Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review

AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the developmen...

Full description

Saved in:
Bibliographic Details
Published inBMJ (Online) Vol. 375; p. n2281
Main Authors Andaur Navarro, Constanza L, Damen, Johanna A A, Takada, Toshihiko, Nijman, Steven W J, Dhiman, Paula, Ma, Jie, Collins, Gary S, Bajpai, Ram, Riley, Richard D, Moons, Karel G M, Hooft, Lotty
Format Journal Article
LanguageEnglish
Published England British Medical Journal Publishing Group 20.10.2021
BMJ Publishing Group LTD
BMJ Publishing Group Ltd
Subjects
Online AccessGet full text
ISSN1756-1833
0959-8138
1756-1833
DOI10.1136/bmj.n2281

Cover

Abstract AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Review methodsMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).Results152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.ConclusionMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.Systematic review registrationPROSPERO CRD42019161764.
AbstractList ObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Review methodsMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).Results152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.ConclusionMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.Systematic review registrationPROSPERO CRD42019161764.
AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Review methodsMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).Results152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.ConclusionMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.Systematic review registrationPROSPERO CRD42019161764.
To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.OBJECTIVETo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.Systematic review.DESIGNSystematic review.PubMed from 1 January 2018 to 31 December 2019.DATA SOURCESPubMed from 1 January 2018 to 31 December 2019.Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.ELIGIBILITY CRITERIAArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).REVIEW METHODSMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.RESULTS152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.CONCLUSIONMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.PROSPERO CRD42019161764.SYSTEMATIC REVIEW REGISTRATIONPROSPERO CRD42019161764.
To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. Systematic review. PubMed from 1 January 2018 to 31 December 2019. Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes. Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall). 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively. Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice. PROSPERO CRD42019161764.
Author Damen, Johanna A A
Collins, Gary S
Takada, Toshihiko
Bajpai, Ram
Moons, Karel G M
Hooft, Lotty
Andaur Navarro, Constanza L
Riley, Richard D
Dhiman, Paula
Nijman, Steven W J
Ma, Jie
Author_xml – sequence: 1
  givenname: Constanza L
  orcidid: 0000-0002-7745-2887
  surname: Andaur Navarro
  fullname: Andaur Navarro, Constanza L
  email: c.l.andaurnavarro@umcutrecht.nl
  organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 2
  givenname: Johanna A A
  orcidid: 0000-0001-7401-4593
  surname: Damen
  fullname: Damen, Johanna A A
  organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 3
  givenname: Toshihiko
  orcidid: 0000-0002-8032-6224
  surname: Takada
  fullname: Takada, Toshihiko
  organization: Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 4
  givenname: Steven W J
  orcidid: 0000-0001-6798-2078
  surname: Nijman
  fullname: Nijman, Steven W J
  organization: Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 5
  givenname: Paula
  orcidid: 0000-0002-0989-0623
  surname: Dhiman
  fullname: Dhiman, Paula
  organization: NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
– sequence: 6
  givenname: Jie
  orcidid: 0000-0002-3900-1903
  surname: Ma
  fullname: Ma, Jie
  organization: Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
– sequence: 7
  givenname: Gary S
  orcidid: 0000-0002-2772-2316
  surname: Collins
  fullname: Collins, Gary S
  organization: NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
– sequence: 8
  givenname: Ram
  orcidid: 0000-0002-1227-2703
  surname: Bajpai
  fullname: Bajpai, Ram
  organization: Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK
– sequence: 9
  givenname: Richard D
  orcidid: 0000-0001-8699-0735
  surname: Riley
  fullname: Riley, Richard D
  organization: Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK
– sequence: 10
  givenname: Karel G M
  orcidid: 0000-0003-2112-004X
  surname: Moons
  fullname: Moons, Karel G M
  organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
– sequence: 11
  givenname: Lotty
  orcidid: 0000-0002-7950-2980
  surname: Hooft
  fullname: Hooft, Lotty
  organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34670780$$D View this record in MEDLINE/PubMed
BookMark eNp9kV1rFTEQhoO02Fp74R-QgAi2cNp87W7ihSDFqlAQRK9DNjvbk-Nusia7W86_N-uptVbxaoaZZ4Z33nmC9nzwgNAzSs4o5eV53W_OPGOSPkKHtCrKFZWc793LD9BxShtCCOOVVGXxGB1wUVakkuQQzZ9d-oZDi2tnEnYep3FqHCQcPB4iNM6OLqd9aKBLuIEZujBAg6fk_DVO0wBxdikXemPXzgPuwES_9Eawa---T5Be47RNI_RmdBZHmB3cPEX7rekSHN_GI_T18t2Xiw-rq0_vP168vVrVgvNxxaQBRQSRQjIuRVkK27Y1MVQYQ2ph89WirmpWMmOVospI2lpLaa2KSjSK8yN0uts7-cFsb0zX6SG63sStpkQv_unsn_7pX4bf7OBhqntoLPgxmt8DwTj9Z8e7tb4Os5YFq7iQecGr2wUxLIePunfJQtcZD2FKmhWyEJQWfEFfPEA3YYo-e5EpxTgvlCgy9fy-ojspv_6XgfMdYGNIKUKrrRvN8rIs0HX_PPLkwcT_DHm5Y5fSnb6_uR84QMqm
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109350
crossref_primary_10_1080_07357907_2024_2354991
crossref_primary_10_1080_14737167_2023_2275670
crossref_primary_10_14254_1795_6889_2024_20_1_8
crossref_primary_10_3389_fpubh_2023_1063633
crossref_primary_10_48130_tia_0024_0013
crossref_primary_10_1371_journal_pone_0289632
crossref_primary_10_1016_j_annemergmed_2022_05_011
crossref_primary_10_1016_j_cjca_2022_01_007
crossref_primary_10_3389_fpsyt_2022_828773
crossref_primary_10_1007_s10064_024_03931_3
crossref_primary_10_1186_s12916_024_03273_7
crossref_primary_10_1515_jisys_2024_0077
crossref_primary_10_1093_hropen_hoac046
crossref_primary_10_1007_s41649_024_00282_9
crossref_primary_10_37489_2588_0519_2024_2_33_42
crossref_primary_10_1002_ehf2_14696
crossref_primary_10_1016_j_psep_2025_106869
crossref_primary_10_1016_j_jclinepi_2024_111364
crossref_primary_10_1136_bmjopen_2022_061519
crossref_primary_10_1016_j_soard_2023_01_026
crossref_primary_10_1016_j_compbiomed_2024_109521
crossref_primary_10_1111_acem_14756
crossref_primary_10_47102_https___doi_org_10_47102_annals_acadmedsg_2023113
crossref_primary_10_1186_s13098_023_01105_x
crossref_primary_10_1016_j_cjcpc_2023_08_005
crossref_primary_10_1001_jamahealthforum_2023_0397
crossref_primary_10_1111_aogs_14475
crossref_primary_10_1038_s41591_022_01961_6
crossref_primary_10_1016_j_semcancer_2023_09_005
crossref_primary_10_2196_28848
crossref_primary_10_1001_jamanetworkopen_2024_32990
crossref_primary_10_1038_s41431_022_01061_6
crossref_primary_10_2196_45523
crossref_primary_10_1136_bmj_2023_078276
crossref_primary_10_2196_35293
crossref_primary_10_1177_00031348221117042
crossref_primary_10_1016_j_neurol_2023_02_067
crossref_primary_10_1016_j_artd_2023_101116
crossref_primary_10_1093_jamia_ocad168
crossref_primary_10_1016_j_jacasi_2022_08_005
crossref_primary_10_1186_s41984_025_00386_w
crossref_primary_10_1038_s41746_022_00690_x
crossref_primary_10_3389_fcvm_2024_1449058
crossref_primary_10_1016_j_jclinepi_2023_03_012
crossref_primary_10_1038_s41598_024_74537_8
crossref_primary_10_1016_j_eclinm_2022_101773
crossref_primary_10_3390_diagnostics14131324
crossref_primary_10_1016_j_surg_2023_04_037
crossref_primary_10_1136_bmj_q832
crossref_primary_10_1002_mco2_722
crossref_primary_10_1038_s41746_024_01360_w
crossref_primary_10_1111_anae_16315
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1093_ageing_afae201
crossref_primary_10_1016_j_ibmed_2023_100089
crossref_primary_10_1016_j_arthro_2022_01_026
crossref_primary_10_1007_s12553_024_00937_5
crossref_primary_10_1016_j_trac_2024_117872
crossref_primary_10_1186_s13104_022_06082_4
crossref_primary_10_1016_j_jclinepi_2024_111264
crossref_primary_10_1007_s00701_024_05892_8
crossref_primary_10_1093_eurheartj_ehac238
crossref_primary_10_1080_14942119_2024_2398943
crossref_primary_10_1093_eurheartj_ehad727
crossref_primary_10_2196_56064
crossref_primary_10_1055_s_0043_1776426
crossref_primary_10_3390_diagnostics13203281
crossref_primary_10_1371_journal_pone_0275116
crossref_primary_10_2196_35307
crossref_primary_10_1007_s40261_024_01373_z
crossref_primary_10_3390_math12101425
crossref_primary_10_1002_aisy_202200056
crossref_primary_10_1186_s12911_025_02950_8
crossref_primary_10_1111_nicc_13306
crossref_primary_10_3390_ma17123026
crossref_primary_10_1002_bimj_202200302
crossref_primary_10_1007_s00405_022_07701_3
crossref_primary_10_1016_j_eujim_2025_102434
crossref_primary_10_1186_s12911_024_02848_x
crossref_primary_10_1681_ASN_0000000000000285
crossref_primary_10_2196_47645
crossref_primary_10_1136_bmjopen_2023_079785
crossref_primary_10_1002_cpt_3165
crossref_primary_10_1016_j_jacr_2023_03_014
crossref_primary_10_1186_s41512_024_00182_4
crossref_primary_10_1016_j_trac_2025_118141
crossref_primary_10_1302_2046_3758_139_BJR_2024_0135_R1
crossref_primary_10_3348_jksr_2022_0111
crossref_primary_10_1016_j_heliyon_2024_e29603
crossref_primary_10_1038_s41591_024_03098_0
crossref_primary_10_1111_codi_17091
crossref_primary_10_1136_bmjmed_2023_000817
crossref_primary_10_1038_s41591_023_02562_7
crossref_primary_10_2196_42045
crossref_primary_10_2196_42683
crossref_primary_10_1371_journal_pdig_0000278
crossref_primary_10_1111_iwj_14280
crossref_primary_10_1093_humrep_dead165
crossref_primary_10_1259_bjro_20220033
crossref_primary_10_1186_s12874_022_01577_x
crossref_primary_10_2196_60148
crossref_primary_10_1038_s41746_024_01066_z
crossref_primary_10_1016_j_ecoenv_2024_116842
crossref_primary_10_2196_52880
crossref_primary_10_1093_jamia_ocad097
crossref_primary_10_1186_s13098_024_01360_6
crossref_primary_10_3390_app13052753
crossref_primary_10_1017_S0033291724003118
crossref_primary_10_1161_CIR_0000000000001201
crossref_primary_10_1111_sdi_13181
crossref_primary_10_1016_j_jaip_2022_04_016
crossref_primary_10_1371_journal_pone_0281931
crossref_primary_10_1109_ACCESS_2023_3316019
crossref_primary_10_1186_s12903_025_05590_6
crossref_primary_10_1016_j_asoc_2023_110644
crossref_primary_10_1002_jgm_3730
crossref_primary_10_1007_s00414_023_03152_5
crossref_primary_10_1186_s12859_022_04979_2
crossref_primary_10_1001_jamasurg_2024_4299
crossref_primary_10_1080_14787210_2024_2322445
crossref_primary_10_1016_j_jclinepi_2022_11_015
crossref_primary_10_1093_jamia_ocad120
crossref_primary_10_3389_fdata_2022_979465
crossref_primary_10_2196_51540
crossref_primary_10_1186_s12911_024_02754_2
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1186_s12874_025_02516_2
crossref_primary_10_1038_s41598_023_48486_7
crossref_primary_10_3389_frai_2023_1171256
crossref_primary_10_1186_s12920_024_01936_1
crossref_primary_10_1186_s12879_023_08409_3
crossref_primary_10_1186_s12874_023_02008_1
crossref_primary_10_2196_48521
crossref_primary_10_3389_fonc_2024_1478385
crossref_primary_10_1002_clc_24104
crossref_primary_10_1007_s12028_022_01504_4
crossref_primary_10_7759_cureus_66600
crossref_primary_10_1111_jdi_14256
crossref_primary_10_1126_science_aay9040
crossref_primary_10_2196_42146
crossref_primary_10_1177_13558196241295970
crossref_primary_10_1371_journal_pdig_0000438
crossref_primary_10_1002_cpt_3117
crossref_primary_10_1007_s00330_023_10168_3
crossref_primary_10_3389_fdgth_2024_1267290
crossref_primary_10_1161_STROKEAHA_121_036204
crossref_primary_10_1136_rmdopen_2023_003783
crossref_primary_10_1016_j_csbj_2024_02_014
crossref_primary_10_1097_CORR_0000000000002782
crossref_primary_10_1111_evj_13880
crossref_primary_10_1017_S1049023X24000414
crossref_primary_10_1097_CORR_0000000000002820
crossref_primary_10_1093_ehjdh_ztae074
crossref_primary_10_47102_annals_acadmedsg_2023113
crossref_primary_10_3390_healthcare12121192
crossref_primary_10_1136_bmj_2023_078378
crossref_primary_10_3389_fonc_2022_975563
Cites_doi 10.1093/med/9780198796619.001.0001
10.1136/bmj.m689
10.7326/M18-1377
10.7326/M18-1376
10.1136/bmj.m441
10.1136/bmj.m1328
10.1136/bmj.b2393
10.1093/aje/kwz189
10.1016/S2589-7500(19)30123-2
10.1186/s12916-019-1466-7
10.1002/ehf2.13073
10.7189/jogh.08.020303
10.1136/bmjopen-2020-038832
10.1016/j.jclinepi.2009.03.017
10.1371/journal.pmed.1000097
10.1111/acem.14190
10.1186/1471-2288-14-40
10.1371/journal.pmed.1001221
10.1007/978-3-030-16399-0
10.7326/M14-0697
10.1371/journal.pmed.1001381
10.1016/j.cjca.2021.02.020
10.1186/s41512-020-00084-1
10.7326/M14-0698
10.1056/NEJMp1606181
10.1177/0962280214558972
10.1136/bmjopen-2020-048008
10.1186/s41512-020-00077-0
10.1136/bmj.b375
10.1016/S0140-6736(19)30037-6
10.1038/s41746-018-0040-6
10.1016/S0140-6736(13)62228-X
10.1016/j.jclinepi.2016.02.031
10.1016/j.jclinepi.2019.02.004
10.1186/1471-2288-14-137
10.1186/s12874-019-0681-4
10.1136/bmj.i2416
10.1016/j.jclinepi.2010.11.012
ContentType Journal Article
Copyright Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.
2021 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. 2021 BMJ
Copyright_xml – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.
– notice: 2021 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. 2021 BMJ
DBID 9YT
ACMMV
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7X7
7XB
88I
8AF
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AN0
ASE
AZQEC
BBNVY
BENPR
BHPHI
BTHHO
CCPQU
DWQXO
FPQ
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K6X
K9.
KB0
LK8
M2O
M2P
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1136/bmj.n2281
DatabaseName BMJ Open Access Journals
BMJ Journals:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
ProQuest Central Health & Medical Collection (via ProQuest)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database (Proquest)
British Nursing Index
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
BMJ Journals
ProQuest One Community College
ProQuest Central
British Nursing Index (BNI) (1985 to Present)
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
British Nursing Index
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Research Library
Science Database (ProQuest)
ProQuest Central Biological Science Database (via ProQuest)
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
British Nursing Index
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Research Library Prep

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: ACMMV
  name: BMJ Journals:Open Access
  url: https://journals.bmj.com/
  sourceTypes: Publisher
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1756-1833
ExternalDocumentID 10.1136/bmj.n2281
PMC8527348
34670780
10_1136_bmj_n2281
bmj
Genre Research Support, Non-U.S. Gov't
Systematic Review
Journal Article
GrantInformation_xml – fundername: Cancer Research UK
  grantid: 27294
GroupedDBID 23N
39C
4.4
40O
53G
5GY
7RV
7X7
88I
8AF
8F7
8FE
8FH
8FI
8FJ
8G5
9YT
AACGO
AANCE
AAWJN
ABIVO
ABJNI
ABPLY
ABTLG
ABUWG
ABVAJ
ACGFS
ACGOD
ACMFJ
ACMMV
ACPRK
AFKRA
AGFXO
AHMBA
AHNKE
AHQMW
AJYBZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BTHHO
C45
CCPQU
CS3
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
GUQSH
H13
HAJ
HCIFZ
HMCUK
HZ~
JLS
JSG
JST
L7B
LK8
M2O
M2P
M7P
NAPCQ
NXWIF
O9-
OVD
PHGZT
PQQKQ
PROAC
R53
RHI
RMJ
RV8
TEORI
UKHRP
VVN
WOQ
YFH
YQY
AAYXX
AN0
CITATION
IAG
IBB
IMI
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FK
ASE
FPQ
K6X
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
.GJ
2WC
3O-
8GL
AAKAS
ABBHK
ABXSQ
ACHIC
ACOAB
ACQSR
ADBBV
ADCEG
ADQXQ
ADTOC
ADULT
ADZCM
AEUPB
AEXZC
AFFHD
AGQPQ
AQVQM
ASPBG
AZFZN
BAWUL
CAG
COF
DCCCD
DIK
EX3
FEDTE
GICCO
HQ3
HTVGU
HVGLF
IAO
IEA
IPSME
ISE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
JPM
NTWIH
SA0
UHU
UNPAY
WHG
WOW
ID FETCH-LOGICAL-b433t-28ae90408482384664cffb0a14aa0b4c2814b7b262ac9919a81fcc11b9574d933
IEDL.DBID BENPR
ISSN 1756-1833
0959-8138
IngestDate Wed Oct 29 12:19:17 EDT 2025
Tue Sep 30 16:48:32 EDT 2025
Sat Sep 27 23:13:14 EDT 2025
Mon Sep 08 13:53:50 EDT 2025
Mon Jul 21 06:03:15 EDT 2025
Wed Oct 01 03:05:12 EDT 2025
Thu Apr 24 22:54:50 EDT 2025
Thu Apr 24 22:50:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/.
Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b433t-28ae90408482384664cffb0a14aa0b4c2814b7b262ac9919a81fcc11b9574d933
Notes ObjectType-Article-1
ObjectType-Evidence Based Healthcare-3
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-8032-6224
0000-0002-2772-2316
0000-0003-2112-004X
0000-0002-0989-0623
0000-0002-7745-2887
0000-0001-6798-2078
0000-0001-8699-0735
0000-0002-3900-1903
0000-0002-7950-2980
0000-0001-7401-4593
0000-0002-1227-2703
0000-0003-2112-0047
OpenAccessLink https://bmj.com/content/375/bmj.n2281.full
PMID 34670780
PQID 2592335945
PQPubID 2043523
ParticipantIDs unpaywall_primary_10_1136_bmj_n2281
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8527348
proquest_miscellaneous_2585411538
proquest_journals_2592335945
pubmed_primary_34670780
crossref_citationtrail_10_1136_bmj_n2281
crossref_primary_10_1136_bmj_n2281
bmj_journals_10_1136_bmj_n2281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211020
2021-10-20
PublicationDateYYYYMMDD 2021-10-20
PublicationDate_xml – month: 10
  year: 2021
  text: 20211020
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMJ (Online)
PublicationTitleAbbrev BMJ
PublicationTitleAlternate BMJ
PublicationYear 2021
Publisher British Medical Journal Publishing Group
BMJ Publishing Group LTD
BMJ Publishing Group Ltd
Publisher_xml – name: British Medical Journal Publishing Group
– name: BMJ Publishing Group LTD
– name: BMJ Publishing Group Ltd
References Moons, Royston, Vergouwe, Grobbee, Altman (ref1) 2009; 338
Glasziou, Altman, Bossuyt (ref5) 2014; 383
Damen, Hooft, Schuit (ref6) 2016; 353
Obermeyer, Emanuel (ref11) 2016; 375
van der Ploeg, Austin, Steyerberg (ref23) 2014; 14
Christodoulou, Ma, Collins, Steyerberg, Verbakel, Van Calster (ref15) 2019; 110
Groenwold (ref30) 2020; 4
Austin, Steyerberg (ref27) 2017; 26
Van Calster, McLernon, van Smeden, Wynants, Steyerberg (ref31) 2019; 17
Collins, Dhiman, Andaur Navarro (ref39) 2021; 11
Bi, Goodman, Kaminsky, Lessler (ref8) 2019; 188
Ogundimu, Altman, Collins (ref26) 2016; 76
Shin, Austin, Ross (ref14) 2021; 8
Nagendran, Chen, Lovejoy (ref7) 2020; 368
Collins, Reitsma, Altman, Moons (ref37) 2015; 162
Wynants, Van Calster, Collins (ref34) 2020; 369
Andaur Navarro, Damen, Takada (ref22) 2020; 10
Sterne, White, Carlin (ref28) 2009; 338
Steyerberg, Moons, van der Windt (ref2) 2013; 10
Courvoisier, Combescure, Agoritsas, Gayet-Ageron, Perneger (ref25) 2011; 64
Miles, Turner, Jacques, Williams, Mason (ref33) 2020; 4
Panch, Szolovits, Atun (ref12) 2018; 8
Vergouwe, Royston, Moons, Altman (ref29) 2010; 63
Wolff, Moons, Riley (ref19) 2019; 170
Liu, Faes, Kale (ref35) 2019; 1
Moons, Altman, Reitsma (ref36) 2015; 162
Bouwmeester, Zuithoff, Mallett (ref18) 2012; 9
Cho, Austin, Ross (ref16) 2021; 37
Moons, Wolff, Riley (ref20) 2019; 170
Collins, Moons (ref38) 2019; 393
Abràmoff, Lavin, Birch, Shah, Folk (ref13) 2018; 1
Sidey-Gibbons, Sidey-Gibbons (ref9) 2019; 19
Collins, de Groot, Dutton (ref17) 2014; 14
Kareemi, Vaillancourt, Rosenberg, Fournier, Yadav (ref32) 2020; 28
Riley, Ensor, Snell (ref24) 2020; 368
Moher, Liberati, Tetzlaff, Altman (ref21) 2009; 6
2022110803403104000_375.oct20_3.n2281.9
2022110803403104000_375.oct20_3.n2281.8
2022110803403104000_375.oct20_3.n2281.7
2022110803403104000_375.oct20_3.n2281.6
2022110803403104000_375.oct20_3.n2281.21
2022110803403104000_375.oct20_3.n2281.20
2022110803403104000_375.oct20_3.n2281.23
2022110803403104000_375.oct20_3.n2281.22
2022110803403104000_375.oct20_3.n2281.25
2022110803403104000_375.oct20_3.n2281.24
2022110803403104000_375.oct20_3.n2281.27
2022110803403104000_375.oct20_3.n2281.26
2022110803403104000_375.oct20_3.n2281.29
2022110803403104000_375.oct20_3.n2281.28
2022110803403104000_375.oct20_3.n2281.1
2022110803403104000_375.oct20_3.n2281.30
2022110803403104000_375.oct20_3.n2281.5
2022110803403104000_375.oct20_3.n2281.10
2022110803403104000_375.oct20_3.n2281.32
2022110803403104000_375.oct20_3.n2281.4
2022110803403104000_375.oct20_3.n2281.31
2022110803403104000_375.oct20_3.n2281.3
2022110803403104000_375.oct20_3.n2281.12
2022110803403104000_375.oct20_3.n2281.34
2022110803403104000_375.oct20_3.n2281.2
2022110803403104000_375.oct20_3.n2281.11
2022110803403104000_375.oct20_3.n2281.33
2022110803403104000_375.oct20_3.n2281.14
2022110803403104000_375.oct20_3.n2281.36
2022110803403104000_375.oct20_3.n2281.13
2022110803403104000_375.oct20_3.n2281.35
2022110803403104000_375.oct20_3.n2281.16
2022110803403104000_375.oct20_3.n2281.38
2022110803403104000_375.oct20_3.n2281.15
2022110803403104000_375.oct20_3.n2281.37
2022110803403104000_375.oct20_3.n2281.18
2022110803403104000_375.oct20_3.n2281.17
2022110803403104000_375.oct20_3.n2281.39
2022110803403104000_375.oct20_3.n2281.19
References_xml – volume: 393
  start-page: 1577
  year: 2019
  ident: ref38
  article-title: Reporting of artificial intelligence prediction models
  publication-title: Lancet
– volume: 10
  year: 2013
  ident: ref2
  article-title: Prognosis Research Strategy (PROGRESS) 3: prognostic model research
  publication-title: PLoS Med
– volume: 375
  start-page: 1216
  year: 2016
  ident: ref11
  article-title: Predicting the Future - Big Data, Machine Learning, and Clinical Medicine
  publication-title: N Engl J Med
– volume: 37
  start-page: 1207
  year: 2021
  ident: ref16
  article-title: Machine learning compared to conventional statistical models for predicting myocardial infarction readmission and mortality: a systematic review
  publication-title: Can J Cardiol
– volume: 9
  start-page: 1
  year: 2012
  ident: ref18
  article-title: Reporting and methods in clinical prediction research: a systematic review
  publication-title: PLoS Med
– volume: 353
  start-page: i2416
  year: 2016
  ident: ref6
  article-title: Prediction models for cardiovascular disease risk in the general population: systematic review
  publication-title: BMJ
– volume: 19
  start-page: 64
  year: 2019
  ident: ref9
  article-title: Machine learning in medicine: a practical introduction
  publication-title: BMC Med Res Methodol
– volume: 26
  start-page: 796
  year: 2017
  ident: ref27
  article-title: Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models
  publication-title: Stat Methods Med Res
– volume: 162
  start-page: 55
  year: 2015
  ident: ref37
  article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement
  publication-title: Ann Intern Med
– volume: 383
  start-page: 267
  year: 2014
  ident: ref5
  article-title: Reducing waste from incomplete or unusable reports of biomedical research
  publication-title: Lancet
– volume: 170
  start-page: 51
  year: 2019
  ident: ref19
  article-title: PROBAST: A tool to assess the risk of bias and applicability of prediction model studies
  publication-title: Ann Intern Med
– volume: 14
  start-page: 137
  year: 2014
  ident: ref23
  article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints
  publication-title: BMC Med Res Methodol
– volume: 4
  start-page: 8
  year: 2020
  ident: ref30
  article-title: Informative missingness in electronic health record systems: the curse of knowing
  publication-title: Diagn Progn Res
– volume: 368
  start-page: m689
  year: 2020
  ident: ref7
  article-title: Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies
  publication-title: BMJ
– volume: 14
  start-page: 40
  year: 2014
  ident: ref17
  article-title: External validation of multivariable prediction models: a systematic review of methodological conduct and reporting
  publication-title: BMC Med Res Methodol
– volume: 6
  year: 2009
  ident: ref21
  article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement
  publication-title: PLoS Med
– volume: 368
  start-page: m441
  year: 2020
  ident: ref24
  article-title: Calculating the sample size required for developing a clinical prediction model
  publication-title: BMJ
– volume: 338
  start-page: b2393
  year: 2009
  ident: ref28
  article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls
  publication-title: BMJ
– volume: 64
  start-page: 993
  year: 2011
  ident: ref25
  article-title: Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure
  publication-title: J Clin Epidemiol
– volume: 170
  start-page: W1
  year: 2019
  ident: ref20
  article-title: PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration
  publication-title: Ann Intern Med
– volume: 8
  start-page: 106
  year: 2021
  ident: ref14
  article-title: Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality
  publication-title: ESC Heart Fail
– volume: 11
  year: 2021
  ident: ref39
  article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence
  publication-title: BMJ Open
– volume: 110
  start-page: 12
  year: 2019
  ident: ref15
  article-title: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models
  publication-title: J Clin Epidemiol
– volume: 188
  start-page: 2222
  year: 2019
  ident: ref8
  article-title: What is machine learning? A primer for the epidemiologist
  publication-title: Am J Epidemiol
– volume: 10
  year: 2020
  ident: ref22
  article-title: Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques
  publication-title: BMJ Open
– volume: 63
  start-page: 205
  year: 2010
  ident: ref29
  article-title: Development and validation of a prediction model with missing predictor data: a practical approach
  publication-title: J Clin Epidemiol
– volume: 1
  start-page: e271
  year: 2019
  ident: ref35
  article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis
  publication-title: Lancet Digit Health
– volume: 369
  start-page: m1328
  year: 2020
  ident: ref34
  article-title: Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal
  publication-title: BMJ
– volume: 1
  year: 2018
  ident: ref13
  article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj
  publication-title: Digit Med
– volume: 8
  year: 2018
  ident: ref12
  article-title: Artificial intelligence, machine learning and health systems
  publication-title: J Glob Health
– volume: 17
  start-page: 230
  year: 2019
  ident: ref31
  article-title: Calibration: the Achilles heel of predictive analytics
  publication-title: BMC Med
– volume: 28
  start-page: 184
  year: 2020
  ident: ref32
  article-title: Machine Learning Versus Usual Care for Diagnostic and Prognostic Prediction in the Emergency Department: A Systematic Review
  publication-title: Acad Emerg Med
– volume: 162
  start-page: W1-73
  year: 2015
  ident: ref36
  article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration
  publication-title: Ann Intern Med
– volume: 76
  start-page: 175
  year: 2016
  ident: ref26
  article-title: Adequate sample size for developing prediction models is not simply related to events per variable
  publication-title: J Clin Epidemiol
– volume: 4
  start-page: 16
  year: 2020
  ident: ref33
  article-title: Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review
  publication-title: Diagn Progn Res
– volume: 338
  start-page: b375
  year: 2009
  ident: ref1
  article-title: Prognosis and prognostic research: what, why, and how?
  publication-title: BMJ
– ident: 2022110803403104000_375.oct20_3.n2281.3
  doi: 10.1093/med/9780198796619.001.0001
– ident: 2022110803403104000_375.oct20_3.n2281.7
  doi: 10.1136/bmj.m689
– ident: 2022110803403104000_375.oct20_3.n2281.20
  doi: 10.7326/M18-1377
– ident: 2022110803403104000_375.oct20_3.n2281.19
  doi: 10.7326/M18-1376
– ident: 2022110803403104000_375.oct20_3.n2281.24
  doi: 10.1136/bmj.m441
– ident: 2022110803403104000_375.oct20_3.n2281.10
– ident: 2022110803403104000_375.oct20_3.n2281.34
  doi: 10.1136/bmj.m1328
– ident: 2022110803403104000_375.oct20_3.n2281.28
  doi: 10.1136/bmj.b2393
– ident: 2022110803403104000_375.oct20_3.n2281.8
  doi: 10.1093/aje/kwz189
– ident: 2022110803403104000_375.oct20_3.n2281.35
  doi: 10.1016/S2589-7500(19)30123-2
– ident: 2022110803403104000_375.oct20_3.n2281.31
  doi: 10.1186/s12916-019-1466-7
– ident: 2022110803403104000_375.oct20_3.n2281.14
  doi: 10.1002/ehf2.13073
– ident: 2022110803403104000_375.oct20_3.n2281.12
  doi: 10.7189/jogh.08.020303
– ident: 2022110803403104000_375.oct20_3.n2281.22
  doi: 10.1136/bmjopen-2020-038832
– ident: 2022110803403104000_375.oct20_3.n2281.29
  doi: 10.1016/j.jclinepi.2009.03.017
– ident: 2022110803403104000_375.oct20_3.n2281.21
  doi: 10.1371/journal.pmed.1000097
– ident: 2022110803403104000_375.oct20_3.n2281.32
  doi: 10.1111/acem.14190
– ident: 2022110803403104000_375.oct20_3.n2281.17
  doi: 10.1186/1471-2288-14-40
– ident: 2022110803403104000_375.oct20_3.n2281.18
  doi: 10.1371/journal.pmed.1001221
– ident: 2022110803403104000_375.oct20_3.n2281.4
  doi: 10.1007/978-3-030-16399-0
– ident: 2022110803403104000_375.oct20_3.n2281.37
  doi: 10.7326/M14-0697
– ident: 2022110803403104000_375.oct20_3.n2281.2
  doi: 10.1371/journal.pmed.1001381
– ident: 2022110803403104000_375.oct20_3.n2281.16
  doi: 10.1016/j.cjca.2021.02.020
– ident: 2022110803403104000_375.oct20_3.n2281.33
  doi: 10.1186/s41512-020-00084-1
– ident: 2022110803403104000_375.oct20_3.n2281.36
  doi: 10.7326/M14-0698
– ident: 2022110803403104000_375.oct20_3.n2281.11
  doi: 10.1056/NEJMp1606181
– ident: 2022110803403104000_375.oct20_3.n2281.27
  doi: 10.1177/0962280214558972
– ident: 2022110803403104000_375.oct20_3.n2281.39
  doi: 10.1136/bmjopen-2020-048008
– ident: 2022110803403104000_375.oct20_3.n2281.30
  doi: 10.1186/s41512-020-00077-0
– ident: 2022110803403104000_375.oct20_3.n2281.1
  doi: 10.1136/bmj.b375
– ident: 2022110803403104000_375.oct20_3.n2281.38
  doi: 10.1016/S0140-6736(19)30037-6
– ident: 2022110803403104000_375.oct20_3.n2281.13
  doi: 10.1038/s41746-018-0040-6
– ident: 2022110803403104000_375.oct20_3.n2281.5
  doi: 10.1016/S0140-6736(13)62228-X
– ident: 2022110803403104000_375.oct20_3.n2281.26
  doi: 10.1016/j.jclinepi.2016.02.031
– ident: 2022110803403104000_375.oct20_3.n2281.15
  doi: 10.1016/j.jclinepi.2019.02.004
– ident: 2022110803403104000_375.oct20_3.n2281.23
  doi: 10.1186/1471-2288-14-137
– ident: 2022110803403104000_375.oct20_3.n2281.9
  doi: 10.1186/s12874-019-0681-4
– ident: 2022110803403104000_375.oct20_3.n2281.6
  doi: 10.1136/bmj.i2416
– ident: 2022110803403104000_375.oct20_3.n2281.25
  doi: 10.1016/j.jclinepi.2010.11.012
SSID ssj0002378965
Score 2.7040336
SecondaryResourceType review_article
Snippet AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical...
To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. Systematic...
ObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical...
To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.OBJECTIVETo...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
bmj
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage n2281
SubjectTerms Artificial intelligence
Bias
Clinical Decision Rules
Clinical medicine
Data Interpretation, Statistical
Humans
Learning algorithms
Machine Learning
Medical research
Models, Statistical
Multivariate Analysis
Prediction models
Risk
Statistical methods
Systematic review
SummonAdditionalLinks – databaseName: BMJ Open Access Journals
  dbid: 9YT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLdgSGMviO8VxhQ-HngpXPPRJrwhxDQhjQe0SePplLTpdnDLnda7If577DTX47QhXh1XiWwndhP7Z4A3trXeCOlzVzQmRw_lc9tUKm_a0lIlJPpIqh0--loensgvp-o0weRQLYy7-NFXMhA2U1i8F5WKtMC5Lt7RlfRtuINRtYjdCr4fD_cpXFTalCqBBxWiXH-2A9sCzwN0hlTGhuRNH3QtsLyeH3l3Geb29y87nf7lfA7uw70UNbKPvZofwC0fHsL2UXoXfwRX3ybdTzZrmZvYjk0C6_r0QDYLbH5JbCR_FtvedCwVSvmGUdb7GeuWczoxOiRcxNxKz1IziTM2YLx2H9ga9Zn1FS-P4eTg8_Gnwzx1VMidFGKRc42awW2rpUZXTcjyddu6kS2ktSMnaxSWdJXjJbc1Bo7G6qKt66JwRlWyMUI8ga0wC34XWCN1o4RpGzQCiYeCqbw1yINcUrSlyGAfJT1OO6Ibx58NUY6JGLWSwduVEsZ1wiOnthjTm1hfDazzHoTjJqa9lSbXs-K6uBDKSJXBy2EYdxA9i9jgZ0vi0UoWdPJn8LRX_DDLym4yqDZMYmAgdO7NkTA5jyjdWkXkoAxeD8bz78U_-5-0nsMOp2wa9Jp8tAdbi8ulf4Hh0MLtx33wB2krCt8
  priority: 102
  providerName: BMJ Publishing Group Ltd
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQQnKO-gtjKPA5ekm9hOYm5V1apCaoUQK8ppZSd2u3TrjZoEBL-eceLNsrRIcEpif5FfY88knvkM8EYaqQVlOlRxKULUUDqUZcbD0qTSRUKijnSxwyen6fGEvT_jZxuQLmNhnFuluvraRzM4fibb7OHzHs24u0Y2SfI4cr-mo6o0d2Az5WiDj2Bzcvph_0sX_eiI9XJKPY1QTNPVi6hA8H5dBd2wK2-6R95rbSV_fJfz-W-65-gBfF7Wunc5uYzaRkXFzz8IHf-_WVtw35ujZL-Xn4ewoe0juHviN9wfw7ePs_qSLAxRM1mTmSV173dIFpZU1w7mBpZ05-nUxEdg6ZI4d_pzUreVW4pqTLjqnDY18adUnJOBPLZ-R1Z00qQPpXkCk6PDTwfHoT-qIVSM0iZMchxyXA9ylqMN4CjrC2PUWMZMyrFiBbaOqUwlaSILtEiFzGNTFHGsBM9YKSh9CiO7sPo5kJLlJafClChdDFcbkWkpEIMoRk1KA9jFHpv6qVZPu68Ymk5dYteNAbxdDu-08ETn7ryN-W3QVwO06tk9bgNtL2VkVSrWK6GUC8YDeDlk49R0-y3S6kXrMDlnsVMpATzrRWoohaKCQutsHEC2JmwDwNF-r-fY2UVH_53zjpIogNeDWP698i_-CbUNo-a61TtoXzVq10-mX-7VLMg
  priority: 102
  providerName: Unpaywall
Title Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
URI https://bmj.com/content/375/bmj.n2281.full
https://www.ncbi.nlm.nih.gov/pubmed/34670780
https://www.proquest.com/docview/2592335945
https://www.proquest.com/docview/2585411538
https://pubmed.ncbi.nlm.nih.gov/PMC8527348
https://www.bmj.com/content/bmj/375/bmj.n2281.full.pdf
UnpaywallVersion publishedVersion
Volume 375
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1756-1833
  dateEnd: 20250823
  omitProxy: true
  ssIdentifier: ssj0002378965
  issn: 1756-1833
  databaseCode: 7X7
  dateStart: 19940108
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1756-1833
  dateEnd: 20250823
  omitProxy: true
  ssIdentifier: ssj0002378965
  issn: 1756-1833
  databaseCode: BENPR
  dateStart: 19940108
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-trQS8IL4JjMp8PPAS1tjOh5EQKtOmCanVNK2oe6rs2BnduqQsLYj_nnPipFQbvCSRfZIt353vYt_9DuCdzKQRjBtfBVr4aKGML3Uc-jqLpM2ERBtpc4dH4-howr9Ow-kOjJtcGBtW2eyJ1Uati9Seke-hm04ZCwUPPy9_-LZqlL1dbUpoSFdaQX-qIMY60KMWGasLvS8H4-OT9tSFsjgRUegghgIW7amriw85pRbXuoPf2-bphs95M3Ty7jpfyt-_5GLxl106fAD3nUNJhrUEPIQdkz-COyN3Zf4Yfp7My0tSZETNZUnmOSnryEFS5GR5bcksa0hVEackLofKaGID4s9JuV7azaTEhqsq7NIQV2finLTwr-VHsgGEJnUyzBOYHB6c7h_5rtiCrzhjK58myDTU6IQnaMUt6HyaZWogAy7lQPEUV4irWNGIyhR9SiGTIEvTIFAijLkWjD2Fbl7k5jkQzRMdMpFplA-O-4WIjRRIg1ScZRHzoI8rPXPKUs6q_xAWzWxjxQoP3jdMmKUOqtxWzFjcRvqmJV3W-By3Ee02nNyMuhEoD1633ahc9sZE5qZYW5ok5IE1Ch48qxnfjsLQxKB_NfAg3hKJlsACd2_35PPvFYB3ElagQh68bYXn35N_8f_Jv4R71IbZoDmlg13orq7X5hX6SSvVh048jfEpzk770Bvuj0bf-k4h8D0ZHw_P_gB0Qxx7
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EuiDeBUsxL4hK6sZ2HkSrEo9WWdleoaqXegh07ZWGbhGaXqn-O38ZM4s2yauHWW-SMZMsz9je2Z74h5KXKlZVcWF8HRvqAUNZXJg59k0cKMyEBIzF3eDCM-ofi81F4tER-z3JhMKxytic2G7UpM7wj3wA3nXEeShG-q376WDUKX1dnJTSUK61gNhuKMZfYsWvPz-AIV2_ufAJ9v2Jse-vgY993VQZ8LTif-CyB0YIpJyIB-EK29SzPdU8FQqmeFhlLAqFjzSKmMnCmpEqCPMuCQMswFkbihShAwIrgQsLhb-XD1vDLfnfLw3icyCh0lEYBjzb0yfc3BWPIo30Nvhfh8IKPezFUc3VaVOr8TI3Hf-Hg9i1y0zmw9H1rcbfJki3ukOsD90R_l_zaH9U_aJlTPVI1HRW0biMVaVnQ6hTF0BRoU4Gnpi5nyxqKAfjHtJ5WuHnV0HDShHla6upaHNOObrZ-S-cE1LRNvrlHDq9k2u-T5aIs7ENCjUhMyGVuwB4F7E8ytkqCDEgJnkfcI-sw06lbnHXanHt4lGJjowqPvJ4pIc0cNTpW6BhfJvq8E61aPpDLhNZmmpz3OjdgjzzrfsNixhcaVdhyijJJKAIEIY88aBXf9cIB0sCf63kkXjCJTgCJwhf_FKNvDWF4EjYkRh550RnPvwf_6P-Df0pW-weDvXRvZ7j7mNxgGOIDUM56a2R5cjq1T8BHm-h1txAo-XrVa-8PjD5Syg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIhVeEDeBUswl8RJ2YzuHkRBClFVLaYUQlfYt2IlTtt0modml6l_j1zGTa1m18Na3yBnJlue0PfMNwAudaauEtK7xUuWih7KuTkPfTbNAUyUk-kiqHd7dC7b25aexP16B310tDKVVdjaxNtRpkdAd-QDDdC6Er6Q_yNq0iC-bo3flT5c6SNFLa9dOoxGRHXt2ise36u32JvL6Jeejj98-bLlthwHXSCFmLo9wpSjGkYzQdRHSepJlZqg9qfXQyIRHnjSh4QHXCQZSSkdeliSeZ5QfylTRZSia_6uhEIrSCcNx2N_vcBFGKvBbMCNPBANzfPg655wQtK_g97IjPBfdnk_SvDbPS312qqfTvzzg6CbcaENX9r6RtVuwYvPbsLbbPs7fgV9fJ9URKzJmJrpik5xVTY4iK3JWnhAZCQGre-9UrK3Wsimj1PsDVs1LMlsVDhzXCZ6WtR0tDlgPNFu9YQvoadaU3dyF_UvZ9Huwmhe5fQAslVHqC5WlKIkSLZMKrVZIg1RSZIFwYAN3Om7VsorrE48IYhqsWeHAq44JcdKColNvjulFpM960rJBArmIaL3j5GLWheg68LT_jWpMbzM6t8WcaCJfeuR-HLjfML6fRaAzw0hu6EC4JBI9AUGEL__JJz9qqPDIr-GLHHjeC8-_F__w_4t_AmuocfHn7b2dR3CdU24P-nA-XIfV2cncPsbgbGY2ai1g8P2y1e4PUv9QZA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQQnKO-gtjKPA5ekm9hOYm5V1apCaoUQK8ppZSd2u3TrjZoEBL-eceLNsrRIcEpif5FfY88knvkM8EYaqQVlOlRxKULUUDqUZcbD0qTSRUKijnSxwyen6fGEvT_jZxuQLmNhnFuluvraRzM4fibb7OHzHs24u0Y2SfI4cr-mo6o0d2Az5WiDj2Bzcvph_0sX_eiI9XJKPY1QTNPVi6hA8H5dBd2wK2-6R95rbSV_fJfz-W-65-gBfF7Wunc5uYzaRkXFzz8IHf-_WVtw35ujZL-Xn4ewoe0juHviN9wfw7ePs_qSLAxRM1mTmSV173dIFpZU1w7mBpZ05-nUxEdg6ZI4d_pzUreVW4pqTLjqnDY18adUnJOBPLZ-R1Z00qQPpXkCk6PDTwfHoT-qIVSM0iZMchxyXA9ylqMN4CjrC2PUWMZMyrFiBbaOqUwlaSILtEiFzGNTFHGsBM9YKSh9CiO7sPo5kJLlJafClChdDFcbkWkpEIMoRk1KA9jFHpv6qVZPu68Ymk5dYteNAbxdDu-08ETn7ryN-W3QVwO06tk9bgNtL2VkVSrWK6GUC8YDeDlk49R0-y3S6kXrMDlnsVMpATzrRWoohaKCQutsHEC2JmwDwNF-r-fY2UVH_53zjpIogNeDWP698i_-CbUNo-a61TtoXzVq10-mX-7VLMg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+of+bias+in+studies+on+prediction+models+developed+using+supervised+machine+learning+techniques%3A+systematic+review&rft.jtitle=BMJ.+British+medical+journal+%28Clinical+research+ed.%29&rft.au=Andaur+Navarro%2C+Constanza+L&rft.au=Damen%2C+Johanna+A+A&rft.au=Takada%2C+Toshihiko&rft.au=Nijman%2C+Steven+W+J&rft.date=2021-10-20&rft.eissn=1756-1833&rft.volume=375&rft.spage=n2281&rft_id=info:doi/10.1136%2Fbmj.n2281&rft_id=info%3Apmid%2F34670780&rft.externalDocID=34670780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-1833&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-1833&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-1833&client=summon