgical staging for endometrial cancer publication-title: Int J Gynecol Cancer – volume: 105 start-page: 103 year: 2009 end-page: 4 ident: bb0085 article-title: Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium publication-title: Int J Gynaecol Obstet – volume: 69 start-page: 75 year: 2017 end-page: 82 ident: bb0030 article-title: Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up publication-title: Updates Surg – volume: 11 start-page: 2087 year: 2015 end-page: 96 ident: bb0075 article-title: Big data meets quantum chemistry approximations: the Δ-Machine learning approach publication-title: J Chem Theory Comput – volume: 24 start-page: 1021 year: 2014 end-page: 6 ident: bb0155 article-title: Intraoperative frozen section risk assessment accurately tailors the surgical staging in patients affected by early-stage endometrial cancer: the application of 2 different risk algorithms publication-title: Int J Gynecol Cancer – volume: 19 start-page: 1049 year: 2010 end-page: 106 ident: bb0070 article-title: Data mining and machine learning in astronomy publication-title: International Journal of Modern Physics D – volume: 373 start-page: 125 year: 2009 end-page: 36 ident: bb0105 article-title: Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study publication-title: Lancet – year: 2013 ident: bb0080 publication-title: Machine learning with R. Packt Publishing Ltd – volume: 2015 start-page: 1296 year: 2015 end-page: 305 ident: bb0130 article-title: Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and negEx publication-title: AMIA Annu Symp Proc – volume: 216 start-page: 459 year: 2017 end-page: 76 ident: bb0165 article-title: Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis publication-title: Am J Obstet Gynecol – year: 2015 ident: bb0050 – volume: 12 start-page: 4403 year: 2016 end-page: 10 ident: bb0045 article-title: Overexpression of microRNA-205 predicts lymph node metastasis and indicates an unfavorable prognosis in endometrial cancer publication-title: Oncol Lett – volume: 127 start-page: 525 year: 2012 end-page: 31 ident: bb0160 article-title: A prospective assessment of the reliability of frozen section to direct intraoperative decision making in endometrial cancer publication-title: Gynecol Oncol – volume: 23 start-page: 89 year: 2001 end-page: 109 ident: bb0120 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med – volume: 11 start-page: 323 year: 2016 ident: 10.1136/ijgc-2018-000033_bb0040 article-title: Molecular determinants for lymph node metastasis in clinically early-stage endometrial cancer publication-title: Oncol Lett doi: 10.3892/ol.2015.3883 – volume: 103 start-page: 714 year: 2006 ident: 10.1136/ijgc-2018-000033_bb0110 article-title: The incidence of symptomatic lower-extremity lymphedema following treatment of uterine corpus malignancies: a 12-year experience at Memorial Sloan-Kettering Cancer Center publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2006.03.055 – volume: 35 start-page: 395 year: 2016 ident: 10.1136/ijgc-2018-000033_bb0020 article-title: Nomogram to predict risk of lymph node metastases in patients with endometrioid endometrial cancer publication-title: Int J Gynecol Pathol doi: 10.1097/PGP.0000000000000246 – volume: 96 start-page: 889 year: 1989 ident: 10.1136/ijgc-2018-000033_bb0095 article-title: Revised FIGO staging for gynaecological cancer publication-title: Br J Obstet Gynaecol doi: 10.1111/j.1471-0528.1989.tb03341.x – volume: 19 start-page: 137 year: 2016 ident: 10.1136/ijgc-2018-000033_bb0055 article-title: Veri,BüyükVeriveİşletmecilik.BalıkesirÜniversitesiSosyalBilimlerDergisi – volume: 216 start-page: 459 year: 2017 ident: 10.1136/ijgc-2018-000033_bb0165 article-title: Sentinel lymph node assessment in endometrial cancer: a systematic review and meta-analysis publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2016.11.1033 – volume: 39 start-page: 471 year: 2013 ident: 10.1136/ijgc-2018-000033_bb0115 article-title: Systematic lymphadenectomy in endometrial cancer publication-title: J Obstet Gynaecol Res doi: 10.1111/j.1447-0756.2012.02062.x – volume: 136 start-page: 58 year: 2017 ident: 10.1136/ijgc-2018-000033_bb0035 article-title: Predictive value of serum HE4 and CA125 concentrations for lymphatic metastasis of endometrial cancer publication-title: Int J Gynaecol Obstet doi: 10.1002/ijgo.12010 – year: 2017 ident: 10.1136/ijgc-2018-000033_bb0135 article-title: Risk factors for paraaortic lymph node metastasis in endometrial cancer publication-title: Int J ClinOncol – volume: 2015 start-page: 1296 year: 2015 ident: 10.1136/ijgc-2018-000033_bb0130 article-title: Finding cervical cancer symptoms in Swedish clinical text using a machine learning approach and negEx publication-title: AMIA Annu Symp Proc – volume: 12 start-page: 4403 year: 2016 ident: 10.1136/ijgc-2018-000033_bb0045 article-title: Overexpression of microRNA-205 predicts lymph node metastasis and indicates an unfavorable prognosis in endometrial cancer publication-title: Oncol Lett doi: 10.3892/ol.2016.5262 – volume: 24 start-page: 1021 year: 2014 ident: 10.1136/ijgc-2018-000033_bb0155 article-title: Intraoperative frozen section risk assessment accurately tailors the surgical staging in patients affected by early-stage endometrial cancer: the application of 2 different risk algorithms publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0000000000000145 – volume: 60 start-page: 2035 issue: 8 Suppl year: 1987 ident: 10.1136/ijgc-2018-000033_bb0010 article-title: Surgical pathologic spread patterns of endometrial cancer. A gynecologic oncology group study publication-title: Cancer doi: 10.1002/1097-0142(19901015)60:8+<2035::AID-CNCR2820601515>3.0.CO;2-8 – year: 2015 ident: 10.1136/ijgc-2018-000033_bb0050 – volume: 37 start-page: 514 year: 2017 ident: 10.1136/ijgc-2018-000033_bb0145 article-title: Predictors for lymph nodes involvement in low risk endometrial cancer publication-title: J Obstet Gynaecol doi: 10.1080/01443615.2017.1281895 – volume: 136 start-page: E359 year: 2015 ident: 10.1136/ijgc-2018-000033_bb0090 article-title: Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012 publication-title: Int J Cancer doi: 10.1002/ijc.29210 – year: 2013 ident: 10.1136/ijgc-2018-000033_bb0080 publication-title: Machine learning with R. Packt Publishing Ltd – ident: 10.1136/ijgc-2018-000033_bb0060 doi: 10.1109/JPROC.2015.2494198 – volume: 11 start-page: 2087 year: 2015 ident: 10.1136/ijgc-2018-000033_bb0075 article-title: Big data meets quantum chemistry approximations: the Δ-Machine learning approach publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.5b00099 – volume: 23 start-page: 89 year: 2001 ident: 10.1136/ijgc-2018-000033_bb0120 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00077-X – volume: 105 start-page: 103 year: 2009 ident: 10.1136/ijgc-2018-000033_bb0085 article-title: Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium publication-title: Int J Gynaecol Obstet doi: 10.1016/j.ijgo.2009.02.012 – volume: 137 start-page: 78 year: 2017 ident: 10.1136/ijgc-2018-000033_bb0025 article-title: A preoperative and intraoperative scoring system to predict nodal metastasis in endometrial cancer publication-title: Int J Gynaecol Obstet doi: 10.1002/ijgo.12103 – volume: 373 start-page: 125 year: 2009 ident: 10.1136/ijgc-2018-000033_bb0105 article-title: Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study publication-title: Lancet doi: 10.1016/S0140-6736(08)61766-3 – volume: 26 start-page: 918 year: 2016 ident: 10.1136/ijgc-2018-000033_bb0150 article-title: Assessment of the role of intraoperative frozen section in guiding surgical staging for endometrial cancer publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0000000000000692 – volume: 127 start-page: 525 year: 2012 ident: 10.1136/ijgc-2018-000033_bb0160 article-title: A prospective assessment of the reliability of frozen section to direct intraoperative decision making in endometrial cancer publication-title: Gynecol Oncol doi: 10.1016/j.ygyno.2012.08.024 – volume: 69 start-page: 75 year: 2017 ident: 10.1136/ijgc-2018-000033_bb0030 article-title: Preoperative work-up for definition of lymph node risk involvement in early stage endometrial cancer: 5-year follow-up publication-title: Updates Surg doi: 10.1007/s13304-017-0418-z – volume: 76 start-page: 348 year: 2000 ident: 10.1136/ijgc-2018-000033_bb0100 article-title: Potential therapeutic role of para-aortic lymphadenectomy in node-positive endometrial cancer publication-title: Gynecol Oncol doi: 10.1006/gyno.1999.5688 – volume: 140 start-page: 2693 year: 2017 ident: 10.1136/ijgc-2018-000033_bb0140 article-title: Risk factors for lymph node metastases in women with endometrial cancer: a population-based, nation-wide register study-On behalf of the Swedish Gynecological Cancer Group publication-title: Int J Cancer doi: 10.1002/ijc.30707 – volume: 26 start-page: 104 year: 2016 ident: 10.1136/ijgc-2018-000033_bb0125 article-title: Intraoperative diagnosis support tool for serous ovarian tumors based on microarray data using multicategory machine learning publication-title: Int J Gynecol Cancer doi: 10.1097/IGC.0000000000000566 – volume: 22 start-page: 4224 year: 2015 ident: 10.1136/ijgc-2018-000033_bb0015 article-title: A predictive model using histopathologic characteristics of early-stage type 1 endometrial cancer to identify patients at high risk for lymph node metastasis publication-title: Ann Surg Oncol doi: 10.1245/s10434-015-4548-6 – volume: 19 start-page: 1049 year: 2010 ident: 10.1136/ijgc-2018-000033_bb0070 article-title: Data mining and machine learning in astronomy publication-title: International Journal of Modern Physics D doi: 10.1142/S0218271810017160 – volume: 12 year: 1996 ident: 10.1136/ijgc-2018-000033_bb0065 article-title: Machine learning techniques for civil engineering problems publication-title: Research Gate |
| SSID | ssj0009209 |
| Score | 2.3555021 |
| Snippet | ObjectiveThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in... The necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in recent... OBJECTIVEThe necessity of lymphadenectomy and the prediction of lymph node involvement (LNI) in endometrial cancer (EC) have been hotly-debated questions in... |
| SourceID | proquest pubmed crossref wolterskluwer elsevier bmj |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 320 |
| SubjectTerms | Accuracy Adult Aged Aged, 80 and over Algorithms Datasets Endometrial cancer Endometrial Neoplasms - pathology Endometrial Neoplasms - surgery Female Follow-Up Studies Gynecology Histology Humans Lymph Node Excision lymph node involvement lymph node status Lymph Nodes - pathology Lymph Nodes - surgery Lymphatic system Machine Learning Middle Aged Models, Statistical Multivariate analysis Ovaries Patients Predictive Value of Tests Retrospective Studies Statistical analysis Surgery |
| Title | A novel prediction method for lymph node involvement in endometrial cancer: machine learning |
| URI | https://ijgc.bmj.com/content/29/2/320.full https://dx.doi.org/10.1136/ijgc-2018-000033 https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00009577-201902000-00015 https://www.ncbi.nlm.nih.gov/pubmed/30718313 https://www.proquest.com/docview/2552845755 https://www.proquest.com/docview/2179522771 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1525-1438 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0009209 issn: 1048-891X databaseCode: 7X7 dateStart: 20180101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1525-1438 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0009209 issn: 1048-891X databaseCode: BENPR dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9RAEB96VxBFxK_qaS0r9MWH5ZpNNtkVRKq0FKGHiIV7EJbdzW5pvUvO61Xxv3cmH1dFPN9CkknC7OzsbzKzvwHYz2yqo3OSC-8szwoMUDTaEbdOKedcSGSkXwOnk_zkLPswldMtmPR7YaissveJjaMua0__yMcIfdGTIriQbxffOHWNouxq30LDdq0VyjcNxdgAtgUxYw1h-93R5OOnGxretugDYxDFlU6mfeIyzccXl-cebSZRtNH6gBrpDtz88l_L1d9w9A7c_VFThvvqa1Pg_tsydXwf7nX4kh22BvEAtkL1EG6ddhn0R_DlkFX19zBjiyWdo2FhbRdphvCVzX7i6OIdZWAXFXquhk18hccsVGU9D02TD-bJVJav2bypxAysaz1x_hjOjo8-vz_hXYcF7jIpJdfKurLMYx61JxLHJLVa6tK7LAihbKGsSDGi8aVC_yyogMbiCu9FlBhnaCHTHRhWdRWeAou6tC5FORcjER7qRBVOa-GzGDQGJSPYR3WaRcuhYZrYI80Nad2Q1k2r9RGMe30b37GUU7OM2QaJV2uJ_z897YfQdAijRQ4GF5ANUrv9aJtuhl-ZG3scwcv1ZZyblHCxVaiv8R70dohviyIZwZPWStafiL4VvWmCD-d_mI1p9782r9ayKMgk9UFPAJDIZ5s_5jncJoG2rnwXhqvldXiBsGnl9mBQTIu9bkb8Ai3XEXA |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJsEQQvza6BhgpPHAQ9TFiRMbaUIDNnVsrRDapD5MMrbjTNvapGs7pv1z_G3cJU4HQpSnvUVNLo3Ol---y53vCNmIdSRzY3jArNFBnEKAIsGOAm2EMMa4kOf4aaDbSzpH8Zc-7y-Qn81eGCyrbDCxAuqstPiNvA3UF5AUyAX_MLoIcGoUZlebERraj1bItqoWY35jx767voIQbrK19xnW-y1juzuHnzqBnzIQmJhzHkihTZYleZJLi40Mw0hLLjNrYseY0KnQLAJWbzMBGMWwiESDl7Ms58C1JcOpEeACluIolhD8LX3c6X39dtP2ty4ygZhHBEKG_SZRGiXt07MTCzYaCtzYvYmDe--Y4dm_3OPf9Pc-eXBVYkZ9cl4V1P_mFncfkYeez9Lt2gAfkwVXPCF3uz5j_5Qcb9Oi_OEGdDTG39AMaD21mgJdpoNrsCa4InP0tACkrLqXT-GYuiIrh64aKkItmub4PR1WlZ-O-lEXJ8_I0a3oeoUsFmXhnhOay0ybCORMnmODRRmK1EjJbJw7CUFQi2yAOtWo7tmhqlgnShRqXaHWVa31Fmk3-lbWd0XH4RyDORLvZhL_v3vULKHyjKZmKgoc1hyp9Wa1lUeUibqx_xZ5MzsNWIAJHl248hKuAXQFPp2mYYus1lYye0TAckDvEG4e_GE2qt5vW_215GmKJik3m4YDIV-b_zCvyb3OYfdAHez19l-QZRSua9rXyeJ0fOleAmWbmlf-vaDk-22_ir8A63hMKw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGkCYQQvymMMBI44GHqIsTxzYSQhOj2hibeGBSH5A827GnjTYpbce0f42_jrs46UCI8rS3qs2l0fnz58-58x0hG7nJVLCWJ8xZk-QCNigKcJQYK6W11qc84KuB_YNi5zD_OOTDFfKzOwuDaZUdJzZEXdYO35H3QfoCk4K44P3QpkV83h68m3xPsIMURlq7dhoRInv-4hy2b7O3u9sw1q8YG3z48n4naTsMJDbnnCdKGluWRSiCcljEMM2M4qp0NveMSSOkYRkoeldK4CeGCSQGVjjHAgedrRh2jAD6vy6yTGE6oRiKy4K_Mb0EdjsykSoddiHSrOifnB47QGcq8Uj3JrbsvWbHp_9aGP8WvjfJrfMaY-mzb00q_W8L4uAOud0qWboVoXeXrPjqHlnbb2P198nXLVrVP_yITqb4HQKAxn7VFIQyHV0AjuCK0tOTCjiyqVs-h8_UV2U99k07EeoQlNM3dNzkfHraNrk4fkAOr8TTD8lqVVf-MaFBlcZmYGdDwNKKKpXCKsVcHryC7U-PbIA79SRW69DNLicrNHpdo9d19HqP9Dt_a9fWQ8e2HKMlFq8XFv-_e9YNoW61TNQoGpaqJVbr3Wjrlktm-hL5PfJy8TOwAIZ2TOXrM7gGeBWUtBBpjzyKKFk8IrA48HYKN0_-gI2OJ22bv1ZcCISk2uxKDaT8yfKHeUHWYALqT7sHe0_JDbSNyezrZHU-PfPPQKvN7fNmUlBydNWz8Beyu0nF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+prediction+method+for+lymph+node+involvement+in+endometrial+cancer%3A+machine+learning&rft.jtitle=International+journal+of+gynecological+cancer&rft.au=G%C3%BCnakan%2C+Emre&rft.au=Atan%2C+Suat&rft.au=Haberal%2C+Asuman+Nihan&rft.au=K%C3%BC%C3%A7%C3%BCky%C4%B1ld%C4%B1z%2C+%C4%B0rem+Alyaz%C4%B1c%C4%B1&rft.date=2019-02-01&rft.issn=1525-1438&rft.eissn=1525-1438&rft.volume=29&rft.issue=2&rft.spage=320&rft_id=info:doi/10.1136%2Fijgc-2018-000033&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1048-891X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1048-891X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1048-891X&client=summon |