Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review
AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the developmen...
Saved in:
| Published in | BMJ (Online) Vol. 375; p. n2281 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
British Medical Journal Publishing Group
20.10.2021
BMJ Publishing Group LTD BMJ Publishing Group Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1756-1833 0959-8138 1756-1833 |
| DOI | 10.1136/bmj.n2281 |
Cover
| Abstract | AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Review methodsMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).Results152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.ConclusionMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.Systematic review registrationPROSPERO CRD42019161764. |
|---|---|
| AbstractList | ObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Review methodsMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).Results152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.ConclusionMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.Systematic review registrationPROSPERO CRD42019161764. AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.DesignSystematic review.Data sourcesPubMed from 1 January 2018 to 31 December 2019.Eligibility criteriaArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Review methodsMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).Results152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.ConclusionMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.Systematic review registrationPROSPERO CRD42019161764. To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.OBJECTIVETo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.Systematic review.DESIGNSystematic review.PubMed from 1 January 2018 to 31 December 2019.DATA SOURCESPubMed from 1 January 2018 to 31 December 2019.Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.ELIGIBILITY CRITERIAArticles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes.Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).REVIEW METHODSMethodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall).152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.RESULTS152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively.Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.CONCLUSIONMost studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice.PROSPERO CRD42019161764.SYSTEMATIC REVIEW REGISTRATIONPROSPERO CRD42019161764. To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. Systematic review. PubMed from 1 January 2018 to 31 December 2019. Articles reporting on the development, with or without external validation, of a multivariable prediction model (diagnostic or prognostic) developed using supervised machine learning for individualised predictions. No restrictions applied for study design, data source, or predicted patient related health outcomes. Methodological quality of the studies was determined and risk of bias evaluated using the prediction risk of bias assessment tool (PROBAST). This tool contains 21 signalling questions tailored to identify potential biases in four domains. Risk of bias was measured for each domain (participants, predictors, outcome, and analysis) and each study (overall). 152 studies were included: 58 (38%) included a diagnostic prediction model and 94 (62%) a prognostic prediction model. PROBAST was applied to 152 developed models and 19 external validations. Of these 171 analyses, 148 (87%, 95% confidence interval 81% to 91%) were rated at high risk of bias. The analysis domain was most frequently rated at high risk of bias. Of the 152 models, 85 (56%, 48% to 64%) were developed with an inadequate number of events per candidate predictor, 62 handled missing data inadequately (41%, 33% to 49%), and 59 assessed overfitting improperly (39%, 31% to 47%). Most models used appropriate data sources to develop (73%, 66% to 79%) and externally validate the machine learning based prediction models (74%, 51% to 88%). Information about blinding of outcome and blinding of predictors was, however, absent in 60 (40%, 32% to 47%) and 79 (52%, 44% to 60%) of the developed models, respectively. Most studies on machine learning based prediction models show poor methodological quality and are at high risk of bias. Factors contributing to risk of bias include small study size, poor handling of missing data, and failure to deal with overfitting. Efforts to improve the design, conduct, reporting, and validation of such studies are necessary to boost the application of machine learning based prediction models in clinical practice. PROSPERO CRD42019161764. |
| Author | Damen, Johanna A A Collins, Gary S Takada, Toshihiko Bajpai, Ram Moons, Karel G M Hooft, Lotty Andaur Navarro, Constanza L Riley, Richard D Dhiman, Paula Nijman, Steven W J Ma, Jie |
| Author_xml | – sequence: 1 givenname: Constanza L orcidid: 0000-0002-7745-2887 surname: Andaur Navarro fullname: Andaur Navarro, Constanza L email: c.l.andaurnavarro@umcutrecht.nl organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 2 givenname: Johanna A A orcidid: 0000-0001-7401-4593 surname: Damen fullname: Damen, Johanna A A organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 3 givenname: Toshihiko orcidid: 0000-0002-8032-6224 surname: Takada fullname: Takada, Toshihiko organization: Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 4 givenname: Steven W J orcidid: 0000-0001-6798-2078 surname: Nijman fullname: Nijman, Steven W J organization: Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 5 givenname: Paula orcidid: 0000-0002-0989-0623 surname: Dhiman fullname: Dhiman, Paula organization: NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK – sequence: 6 givenname: Jie orcidid: 0000-0002-3900-1903 surname: Ma fullname: Ma, Jie organization: Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK – sequence: 7 givenname: Gary S orcidid: 0000-0002-2772-2316 surname: Collins fullname: Collins, Gary S organization: NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK – sequence: 8 givenname: Ram orcidid: 0000-0002-1227-2703 surname: Bajpai fullname: Bajpai, Ram organization: Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK – sequence: 9 givenname: Richard D orcidid: 0000-0001-8699-0735 surname: Riley fullname: Riley, Richard D organization: Centre for Prognosis Research, School of Medicine, Keele University, Keele, UK – sequence: 10 givenname: Karel G M orcidid: 0000-0003-2112-004X surname: Moons fullname: Moons, Karel G M organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands – sequence: 11 givenname: Lotty orcidid: 0000-0002-7950-2980 surname: Hooft fullname: Hooft, Lotty organization: Cochrane Netherlands, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34670780$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kV1rFTEQhoO02Fp74R-QgAi2cNp87W7ihSDFqlAQRK9DNjvbk-Nusia7W86_N-uptVbxaoaZZ4Z33nmC9nzwgNAzSs4o5eV53W_OPGOSPkKHtCrKFZWc793LD9BxShtCCOOVVGXxGB1wUVakkuQQzZ9d-oZDi2tnEnYep3FqHCQcPB4iNM6OLqd9aKBLuIEZujBAg6fk_DVO0wBxdikXemPXzgPuwES_9Eawa---T5Be47RNI_RmdBZHmB3cPEX7rekSHN_GI_T18t2Xiw-rq0_vP168vVrVgvNxxaQBRQSRQjIuRVkK27Y1MVQYQ2ph89WirmpWMmOVospI2lpLaa2KSjSK8yN0uts7-cFsb0zX6SG63sStpkQv_unsn_7pX4bf7OBhqntoLPgxmt8DwTj9Z8e7tb4Os5YFq7iQecGr2wUxLIePunfJQtcZD2FKmhWyEJQWfEFfPEA3YYo-e5EpxTgvlCgy9fy-ojspv_6XgfMdYGNIKUKrrRvN8rIs0HX_PPLkwcT_DHm5Y5fSnb6_uR84QMqm |
| CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109350 crossref_primary_10_1080_07357907_2024_2354991 crossref_primary_10_1080_14737167_2023_2275670 crossref_primary_10_14254_1795_6889_2024_20_1_8 crossref_primary_10_3389_fpubh_2023_1063633 crossref_primary_10_48130_tia_0024_0013 crossref_primary_10_1371_journal_pone_0289632 crossref_primary_10_1016_j_annemergmed_2022_05_011 crossref_primary_10_1016_j_cjca_2022_01_007 crossref_primary_10_3389_fpsyt_2022_828773 crossref_primary_10_1007_s10064_024_03931_3 crossref_primary_10_1186_s12916_024_03273_7 crossref_primary_10_1515_jisys_2024_0077 crossref_primary_10_1093_hropen_hoac046 crossref_primary_10_1007_s41649_024_00282_9 crossref_primary_10_37489_2588_0519_2024_2_33_42 crossref_primary_10_1002_ehf2_14696 crossref_primary_10_1016_j_psep_2025_106869 crossref_primary_10_1016_j_jclinepi_2024_111364 crossref_primary_10_1136_bmjopen_2022_061519 crossref_primary_10_1016_j_soard_2023_01_026 crossref_primary_10_1016_j_compbiomed_2024_109521 crossref_primary_10_1111_acem_14756 crossref_primary_10_47102_https___doi_org_10_47102_annals_acadmedsg_2023113 crossref_primary_10_1186_s13098_023_01105_x crossref_primary_10_1016_j_cjcpc_2023_08_005 crossref_primary_10_1001_jamahealthforum_2023_0397 crossref_primary_10_1111_aogs_14475 crossref_primary_10_1038_s41591_022_01961_6 crossref_primary_10_1016_j_semcancer_2023_09_005 crossref_primary_10_2196_28848 crossref_primary_10_1001_jamanetworkopen_2024_32990 crossref_primary_10_1038_s41431_022_01061_6 crossref_primary_10_2196_45523 crossref_primary_10_1136_bmj_2023_078276 crossref_primary_10_2196_35293 crossref_primary_10_1177_00031348221117042 crossref_primary_10_1016_j_neurol_2023_02_067 crossref_primary_10_1016_j_artd_2023_101116 crossref_primary_10_1093_jamia_ocad168 crossref_primary_10_1016_j_jacasi_2022_08_005 crossref_primary_10_1186_s41984_025_00386_w crossref_primary_10_1038_s41746_022_00690_x crossref_primary_10_3389_fcvm_2024_1449058 crossref_primary_10_1016_j_jclinepi_2023_03_012 crossref_primary_10_1038_s41598_024_74537_8 crossref_primary_10_1016_j_eclinm_2022_101773 crossref_primary_10_3390_diagnostics14131324 crossref_primary_10_1016_j_surg_2023_04_037 crossref_primary_10_1136_bmj_q832 crossref_primary_10_1002_mco2_722 crossref_primary_10_1038_s41746_024_01360_w crossref_primary_10_1111_anae_16315 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1093_ageing_afae201 crossref_primary_10_1016_j_ibmed_2023_100089 crossref_primary_10_1016_j_arthro_2022_01_026 crossref_primary_10_1007_s12553_024_00937_5 crossref_primary_10_1016_j_trac_2024_117872 crossref_primary_10_1186_s13104_022_06082_4 crossref_primary_10_1016_j_jclinepi_2024_111264 crossref_primary_10_1007_s00701_024_05892_8 crossref_primary_10_1093_eurheartj_ehac238 crossref_primary_10_1080_14942119_2024_2398943 crossref_primary_10_1093_eurheartj_ehad727 crossref_primary_10_2196_56064 crossref_primary_10_1055_s_0043_1776426 crossref_primary_10_3390_diagnostics13203281 crossref_primary_10_1371_journal_pone_0275116 crossref_primary_10_2196_35307 crossref_primary_10_1007_s40261_024_01373_z crossref_primary_10_3390_math12101425 crossref_primary_10_1002_aisy_202200056 crossref_primary_10_1186_s12911_025_02950_8 crossref_primary_10_1111_nicc_13306 crossref_primary_10_3390_ma17123026 crossref_primary_10_1002_bimj_202200302 crossref_primary_10_1007_s00405_022_07701_3 crossref_primary_10_1016_j_eujim_2025_102434 crossref_primary_10_1186_s12911_024_02848_x crossref_primary_10_1681_ASN_0000000000000285 crossref_primary_10_2196_47645 crossref_primary_10_1136_bmjopen_2023_079785 crossref_primary_10_1002_cpt_3165 crossref_primary_10_1016_j_jacr_2023_03_014 crossref_primary_10_1186_s41512_024_00182_4 crossref_primary_10_1016_j_trac_2025_118141 crossref_primary_10_1302_2046_3758_139_BJR_2024_0135_R1 crossref_primary_10_3348_jksr_2022_0111 crossref_primary_10_1016_j_heliyon_2024_e29603 crossref_primary_10_1038_s41591_024_03098_0 crossref_primary_10_1111_codi_17091 crossref_primary_10_1136_bmjmed_2023_000817 crossref_primary_10_1038_s41591_023_02562_7 crossref_primary_10_2196_42045 crossref_primary_10_2196_42683 crossref_primary_10_1371_journal_pdig_0000278 crossref_primary_10_1111_iwj_14280 crossref_primary_10_1093_humrep_dead165 crossref_primary_10_1259_bjro_20220033 crossref_primary_10_1186_s12874_022_01577_x crossref_primary_10_2196_60148 crossref_primary_10_1038_s41746_024_01066_z crossref_primary_10_1016_j_ecoenv_2024_116842 crossref_primary_10_2196_52880 crossref_primary_10_1093_jamia_ocad097 crossref_primary_10_1186_s13098_024_01360_6 crossref_primary_10_3390_app13052753 crossref_primary_10_1017_S0033291724003118 crossref_primary_10_1161_CIR_0000000000001201 crossref_primary_10_1111_sdi_13181 crossref_primary_10_1016_j_jaip_2022_04_016 crossref_primary_10_1371_journal_pone_0281931 crossref_primary_10_1109_ACCESS_2023_3316019 crossref_primary_10_1186_s12903_025_05590_6 crossref_primary_10_1016_j_asoc_2023_110644 crossref_primary_10_1002_jgm_3730 crossref_primary_10_1007_s00414_023_03152_5 crossref_primary_10_1186_s12859_022_04979_2 crossref_primary_10_1001_jamasurg_2024_4299 crossref_primary_10_1080_14787210_2024_2322445 crossref_primary_10_1016_j_jclinepi_2022_11_015 crossref_primary_10_1093_jamia_ocad120 crossref_primary_10_3389_fdata_2022_979465 crossref_primary_10_2196_51540 crossref_primary_10_1186_s12911_024_02754_2 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1186_s12874_025_02516_2 crossref_primary_10_1038_s41598_023_48486_7 crossref_primary_10_3389_frai_2023_1171256 crossref_primary_10_1186_s12920_024_01936_1 crossref_primary_10_1186_s12879_023_08409_3 crossref_primary_10_1186_s12874_023_02008_1 crossref_primary_10_2196_48521 crossref_primary_10_3389_fonc_2024_1478385 crossref_primary_10_1002_clc_24104 crossref_primary_10_1007_s12028_022_01504_4 crossref_primary_10_7759_cureus_66600 crossref_primary_10_1111_jdi_14256 crossref_primary_10_1126_science_aay9040 crossref_primary_10_2196_42146 crossref_primary_10_1177_13558196241295970 crossref_primary_10_1371_journal_pdig_0000438 crossref_primary_10_1002_cpt_3117 crossref_primary_10_1007_s00330_023_10168_3 crossref_primary_10_3389_fdgth_2024_1267290 crossref_primary_10_1161_STROKEAHA_121_036204 crossref_primary_10_1136_rmdopen_2023_003783 crossref_primary_10_1016_j_csbj_2024_02_014 crossref_primary_10_1097_CORR_0000000000002782 crossref_primary_10_1111_evj_13880 crossref_primary_10_1017_S1049023X24000414 crossref_primary_10_1097_CORR_0000000000002820 crossref_primary_10_1093_ehjdh_ztae074 crossref_primary_10_47102_annals_acadmedsg_2023113 crossref_primary_10_3390_healthcare12121192 crossref_primary_10_1136_bmj_2023_078378 crossref_primary_10_3389_fonc_2022_975563 |
| Cites_doi | 10.1093/med/9780198796619.001.0001 10.1136/bmj.m689 10.7326/M18-1377 10.7326/M18-1376 10.1136/bmj.m441 10.1136/bmj.m1328 10.1136/bmj.b2393 10.1093/aje/kwz189 10.1016/S2589-7500(19)30123-2 10.1186/s12916-019-1466-7 10.1002/ehf2.13073 10.7189/jogh.08.020303 10.1136/bmjopen-2020-038832 10.1016/j.jclinepi.2009.03.017 10.1371/journal.pmed.1000097 10.1111/acem.14190 10.1186/1471-2288-14-40 10.1371/journal.pmed.1001221 10.1007/978-3-030-16399-0 10.7326/M14-0697 10.1371/journal.pmed.1001381 10.1016/j.cjca.2021.02.020 10.1186/s41512-020-00084-1 10.7326/M14-0698 10.1056/NEJMp1606181 10.1177/0962280214558972 10.1136/bmjopen-2020-048008 10.1186/s41512-020-00077-0 10.1136/bmj.b375 10.1016/S0140-6736(19)30037-6 10.1038/s41746-018-0040-6 10.1016/S0140-6736(13)62228-X 10.1016/j.jclinepi.2016.02.031 10.1016/j.jclinepi.2019.02.004 10.1186/1471-2288-14-137 10.1186/s12874-019-0681-4 10.1136/bmj.i2416 10.1016/j.jclinepi.2010.11.012 |
| ContentType | Journal Article |
| Copyright | Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. 2021 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. 2021 BMJ |
| Copyright_xml | – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. – notice: 2021 Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. BMJ http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. 2021 BMJ |
| DBID | 9YT ACMMV AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7X7 7XB 88I 8AF 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AN0 ASE AZQEC BBNVY BENPR BHPHI BTHHO CCPQU DWQXO FPQ FYUFA GHDGH GNUQQ GUQSH HCIFZ K6X K9. KB0 LK8 M2O M2P M7P MBDVC NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1136/bmj.n2281 |
| DatabaseName | BMJ Open Access Journals BMJ Journals:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database ProQuest Central Health & Medical Collection (via ProQuest) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland British Nursing Database (Proquest) British Nursing Index ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection BMJ Journals ProQuest One Community College ProQuest Central British Nursing Index (BNI) (1985 to Present) Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection British Nursing Index ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Research Library Science Database (ProQuest) ProQuest Central Biological Science Database (via ProQuest) Research Library (Corporate) Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition British Nursing Index with Full Text British Nursing Index ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition BMJ Journals ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Research Library Prep MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: ACMMV name: BMJ Journals:Open Access url: https://journals.bmj.com/ sourceTypes: Publisher – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1756-1833 |
| ExternalDocumentID | 10.1136/bmj.n2281 PMC8527348 34670780 10_1136_bmj_n2281 bmj |
| Genre | Research Support, Non-U.S. Gov't Systematic Review Journal Article |
| GrantInformation_xml | – fundername: Cancer Research UK grantid: 27294 |
| GroupedDBID | 23N 39C 4.4 40O 53G 5GY 7RV 7X7 88I 8AF 8F7 8FE 8FH 8FI 8FJ 8G5 9YT AACGO AANCE AAWJN ABIVO ABJNI ABPLY ABTLG ABUWG ABVAJ ACGFS ACGOD ACMFJ ACMMV ACPRK AFKRA AGFXO AHMBA AHNKE AHQMW AJYBZ ALIPV ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI BPHCQ BTHHO C45 CCPQU CS3 DWQXO EBS EJD F5P FYUFA GNUQQ GUQSH H13 HAJ HCIFZ HMCUK HZ~ JLS JSG JST L7B LK8 M2O M2P M7P NAPCQ NXWIF O9- OVD PHGZT PQQKQ PROAC R53 RHI RMJ RV8 TEORI UKHRP VVN WOQ YFH YQY AAYXX AN0 CITATION IAG IBB IMI PHGZM PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 3V. 7XB 8FK ASE FPQ K6X K9. MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM .GJ 2WC 3O- 8GL AAKAS ABBHK ABXSQ ACHIC ACOAB ACQSR ADBBV ADCEG ADQXQ ADTOC ADULT ADZCM AEUPB AEXZC AFFHD AGQPQ AQVQM ASPBG AZFZN BAWUL CAG COF DCCCD DIK EX3 FEDTE GICCO HQ3 HTVGU HVGLF IAO IEA IPSME ISE JAAYA JBMMH JENOY JHFFW JKQEH JLXEF JPM NTWIH SA0 UHU UNPAY WHG WOW |
| ID | FETCH-LOGICAL-b433t-28ae90408482384664cffb0a14aa0b4c2814b7b262ac9919a81fcc11b9574d933 |
| IEDL.DBID | BENPR |
| ISSN | 1756-1833 0959-8138 |
| IngestDate | Wed Oct 29 12:19:17 EDT 2025 Tue Sep 30 16:48:32 EDT 2025 Sat Sep 27 23:13:14 EDT 2025 Mon Sep 08 13:53:50 EDT 2025 Mon Jul 21 06:03:15 EDT 2025 Wed Oct 01 03:05:12 EDT 2025 Thu Apr 24 22:54:50 EDT 2025 Thu Apr 24 22:50:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/. Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY. No commercial re-use. See rights and permissions. Published by BMJ. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b433t-28ae90408482384664cffb0a14aa0b4c2814b7b262ac9919a81fcc11b9574d933 |
| Notes | ObjectType-Article-1 ObjectType-Evidence Based Healthcare-3 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-8032-6224 0000-0002-2772-2316 0000-0003-2112-004X 0000-0002-0989-0623 0000-0002-7745-2887 0000-0001-6798-2078 0000-0001-8699-0735 0000-0002-3900-1903 0000-0002-7950-2980 0000-0001-7401-4593 0000-0002-1227-2703 0000-0003-2112-0047 |
| OpenAccessLink | https://bmj.com/content/375/bmj.n2281.full |
| PMID | 34670780 |
| PQID | 2592335945 |
| PQPubID | 2043523 |
| ParticipantIDs | unpaywall_primary_10_1136_bmj_n2281 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8527348 proquest_miscellaneous_2585411538 proquest_journals_2592335945 pubmed_primary_34670780 crossref_citationtrail_10_1136_bmj_n2281 crossref_primary_10_1136_bmj_n2281 bmj_journals_10_1136_bmj_n2281 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20211020 2021-10-20 |
| PublicationDateYYYYMMDD | 2021-10-20 |
| PublicationDate_xml | – month: 10 year: 2021 text: 20211020 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: London |
| PublicationTitle | BMJ (Online) |
| PublicationTitleAbbrev | BMJ |
| PublicationTitleAlternate | BMJ |
| PublicationYear | 2021 |
| Publisher | British Medical Journal Publishing Group BMJ Publishing Group LTD BMJ Publishing Group Ltd |
| Publisher_xml | – name: British Medical Journal Publishing Group – name: BMJ Publishing Group LTD – name: BMJ Publishing Group Ltd |
| References | Moons, Royston, Vergouwe, Grobbee, Altman (ref1) 2009; 338 Glasziou, Altman, Bossuyt (ref5) 2014; 383 Damen, Hooft, Schuit (ref6) 2016; 353 Obermeyer, Emanuel (ref11) 2016; 375 van der Ploeg, Austin, Steyerberg (ref23) 2014; 14 Christodoulou, Ma, Collins, Steyerberg, Verbakel, Van Calster (ref15) 2019; 110 Groenwold (ref30) 2020; 4 Austin, Steyerberg (ref27) 2017; 26 Van Calster, McLernon, van Smeden, Wynants, Steyerberg (ref31) 2019; 17 Collins, Dhiman, Andaur Navarro (ref39) 2021; 11 Bi, Goodman, Kaminsky, Lessler (ref8) 2019; 188 Ogundimu, Altman, Collins (ref26) 2016; 76 Shin, Austin, Ross (ref14) 2021; 8 Nagendran, Chen, Lovejoy (ref7) 2020; 368 Collins, Reitsma, Altman, Moons (ref37) 2015; 162 Wynants, Van Calster, Collins (ref34) 2020; 369 Andaur Navarro, Damen, Takada (ref22) 2020; 10 Sterne, White, Carlin (ref28) 2009; 338 Steyerberg, Moons, van der Windt (ref2) 2013; 10 Courvoisier, Combescure, Agoritsas, Gayet-Ageron, Perneger (ref25) 2011; 64 Miles, Turner, Jacques, Williams, Mason (ref33) 2020; 4 Panch, Szolovits, Atun (ref12) 2018; 8 Vergouwe, Royston, Moons, Altman (ref29) 2010; 63 Wolff, Moons, Riley (ref19) 2019; 170 Liu, Faes, Kale (ref35) 2019; 1 Moons, Altman, Reitsma (ref36) 2015; 162 Bouwmeester, Zuithoff, Mallett (ref18) 2012; 9 Cho, Austin, Ross (ref16) 2021; 37 Moons, Wolff, Riley (ref20) 2019; 170 Collins, Moons (ref38) 2019; 393 Abràmoff, Lavin, Birch, Shah, Folk (ref13) 2018; 1 Sidey-Gibbons, Sidey-Gibbons (ref9) 2019; 19 Collins, de Groot, Dutton (ref17) 2014; 14 Kareemi, Vaillancourt, Rosenberg, Fournier, Yadav (ref32) 2020; 28 Riley, Ensor, Snell (ref24) 2020; 368 Moher, Liberati, Tetzlaff, Altman (ref21) 2009; 6 2022110803403104000_375.oct20_3.n2281.9 2022110803403104000_375.oct20_3.n2281.8 2022110803403104000_375.oct20_3.n2281.7 2022110803403104000_375.oct20_3.n2281.6 2022110803403104000_375.oct20_3.n2281.21 2022110803403104000_375.oct20_3.n2281.20 2022110803403104000_375.oct20_3.n2281.23 2022110803403104000_375.oct20_3.n2281.22 2022110803403104000_375.oct20_3.n2281.25 2022110803403104000_375.oct20_3.n2281.24 2022110803403104000_375.oct20_3.n2281.27 2022110803403104000_375.oct20_3.n2281.26 2022110803403104000_375.oct20_3.n2281.29 2022110803403104000_375.oct20_3.n2281.28 2022110803403104000_375.oct20_3.n2281.1 2022110803403104000_375.oct20_3.n2281.30 2022110803403104000_375.oct20_3.n2281.5 2022110803403104000_375.oct20_3.n2281.10 2022110803403104000_375.oct20_3.n2281.32 2022110803403104000_375.oct20_3.n2281.4 2022110803403104000_375.oct20_3.n2281.31 2022110803403104000_375.oct20_3.n2281.3 2022110803403104000_375.oct20_3.n2281.12 2022110803403104000_375.oct20_3.n2281.34 2022110803403104000_375.oct20_3.n2281.2 2022110803403104000_375.oct20_3.n2281.11 2022110803403104000_375.oct20_3.n2281.33 2022110803403104000_375.oct20_3.n2281.14 2022110803403104000_375.oct20_3.n2281.36 2022110803403104000_375.oct20_3.n2281.13 2022110803403104000_375.oct20_3.n2281.35 2022110803403104000_375.oct20_3.n2281.16 2022110803403104000_375.oct20_3.n2281.38 2022110803403104000_375.oct20_3.n2281.15 2022110803403104000_375.oct20_3.n2281.37 2022110803403104000_375.oct20_3.n2281.18 2022110803403104000_375.oct20_3.n2281.17 2022110803403104000_375.oct20_3.n2281.39 2022110803403104000_375.oct20_3.n2281.19 |
| References_xml | – volume: 393 start-page: 1577 year: 2019 ident: ref38 article-title: Reporting of artificial intelligence prediction models publication-title: Lancet – volume: 10 year: 2013 ident: ref2 article-title: Prognosis Research Strategy (PROGRESS) 3: prognostic model research publication-title: PLoS Med – volume: 375 start-page: 1216 year: 2016 ident: ref11 article-title: Predicting the Future - Big Data, Machine Learning, and Clinical Medicine publication-title: N Engl J Med – volume: 37 start-page: 1207 year: 2021 ident: ref16 article-title: Machine learning compared to conventional statistical models for predicting myocardial infarction readmission and mortality: a systematic review publication-title: Can J Cardiol – volume: 9 start-page: 1 year: 2012 ident: ref18 article-title: Reporting and methods in clinical prediction research: a systematic review publication-title: PLoS Med – volume: 353 start-page: i2416 year: 2016 ident: ref6 article-title: Prediction models for cardiovascular disease risk in the general population: systematic review publication-title: BMJ – volume: 19 start-page: 64 year: 2019 ident: ref9 article-title: Machine learning in medicine: a practical introduction publication-title: BMC Med Res Methodol – volume: 26 start-page: 796 year: 2017 ident: ref27 article-title: Events per variable (EPV) and the relative performance of different strategies for estimating the out-of-sample validity of logistic regression models publication-title: Stat Methods Med Res – volume: 162 start-page: 55 year: 2015 ident: ref37 article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): the TRIPOD statement publication-title: Ann Intern Med – volume: 383 start-page: 267 year: 2014 ident: ref5 article-title: Reducing waste from incomplete or unusable reports of biomedical research publication-title: Lancet – volume: 170 start-page: 51 year: 2019 ident: ref19 article-title: PROBAST: A tool to assess the risk of bias and applicability of prediction model studies publication-title: Ann Intern Med – volume: 14 start-page: 137 year: 2014 ident: ref23 article-title: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints publication-title: BMC Med Res Methodol – volume: 4 start-page: 8 year: 2020 ident: ref30 article-title: Informative missingness in electronic health record systems: the curse of knowing publication-title: Diagn Progn Res – volume: 368 start-page: m689 year: 2020 ident: ref7 article-title: Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies publication-title: BMJ – volume: 14 start-page: 40 year: 2014 ident: ref17 article-title: External validation of multivariable prediction models: a systematic review of methodological conduct and reporting publication-title: BMC Med Res Methodol – volume: 6 year: 2009 ident: ref21 article-title: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement publication-title: PLoS Med – volume: 368 start-page: m441 year: 2020 ident: ref24 article-title: Calculating the sample size required for developing a clinical prediction model publication-title: BMJ – volume: 338 start-page: b2393 year: 2009 ident: ref28 article-title: Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls publication-title: BMJ – volume: 64 start-page: 993 year: 2011 ident: ref25 article-title: Performance of logistic regression modeling: beyond the number of events per variable, the role of data structure publication-title: J Clin Epidemiol – volume: 170 start-page: W1 year: 2019 ident: ref20 article-title: PROBAST: A tool to assess risk of bias and applicability of prediction model studies: Explanation and elaboration publication-title: Ann Intern Med – volume: 8 start-page: 106 year: 2021 ident: ref14 article-title: Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality publication-title: ESC Heart Fail – volume: 11 year: 2021 ident: ref39 article-title: Protocol for development of a reporting guideline (TRIPOD-AI) and risk of bias tool (PROBAST-AI) for diagnostic and prognostic prediction model studies based on artificial intelligence publication-title: BMJ Open – volume: 110 start-page: 12 year: 2019 ident: ref15 article-title: A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models publication-title: J Clin Epidemiol – volume: 188 start-page: 2222 year: 2019 ident: ref8 article-title: What is machine learning? A primer for the epidemiologist publication-title: Am J Epidemiol – volume: 10 year: 2020 ident: ref22 article-title: Protocol for a systematic review on the methodological and reporting quality of prediction model studies using machine learning techniques publication-title: BMJ Open – volume: 63 start-page: 205 year: 2010 ident: ref29 article-title: Development and validation of a prediction model with missing predictor data: a practical approach publication-title: J Clin Epidemiol – volume: 1 start-page: e271 year: 2019 ident: ref35 article-title: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis publication-title: Lancet Digit Health – volume: 369 start-page: m1328 year: 2020 ident: ref34 article-title: Prediction models for diagnosis and prognosis of covid-19: systematic review and critical appraisal publication-title: BMJ – volume: 1 year: 2018 ident: ref13 article-title: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj publication-title: Digit Med – volume: 8 year: 2018 ident: ref12 article-title: Artificial intelligence, machine learning and health systems publication-title: J Glob Health – volume: 17 start-page: 230 year: 2019 ident: ref31 article-title: Calibration: the Achilles heel of predictive analytics publication-title: BMC Med – volume: 28 start-page: 184 year: 2020 ident: ref32 article-title: Machine Learning Versus Usual Care for Diagnostic and Prognostic Prediction in the Emergency Department: A Systematic Review publication-title: Acad Emerg Med – volume: 162 start-page: W1-73 year: 2015 ident: ref36 article-title: Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration publication-title: Ann Intern Med – volume: 76 start-page: 175 year: 2016 ident: ref26 article-title: Adequate sample size for developing prediction models is not simply related to events per variable publication-title: J Clin Epidemiol – volume: 4 start-page: 16 year: 2020 ident: ref33 article-title: Using machine-learning risk prediction models to triage the acuity of undifferentiated patients entering the emergency care system: a systematic review publication-title: Diagn Progn Res – volume: 338 start-page: b375 year: 2009 ident: ref1 article-title: Prognosis and prognostic research: what, why, and how? publication-title: BMJ – ident: 2022110803403104000_375.oct20_3.n2281.3 doi: 10.1093/med/9780198796619.001.0001 – ident: 2022110803403104000_375.oct20_3.n2281.7 doi: 10.1136/bmj.m689 – ident: 2022110803403104000_375.oct20_3.n2281.20 doi: 10.7326/M18-1377 – ident: 2022110803403104000_375.oct20_3.n2281.19 doi: 10.7326/M18-1376 – ident: 2022110803403104000_375.oct20_3.n2281.24 doi: 10.1136/bmj.m441 – ident: 2022110803403104000_375.oct20_3.n2281.10 – ident: 2022110803403104000_375.oct20_3.n2281.34 doi: 10.1136/bmj.m1328 – ident: 2022110803403104000_375.oct20_3.n2281.28 doi: 10.1136/bmj.b2393 – ident: 2022110803403104000_375.oct20_3.n2281.8 doi: 10.1093/aje/kwz189 – ident: 2022110803403104000_375.oct20_3.n2281.35 doi: 10.1016/S2589-7500(19)30123-2 – ident: 2022110803403104000_375.oct20_3.n2281.31 doi: 10.1186/s12916-019-1466-7 – ident: 2022110803403104000_375.oct20_3.n2281.14 doi: 10.1002/ehf2.13073 – ident: 2022110803403104000_375.oct20_3.n2281.12 doi: 10.7189/jogh.08.020303 – ident: 2022110803403104000_375.oct20_3.n2281.22 doi: 10.1136/bmjopen-2020-038832 – ident: 2022110803403104000_375.oct20_3.n2281.29 doi: 10.1016/j.jclinepi.2009.03.017 – ident: 2022110803403104000_375.oct20_3.n2281.21 doi: 10.1371/journal.pmed.1000097 – ident: 2022110803403104000_375.oct20_3.n2281.32 doi: 10.1111/acem.14190 – ident: 2022110803403104000_375.oct20_3.n2281.17 doi: 10.1186/1471-2288-14-40 – ident: 2022110803403104000_375.oct20_3.n2281.18 doi: 10.1371/journal.pmed.1001221 – ident: 2022110803403104000_375.oct20_3.n2281.4 doi: 10.1007/978-3-030-16399-0 – ident: 2022110803403104000_375.oct20_3.n2281.37 doi: 10.7326/M14-0697 – ident: 2022110803403104000_375.oct20_3.n2281.2 doi: 10.1371/journal.pmed.1001381 – ident: 2022110803403104000_375.oct20_3.n2281.16 doi: 10.1016/j.cjca.2021.02.020 – ident: 2022110803403104000_375.oct20_3.n2281.33 doi: 10.1186/s41512-020-00084-1 – ident: 2022110803403104000_375.oct20_3.n2281.36 doi: 10.7326/M14-0698 – ident: 2022110803403104000_375.oct20_3.n2281.11 doi: 10.1056/NEJMp1606181 – ident: 2022110803403104000_375.oct20_3.n2281.27 doi: 10.1177/0962280214558972 – ident: 2022110803403104000_375.oct20_3.n2281.39 doi: 10.1136/bmjopen-2020-048008 – ident: 2022110803403104000_375.oct20_3.n2281.30 doi: 10.1186/s41512-020-00077-0 – ident: 2022110803403104000_375.oct20_3.n2281.1 doi: 10.1136/bmj.b375 – ident: 2022110803403104000_375.oct20_3.n2281.38 doi: 10.1016/S0140-6736(19)30037-6 – ident: 2022110803403104000_375.oct20_3.n2281.13 doi: 10.1038/s41746-018-0040-6 – ident: 2022110803403104000_375.oct20_3.n2281.5 doi: 10.1016/S0140-6736(13)62228-X – ident: 2022110803403104000_375.oct20_3.n2281.26 doi: 10.1016/j.jclinepi.2016.02.031 – ident: 2022110803403104000_375.oct20_3.n2281.15 doi: 10.1016/j.jclinepi.2019.02.004 – ident: 2022110803403104000_375.oct20_3.n2281.23 doi: 10.1186/1471-2288-14-137 – ident: 2022110803403104000_375.oct20_3.n2281.9 doi: 10.1186/s12874-019-0681-4 – ident: 2022110803403104000_375.oct20_3.n2281.6 doi: 10.1136/bmj.i2416 – ident: 2022110803403104000_375.oct20_3.n2281.25 doi: 10.1016/j.jclinepi.2010.11.012 |
| SSID | ssj0002378965 |
| Score | 2.7040336 |
| SecondaryResourceType | review_article |
| Snippet | AbstractObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical... To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties. Systematic... ObjectiveTo assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical... To assess the methodological quality of studies on prediction models developed using machine learning techniques across all medical specialties.OBJECTIVETo... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref bmj |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | n2281 |
| SubjectTerms | Artificial intelligence Bias Clinical Decision Rules Clinical medicine Data Interpretation, Statistical Humans Learning algorithms Machine Learning Medical research Models, Statistical Multivariate Analysis Prediction models Risk Statistical methods Systematic review |
| SummonAdditionalLinks | – databaseName: BMJ Open Access Journals dbid: 9YT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9QwDLdgSGMviO8VxhQ-HngpXPPRJrwhxDQhjQe0SePplLTpdnDLnda7If577DTX47QhXh1XiWwndhP7Z4A3trXeCOlzVzQmRw_lc9tUKm_a0lIlJPpIqh0--loensgvp-o0weRQLYy7-NFXMhA2U1i8F5WKtMC5Lt7RlfRtuINRtYjdCr4fD_cpXFTalCqBBxWiXH-2A9sCzwN0hlTGhuRNH3QtsLyeH3l3Geb29y87nf7lfA7uw70UNbKPvZofwC0fHsL2UXoXfwRX3ybdTzZrmZvYjk0C6_r0QDYLbH5JbCR_FtvedCwVSvmGUdb7GeuWczoxOiRcxNxKz1IziTM2YLx2H9ga9Zn1FS-P4eTg8_Gnwzx1VMidFGKRc42awW2rpUZXTcjyddu6kS2ktSMnaxSWdJXjJbc1Bo7G6qKt66JwRlWyMUI8ga0wC34XWCN1o4RpGzQCiYeCqbw1yINcUrSlyGAfJT1OO6Ibx58NUY6JGLWSwduVEsZ1wiOnthjTm1hfDazzHoTjJqa9lSbXs-K6uBDKSJXBy2EYdxA9i9jgZ0vi0UoWdPJn8LRX_DDLym4yqDZMYmAgdO7NkTA5jyjdWkXkoAxeD8bz78U_-5-0nsMOp2wa9Jp8tAdbi8ulf4Hh0MLtx33wB2krCt8 priority: 102 providerName: BMJ Publishing Group Ltd – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQQnKO-gtjKPA5ekm9hOYm5V1apCaoUQK8ppZSd2u3TrjZoEBL-eceLNsrRIcEpif5FfY88knvkM8EYaqQVlOlRxKULUUDqUZcbD0qTSRUKijnSxwyen6fGEvT_jZxuQLmNhnFuluvraRzM4fibb7OHzHs24u0Y2SfI4cr-mo6o0d2Az5WiDj2Bzcvph_0sX_eiI9XJKPY1QTNPVi6hA8H5dBd2wK2-6R95rbSV_fJfz-W-65-gBfF7Wunc5uYzaRkXFzz8IHf-_WVtw35ujZL-Xn4ewoe0juHviN9wfw7ePs_qSLAxRM1mTmSV173dIFpZU1w7mBpZ05-nUxEdg6ZI4d_pzUreVW4pqTLjqnDY18adUnJOBPLZ-R1Z00qQPpXkCk6PDTwfHoT-qIVSM0iZMchxyXA9ylqMN4CjrC2PUWMZMyrFiBbaOqUwlaSILtEiFzGNTFHGsBM9YKSh9CiO7sPo5kJLlJafClChdDFcbkWkpEIMoRk1KA9jFHpv6qVZPu68Ymk5dYteNAbxdDu-08ETn7ryN-W3QVwO06tk9bgNtL2VkVSrWK6GUC8YDeDlk49R0-y3S6kXrMDlnsVMpATzrRWoohaKCQutsHEC2JmwDwNF-r-fY2UVH_53zjpIogNeDWP698i_-CbUNo-a61TtoXzVq10-mX-7VLMg priority: 102 providerName: Unpaywall |
| Title | Risk of bias in studies on prediction models developed using supervised machine learning techniques: systematic review |
| URI | https://bmj.com/content/375/bmj.n2281.full https://www.ncbi.nlm.nih.gov/pubmed/34670780 https://www.proquest.com/docview/2592335945 https://www.proquest.com/docview/2585411538 https://pubmed.ncbi.nlm.nih.gov/PMC8527348 https://www.bmj.com/content/bmj/375/bmj.n2281.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 375 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1756-1833 dateEnd: 20250823 omitProxy: true ssIdentifier: ssj0002378965 issn: 1756-1833 databaseCode: 7X7 dateStart: 19940108 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1756-1833 dateEnd: 20250823 omitProxy: true ssIdentifier: ssj0002378965 issn: 1756-1833 databaseCode: BENPR dateStart: 19940108 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-trQS8IL4JjMp8PPAS1tjOh5EQKtOmCanVNK2oe6rs2BnduqQsLYj_nnPipFQbvCSRfZIt353vYt_9DuCdzKQRjBtfBVr4aKGML3Uc-jqLpM2ERBtpc4dH4-howr9Ow-kOjJtcGBtW2eyJ1Uati9Seke-hm04ZCwUPPy9_-LZqlL1dbUpoSFdaQX-qIMY60KMWGasLvS8H4-OT9tSFsjgRUegghgIW7amriw85pRbXuoPf2-bphs95M3Ty7jpfyt-_5GLxl106fAD3nUNJhrUEPIQdkz-COyN3Zf4Yfp7My0tSZETNZUnmOSnryEFS5GR5bcksa0hVEackLofKaGID4s9JuV7azaTEhqsq7NIQV2finLTwr-VHsgGEJnUyzBOYHB6c7h_5rtiCrzhjK58myDTU6IQnaMUt6HyaZWogAy7lQPEUV4irWNGIyhR9SiGTIEvTIFAijLkWjD2Fbl7k5jkQzRMdMpFplA-O-4WIjRRIg1ScZRHzoI8rPXPKUs6q_xAWzWxjxQoP3jdMmKUOqtxWzFjcRvqmJV3W-By3Ee02nNyMuhEoD1633ahc9sZE5qZYW5ok5IE1Ch48qxnfjsLQxKB_NfAg3hKJlsACd2_35PPvFYB3ElagQh68bYXn35N_8f_Jv4R71IbZoDmlg13orq7X5hX6SSvVh048jfEpzk770Bvuj0bf-k4h8D0ZHw_P_gB0Qxx7 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKK1EuiDeBUsxL4hK6sZ2HkSrEo9WWdleoaqXegh07ZWGbhGaXqn-O38ZM4s2yauHWW-SMZMsz9je2Z74h5KXKlZVcWF8HRvqAUNZXJg59k0cKMyEBIzF3eDCM-ofi81F4tER-z3JhMKxytic2G7UpM7wj3wA3nXEeShG-q376WDUKX1dnJTSUK61gNhuKMZfYsWvPz-AIV2_ufAJ9v2Jse-vgY993VQZ8LTif-CyB0YIpJyIB-EK29SzPdU8FQqmeFhlLAqFjzSKmMnCmpEqCPMuCQMswFkbihShAwIrgQsLhb-XD1vDLfnfLw3icyCh0lEYBjzb0yfc3BWPIo30Nvhfh8IKPezFUc3VaVOr8TI3Hf-Hg9i1y0zmw9H1rcbfJki3ukOsD90R_l_zaH9U_aJlTPVI1HRW0biMVaVnQ6hTF0BRoU4Gnpi5nyxqKAfjHtJ5WuHnV0HDShHla6upaHNOObrZ-S-cE1LRNvrlHDq9k2u-T5aIs7ENCjUhMyGVuwB4F7E8ytkqCDEgJnkfcI-sw06lbnHXanHt4lGJjowqPvJ4pIc0cNTpW6BhfJvq8E61aPpDLhNZmmpz3OjdgjzzrfsNixhcaVdhyijJJKAIEIY88aBXf9cIB0sCf63kkXjCJTgCJwhf_FKNvDWF4EjYkRh550RnPvwf_6P-Df0pW-weDvXRvZ7j7mNxgGOIDUM56a2R5cjq1T8BHm-h1txAo-XrVa-8PjD5Syg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIhVeEDeBUswl8RJ2YzuHkRBClFVLaYUQlfYt2IlTtt0modml6l_j1zGTa1m18Na3yBnJlue0PfMNwAudaauEtK7xUuWih7KuTkPfTbNAUyUk-kiqHd7dC7b25aexP16B310tDKVVdjaxNtRpkdAd-QDDdC6Er6Q_yNq0iC-bo3flT5c6SNFLa9dOoxGRHXt2ise36u32JvL6Jeejj98-bLlthwHXSCFmLo9wpSjGkYzQdRHSepJlZqg9qfXQyIRHnjSh4QHXCQZSSkdeliSeZ5QfylTRZSia_6uhEIrSCcNx2N_vcBFGKvBbMCNPBANzfPg655wQtK_g97IjPBfdnk_SvDbPS312qqfTvzzg6CbcaENX9r6RtVuwYvPbsLbbPs7fgV9fJ9URKzJmJrpik5xVTY4iK3JWnhAZCQGre-9UrK3Wsimj1PsDVs1LMlsVDhzXCZ6WtR0tDlgPNFu9YQvoadaU3dyF_UvZ9Huwmhe5fQAslVHqC5WlKIkSLZMKrVZIg1RSZIFwYAN3Om7VsorrE48IYhqsWeHAq44JcdKColNvjulFpM960rJBArmIaL3j5GLWheg68LT_jWpMbzM6t8WcaCJfeuR-HLjfML6fRaAzw0hu6EC4JBI9AUGEL__JJz9qqPDIr-GLHHjeC8-_F__w_4t_AmuocfHn7b2dR3CdU24P-nA-XIfV2cncPsbgbGY2ai1g8P2y1e4PUv9QZA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VrQQnKO-gtjKPA5ekm9hOYm5V1apCaoUQK8ppZSd2u3TrjZoEBL-eceLNsrRIcEpif5FfY88knvkM8EYaqQVlOlRxKULUUDqUZcbD0qTSRUKijnSxwyen6fGEvT_jZxuQLmNhnFuluvraRzM4fibb7OHzHs24u0Y2SfI4cr-mo6o0d2Az5WiDj2Bzcvph_0sX_eiI9XJKPY1QTNPVi6hA8H5dBd2wK2-6R95rbSV_fJfz-W-65-gBfF7Wunc5uYzaRkXFzz8IHf-_WVtw35ujZL-Xn4ewoe0juHviN9wfw7ePs_qSLAxRM1mTmSV173dIFpZU1w7mBpZ05-nUxEdg6ZI4d_pzUreVW4pqTLjqnDY18adUnJOBPLZ-R1Z00qQPpXkCk6PDTwfHoT-qIVSM0iZMchxyXA9ylqMN4CjrC2PUWMZMyrFiBbaOqUwlaSILtEiFzGNTFHGsBM9YKSh9CiO7sPo5kJLlJafClChdDFcbkWkpEIMoRk1KA9jFHpv6qVZPu68Ymk5dYteNAbxdDu-08ETn7ryN-W3QVwO06tk9bgNtL2VkVSrWK6GUC8YDeDlk49R0-y3S6kXrMDlnsVMpATzrRWoohaKCQutsHEC2JmwDwNF-r-fY2UVH_53zjpIogNeDWP698i_-CbUNo-a61TtoXzVq10-mX-7VLMg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk+of+bias+in+studies+on+prediction+models+developed+using+supervised+machine+learning+techniques%3A+systematic+review&rft.jtitle=BMJ.+British+medical+journal+%28Clinical+research+ed.%29&rft.au=Andaur+Navarro%2C+Constanza+L&rft.au=Damen%2C+Johanna+A+A&rft.au=Takada%2C+Toshihiko&rft.au=Nijman%2C+Steven+W+J&rft.date=2021-10-20&rft.eissn=1756-1833&rft.volume=375&rft.spage=n2281&rft_id=info:doi/10.1136%2Fbmj.n2281&rft_id=info%3Apmid%2F34670780&rft.externalDocID=34670780 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1756-1833&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1756-1833&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1756-1833&client=summon |