A Dynamic Semiparametric Proportional Hazard Model

Abstract This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By employing a categorization of the underlying durations we reformulate the PH model as an ordered response model based on extreme value d...

Full description

Saved in:
Bibliographic Details
Published inStudies in Nonlinear Dynamics & Econometrics Vol. 11; no. 2; pp. 1 - 40
Main Authors Gerhard, Frank, Hautsch, Nikolaus
Format Journal Article
LanguageEnglish
Published Berlin bepress 2007
De Gruyter
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1558-3708
1081-1826
1558-3708
DOI10.2202/1558-3708.1377

Cover

Abstract Abstract This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By employing a categorization of the underlying durations we reformulate the PH model as an ordered response model based on extreme value distributed errors. In order to capture persistent serial dependence in the duration process, we extend the model by an observation driven ARMA dynamic based on generalized errors. We illustrate the maximum likelihood estimation of both the model parameters and discrete points of the underlying unspecified baseline survivor function. The dynamic properties of the model as well as the estimation quality are investigated in a Monte Carlo study. It is illustrated that the model is a useful approach to estimate conditional failure probabilities based on (persistent) serially dependent duration data which might be subject to censoring mechanisms. In an empirical study based on financial transaction data we apply the model to estimate conditional asset price change probabilities. An evaluation of the forecasting properties of the model shows that the proposed approach is a promising competitor to well-established ACD type models. Recommended Citation Frank Gerhard and Nikolaus Hautsch (2007) "A Dynamic Semiparametric Proportional Hazard Model", Studies in Nonlinear Dynamics & Econometrics: Vol. 11: No. 2, Article 1. http://www.bepress.com/snde/vol11/iss2/art1 Related Files SACPH_SNDE.zip (52 kB) Gauss code & data for SACPH model gerhard_datacode.zip (52 kB) Data and code
AbstractList This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By employing a categorization of the underlying durations we reformulate the PH model as an ordered response model based on extreme value distributed errors. In order to capture persistent serial dependence in the duration process, we extend the model by an observation driven ARMA dynamic based on generalized errors. We illustrate the maximum likelihood estimation of both the model parameters and discrete points of the underlying unspecified baseline survivor function. The dynamic properties of the model as well as the estimation quality are investigated in a Monte Carlo study. It is illustrated that the model is a useful approach to estimate conditional failure probabilities based on (persistent) serially dependent duration data which might be subject to censoring mechanisms. In an empirical study based on financial transaction data we apply the model to estimate conditional asset price change probabilities. An evaluation of the forecasting properties of the model shows that the proposed approach is a promising competitor to well-established ACD type models. [PUBLICATION ABSTRACT]
This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By employing a categorization of the underlying durations we reformulate the PH model as an ordered response model based on extreme value distributed errors. In order to capture persistent serial dependence in the duration process, we extend the model by an observation driven ARMA dynamic based on generalized errors. We illustrate the maximum likelihood estimation of both the model parameters and discrete points of the underlying unspecified baseline survivor function. The dynamic properties of the model as well as the estimation quality are investigated in a Monte Carlo study. It is illustrated that the model is a useful approach to estimate conditional failure probabilities based on (persistent) serially dependent duration data which might be subject to censoring mechanisms. In an empirical study based on financial transaction data we apply the model to estimate conditional asset price change probabilities. An evaluation of the forecasting properties of the model shows that the proposed approach is a promising competitor to well-established ACD type models.
Abstract This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By employing a categorization of the underlying durations we reformulate the PH model as an ordered response model based on extreme value distributed errors. In order to capture persistent serial dependence in the duration process, we extend the model by an observation driven ARMA dynamic based on generalized errors. We illustrate the maximum likelihood estimation of both the model parameters and discrete points of the underlying unspecified baseline survivor function. The dynamic properties of the model as well as the estimation quality are investigated in a Monte Carlo study. It is illustrated that the model is a useful approach to estimate conditional failure probabilities based on (persistent) serially dependent duration data which might be subject to censoring mechanisms. In an empirical study based on financial transaction data we apply the model to estimate conditional asset price change probabilities. An evaluation of the forecasting properties of the model shows that the proposed approach is a promising competitor to well-established ACD type models. Recommended Citation Frank Gerhard and Nikolaus Hautsch (2007) "A Dynamic Semiparametric Proportional Hazard Model", Studies in Nonlinear Dynamics & Econometrics: Vol. 11: No. 2, Article 1. http://www.bepress.com/snde/vol11/iss2/art1 Related Files SACPH_SNDE.zip (52 kB) Gauss code & data for SACPH model gerhard_datacode.zip (52 kB) Data and code
This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By employing a categorization of the underlying durations we reformulate the PH model as an ordered response model based on extreme value distributed errors. In order to capture persistent serial dependence in the duration process, we extend the model by an observation driven ARMA dynamic based on generalized errors. We illustrate the maximum likelihood estimation of both the model parameters and discrete points of the underlying unspecified baseline survivor function. The dynamic properties of the model as well as the estimation quality are investigated in a Monte Carlo study. It is illustrated that the model is a useful approach to estimate conditional failure probabilities based on (persistent) serially dependent duration data which might be subject to censoring mechanisms. In an empirical study based on financial transaction data we apply the model to estimate conditional asset price change probabilities. An evaluation of the forecasting properties of the model shows that the proposed approach is a promising competitor to well-established ACD type models. Reprinted by permission of Berkeley Electronic Press
Author Hautsch, Nikolaus
Gerhard, Frank
Author_xml – sequence: 1
  fullname: Gerhard, Frank
– sequence: 2
  fullname: Hautsch, Nikolaus
BackLink http://www.econis.eu/PPNSET?PPN=689174349$$DView this record in ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften
BookMark eNp1kElPwzAQhS0EEuuVKxUHbineEx8roBRRNlHOlpNMJJckDnYqAb-ehKCCKnGaGft7M09vH23XrgaEjgkeU4rpOREiiViMkzFhcbyF9tYP23_6XbQfwhJjIhJF9xCdjC4_alPZbPQMlW2MNxW0vhsfvWucb62rTTmamU_j89Gdy6E8RDuFKQMc_dQD9DK9WlzMovnD9c3FZB6lnIs2KvIMjAQuM5JISTA2mUkxl0rEImUpJyzBMk1V16g8MYUk0CGcUKA0LbhgB-hs2Nt497aC0OrKhgzK0tTgVkEzGWMhKe7A0w1w6Va-sx109ys5U6qHTgYIMlfboBtvK-M_tEwUiTnjqiPGA5F5F4KHYs0QrPuEdR-i7kPUfcKdgG8IMtuaPrHWG1v-L4sGmQ0tvK-PGP-qZcxioZ8WXAt1Se7k_a2e_jpPofEQfq2HOofvjV9LX5cU
CitedBy_id crossref_primary_10_1016_j_matcom_2008_12_020
ContentType Journal Article
Copyright Copyright MIT Press Journals May 2007
Copyright_xml – notice: Copyright MIT Press Journals May 2007
DBID BSCLL
AAYXX
CITATION
OQ6
8BJ
FQK
JBE
DOI 10.2202/1558-3708.1377
DatabaseName Istex
CrossRef
ECONIS
International Bibliography of the Social Sciences (IBSS)
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
DatabaseTitle CrossRef
International Bibliography of the Social Sciences (IBSS)
DatabaseTitleList International Bibliography of the Social Sciences (IBSS)


International Bibliography of the Social Sciences (IBSS)
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 1558-3708
EndPage 40
ExternalDocumentID 1279310371
689174349
10_2202_1558_3708_1377
ark_67375_QT4_59D1M6NK_F
snde1377
Genre Feature
GroupedDBID -~S
.CO
0R~
123
1WD
29Q
4.4
8V8
9-L
AAAVF
AACIX
AADCM
AADUK
AAFPC
AAFWJ
AAGVJ
AAILP
AALGR
AAPJK
AAQCX
AASQH
AAWFC
AAWFX
AAXKO
AAZIW
ABAQN
ABFKT
ABJNI
ABOQI
ABPLS
ABRQL
ABUVI
ABUYE
ABVMU
ABVVF
ABVXM
ABWLS
ACEFL
ACENG
ACGFO
ACGFS
ACHNZ
ACHQT
ACIWK
ACJJM
ACMKP
ACONX
ACPDI
ACPMA
ACVNE
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADGYZ
ADLJJ
ADNWJ
ADOZN
ADUQZ
ADVKO
AEDGQ
AEEFY
AEGVQ
AEHSO
AEJQW
AEKEB
AELUW
AEMOE
AEQDQ
AEQLX
AEQVF
AERMM
AEVKP
AEXIE
AEZWT
AFBAA
AFBQV
AFCXV
AFQUK
AFYRI
AGAWI
AGBEV
AGGNV
AHCWZ
AHXRH
AIAGR
AIBXY
AIKXB
AJATJ
AKVCP
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALOFT
ALUKF
ALWYM
AMAVY
ANIJB
ANIUB
ASPBG
ASYPN
AUUYC
AVWKF
AYQWV
AZFZN
BSCLL
CGZZE
CKPZI
CPBVD
CS3
DASCH
DBYYV
DU5
EBS
EJD
FEDTE
FSTRU
H13
HVGLF
HZ~
K.~
K1G
KDIRW
KGHVJ
KKOJQ
KWZGS
LG7
MV1
O9-
P2P
PQQKQ
PZZ
QD8
ROL
RYL
SA.
SLJYH
T2Y
UK5
WTRAM
~Z8
AAYXX
ABLYR
ACDDV
ACDEB
ACRPL
ADNMO
AFBDD
AFSHE
AGABS
AGQPQ
AGQYU
AHQJS
AIWOI
AMVHM
CITATION
LVMAB
ACTBC
CAG
COF
IY9
NQBSW
OQ6
8BJ
ADNPR
DSRVY
FQK
JBE
ID FETCH-LOGICAL-b445t-fdcea6e46c1866100acab0469575b3b413806bb94139d8af61e0ac412e22bf453
ISSN 1558-3708
1081-1826
IngestDate Fri Sep 05 02:43:46 EDT 2025
Sat Sep 06 16:45:19 EDT 2025
Sat Mar 08 16:55:53 EST 2025
Thu Apr 24 23:10:27 EDT 2025
Tue Jul 01 01:39:12 EDT 2025
Wed Oct 30 09:46:10 EDT 2024
Fri Oct 12 16:17:06 EDT 2018
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b445t-fdcea6e46c1866100acab0469575b3b413806bb94139d8af61e0ac412e22bf453
Notes ArticleID:1558-3708.1377
snde.2007.11.2.1377.pdf
istex:98FBA68AF39A6D46C8F7501D44160D0BAB1428E0
ark:/67375/QT4-59D1M6NK-F
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 203643990
PQPubID 26972
PageCount 40
ParticipantIDs econis_primary_689174349
bepress_primary_snde1377
crossref_citationtrail_10_2202_1558_3708_1377
proquest_journals_203643990
istex_primary_ark_67375_QT4_59D1M6NK_F
crossref_primary_10_2202_1558_3708_1377
proquest_miscellaneous_36705620
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-00-00
PublicationDateYYYYMMDD 2007-01-01
PublicationDate_xml – year: 2007
  text: 2007-00-00
PublicationDecade 2000
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Studies in Nonlinear Dynamics & Econometrics
PublicationYear 2007
Publisher bepress
De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: bepress
– name: De Gruyter
– name: Walter de Gruyter GmbH
SSID ssj0015892
Score 1.6972014
Snippet Abstract This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration...
This paper proposes a dynamic proportional hazard (PH) model with non-specified baseline hazard for the modelling of autoregressive duration processes. By...
SourceID proquest
econis
crossref
istex
bepress
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Asset pricing
Econometric models
Economic models
Error
Estimation
Maximum likelihood method
Monte Carlo simulation
Parameter estimation
Probability
Studies
Value
Vector-autoregressive models
Title A Dynamic Semiparametric Proportional Hazard Model
URI http://www.bepress.com/snde/vol11/iss2/art1/
https://api.istex.fr/ark:/67375/QT4-59D1M6NK-F/fulltext.pdf
http://www.econis.eu/PPNSET?PPN=689174349
https://www.proquest.com/docview/203643990
https://www.proquest.com/docview/36705620
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Business Source Ultimate
  customDbUrl:
  eissn: 1558-3708
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015892
  issn: 1558-3708
  databaseCode: AKVCP
  dateStart: 19960401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=bsu
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbtbqG9lD5ZJ334UNpDcCprJT-OS9I0NGRpYVNyE5It0yXJttheSPPrOyPJ3t00gbQXY2RZgvn0mBmNviHkXUm5AruBRloLHfFYZZFOqYpSUdGKlmVhLO3i8TQ5POFfTsVpl97d3y5p9W5xdeO9kv9BFcoAV7wl-w_I9o1CAbwDvvAEhOF5J4wnO_suoTxM-Ys5snhfYIKsAsP_Ua_23MHqCn0FmPXsfF0X9SGE6PFYOMIMVe-UrkHH3GzsrWXbZK96fzb1D-Xi4W3C99UStmwbl1dqOj8Dg_maRyFdBYTAwKyXv7u4YOOXRJHBMkSzjTUzXhsb7KalmDFL7dr_vYvUhqtNpztov7YX9RGCqj7DkLNUyG8zLkW-Hx8n0yN5cJ8MWQo6xYAMJ0ff9772J0Yiy5kj5cSeP272C8aNdoHFG-rHAxTjHMqGOKUu_9qOrY4xe0Iee-MgnDikn5J7ZvGMPOzujjfPCZuEHvFwE_FwHfHQIR5axF-Qk4NPs73DyGe9iDTnoo0qmB8qMTwpkIswplQVSqMXAxRrPdagdGQ00TqHl7zMVJXEBqrwmBnGdMXF-CUZwKgxIxKOQT-hOjVIwsfBrtQlVSpLVF6VWcm0CsjIi0X-ctwmslmUBiUWkKiTkyw8WzwmLTmXYDWihCVKWKKEpav_oa_ftXVbzZETe18vyXK0i3kekPcWiP7LbaMgINsdUtLPx0baI3XQt2lA3vZfYbHEEzC1MD-XjUS2QlD46dZdO9omj5wzH31ur8igrZfmNWihrX7jB-Af-iWHpg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Dynamic+Semiparametric+Proportional+Hazard+Model&rft.jtitle=Studies+in+nonlinear+dynamics+and+econometrics&rft.au=Gerhard%2C+Frank&rft.au=Hautsch%2C+Nikolaus&rft.date=2007&rft.pub=De+Gruyter&rft.eissn=1558-3708&rft.volume=11&rft.issue=2&rft_id=info:doi/10.2202%2F1558-3708.1377&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_QT4_59D1M6NK_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-3708&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-3708&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-3708&client=summon