Sparse Logistic Regression with Lp Penalty for Biomarker Identification
In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of ou...
Saved in:
| Published in | Statistical Applications in Genetics and Molecular Biology Vol. 6; no. 1; pp. 6 - 27 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
bepress
10.02.2007
De Gruyter |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1544-6115 2194-6302 1544-6115 |
| DOI | 10.2202/1544-6115.1248 |
Cover
| Abstract | In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author. |
|---|---|
| AbstractList | In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author. In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author.In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author. Abstract In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author. Submitted: August 18, 2006 · Accepted: January 12, 2007 · Published: February 10, 2007 Recommended Citation Liu, Zhenqiu; Jiang, Feng; Tian, Guoliang; Wang, Suna; Sato, Fumiaki; Meltzer, Stephen J.; and Tan, Ming (2007) "Sparse Logistic Regression with Lp Penalty for Biomarker Identification," Statistical Applications in Genetics and Molecular Biology: Vol. 6 : Iss. 1, Article 6. DOI: 10.2202/1544-6115.1248 Available at: http://www.bepress.com/sagmb/vol6/iss1/art6 |
| Author | Jiang, Feng Liu, Zhenqiu Wang, Suna Tan, Ming Tian, Guoliang Sato, Fumiaki Meltzer, Stephen J. |
| Author_xml | – sequence: 1 givenname: Zhenqiu surname: Liu fullname: Liu, Zhenqiu organization: University of Maryland – sequence: 2 givenname: Feng surname: Jiang fullname: Jiang, Feng organization: University of Maryland – sequence: 3 givenname: Guoliang surname: Tian fullname: Tian, Guoliang organization: University of Maryland – sequence: 4 givenname: Suna surname: Wang fullname: Wang, Suna organization: University of Maryland School of Medicine – sequence: 5 givenname: Fumiaki surname: Sato fullname: Sato, Fumiaki organization: Johns Hopkins University School of Medicine – sequence: 6 givenname: Stephen J. surname: Meltzer fullname: Meltzer, Stephen J. organization: Johns Hopkins University School of Medicine – sequence: 7 givenname: Ming surname: Tan fullname: Tan, Ming organization: University of Maryland Greenebaum Cancer Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17402921$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kUtv1DAURi3Uij5gyxJ5xS6Dn3GyhAqGqiO1QGFreZybwSUTp7ajMv--TlMGVKkrX1nns757fIIOet8DQm8oWTBG2HsqhShKSuWCMlG9QMf7i4P_5iN0EuMNIYwyTl6iI6oEYTWjx2j5fTAhAl75jYvJWfwNNgFidL7Hdy79wqsBX0FvurTDrQ_4o_NbE35DwOcN9Mm1zpqU4VfosDVdhNeP5yn68fnT9dmXYnW5PD_7sCrWgshUlIRKkNw2FWG8UcRUpBHWVlYZovIsbSPbStGmBt6CalsuhDWq5JWhrK05P0Xv5neH4G9HiElvXbTQdaYHP0atCOeVqkkG3z6C43oLjR6Cy8V3-u_qGVjMgA0-xgDtP4Toya2e9OlJn57c5oB4ErAuPSyfgnHd87Fqjt1liRCa7Hfc5UHf-DFksfGZYDlVLOZo_hr4s--X_etScSX112uhK_lzWZcXUk9y8MyvYZg-cZ-IZrNdP7S5ByEGpz4 |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2020_04_003 crossref_primary_10_1109_TCBB_2008_17 crossref_primary_10_1016_j_ins_2014_05_013 crossref_primary_10_1016_j_ijepes_2021_107626 crossref_primary_10_1109_TAI_2022_3170001 crossref_primary_10_1016_j_neucom_2015_12_106 crossref_primary_10_1007_s11633_015_0919_5 crossref_primary_10_1109_TNNLS_2013_2247417 crossref_primary_10_4236_jbise_2020_137016 crossref_primary_10_1155_2014_857398 crossref_primary_10_1186_1471_2164_15_S10_S1 crossref_primary_10_4137_EBO_S9407 crossref_primary_10_1109_TPAMI_2012_266 crossref_primary_10_1109_TNNLS_2016_2551724 crossref_primary_10_1186_1471_2105_9_412 crossref_primary_10_1016_j_eswa_2010_09_140 crossref_primary_10_1109_TNNLS_2013_2263427 crossref_primary_10_1002_bimj_200810475 crossref_primary_10_3390_biomedicines8040088 crossref_primary_10_1186_1748_7188_5_30 crossref_primary_10_4303_ijbdm_B110102 crossref_primary_10_1007_s00500_016_2385_6 crossref_primary_10_1093_bioinformatics_btn585 crossref_primary_10_1007_s11432_012_4679_3 crossref_primary_10_1007_s11590_020_01685_x crossref_primary_10_1002_cjs_10107 crossref_primary_10_1007_s12561_024_09418_9 crossref_primary_10_1186_s12985_022_01836_9 |
| ContentType | Journal Article |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.2202/1544-6115.1248 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1544-6115 |
| ExternalDocumentID | 17402921 10_2202_1544_6115_1248 10_2202_1544_6115_124861 ark_67375_QT4_85VG96K5_3 sagmb1248 |
| Genre | Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NCI NIH HHS grantid: CA85069 – fundername: NCI NIH HHS grantid: CA119758 |
| GroupedDBID | --- -~S 0R~ 123 1WD 4.4 9-L AAAEU AAAVF AACIX AAFPC AAGVJ AAILP AAKRG AALGR AAONY AAOWA AAPJK AAQCX AASQH AASQN AAWFC AAXCG ABABW ABAOT ABAQN ABFKT ABIQR ABJNI ABLVI ABMIY ABPLS ABRDF ABRQL ABUVI ABVMU ABWLS ABXMZ ABYBW ACEFL ACGFO ACGFS ACHNZ ACMKP ACONX ACPMA ACXLN ACZBO ADALX ADEQT ADGQD ADGYE ADOZN ADUQZ AEDGQ AEGVQ AEICA AEJQW AEKEB AEMOE AENEX AEQDQ AEQLX AERZL AEXIE AFAUI AFBAA AFBQV AFCXV AFGNR AFQUK AFYRI AGBEV AGGNV AGWTP AHCWZ AHVWV AHXUK AIAGR AIERV AIKXB AJATJ AJPIC AKXKS ALMA_UNASSIGNED_HOLDINGS ALUKF ALWYM AMAVY ASPBG ASYPN AVWKF AZFZN AZMOX BAKPI BBCWN BBDJO BCIFA BDLBQ BSCLL CS3 DASCH DBYYV DU5 EBS EJD EMOBN F5P FEDTE FSTRU H13 HVGLF HZ~ J9A K.~ KDIRW LG7 MV1 O9- P2P QD8 ROL SA. SLJYH T2Y UK5 WTRAM ~Z8 ABDRH ACDEB ACRPL ACUND ACYCL ADNMO ADNPR AECWL AFBDD AFSHE AGQPQ AGQYU AIWOI CKPZI DSRVY LVMAB AAYXX CITATION AAXMT CAG CGR COF CUY CVF ECM EIF IY9 NPM NQBSW RYL 7X8 |
| ID | FETCH-LOGICAL-b405t-6015e53cd8023d70a80d4cc8c7a0780d5cd5f871d9e3fe7ff344ca7638a12f933 |
| ISSN | 1544-6115 2194-6302 |
| IngestDate | Thu Oct 02 07:00:47 EDT 2025 Thu Apr 03 07:02:45 EDT 2025 Wed Oct 01 02:39:40 EDT 2025 Thu Apr 24 22:51:42 EDT 2025 Sat Sep 06 17:02:30 EDT 2025 Wed Oct 30 09:42:08 EDT 2024 Fri Oct 12 16:17:07 EDT 2018 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b405t-6015e53cd8023d70a80d4cc8c7a0780d5cd5f871d9e3fe7ff344ca7638a12f933 |
| Notes | sagmb.2007.6.1.1248.pdf ArticleID:1544-6115.1248 istex:D197A37135B729C039E8C4561ECC56433F4D6090 ark:/67375/QT4-85VG96K5-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 17402921 |
| PQID | 70338790 |
| PQPubID | 23479 |
| PageCount | 22 |
| ParticipantIDs | walterdegruyter_journals_10_2202_1544_6115_124861 istex_primary_ark_67375_QT4_85VG96K5_3 crossref_primary_10_2202_1544_6115_1248 bepress_primary_sagmb1248 proquest_miscellaneous_70338790 pubmed_primary_17402921 crossref_citationtrail_10_2202_1544_6115_1248 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2007-2-10 |
| PublicationDateYYYYMMDD | 2007-02-10 |
| PublicationDate_xml | – month: 02 year: 2007 text: 2007-2-10 day: 10 |
| PublicationDecade | 2000 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany |
| PublicationTitle | Statistical Applications in Genetics and Molecular Biology |
| PublicationTitleAlternate | Stat Appl Genet Mol Biol |
| PublicationYear | 2007 |
| Publisher | bepress De Gruyter |
| Publisher_xml | – name: bepress – name: De Gruyter |
| SSID | ssj0021230 |
| Score | 2.0040483 |
| Snippet | Abstract
In this paper, we propose a novel method for sparse logistic
regression with non-convex regularization Lp (p <1).
Based on smooth approximation, we... In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop... |
| SourceID | proquest pubmed crossref walterdegruyter istex bepress |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6 |
| SubjectTerms | Algorithms Area Under Curve Biomarkers - analysis Colon - chemistry Colonic Neoplasms - chemistry Colonic Neoplasms - genetics Esophageal Neoplasms - chemistry Esophageal Neoplasms - genetics feature selection Gene Expression Profiling Humans Logistic Models Lp penalty microarry analysis Oligonucleotide Array Sequence Analysis sparse logistic regression |
| Title | Sparse Logistic Regression with Lp Penalty for Biomarker Identification |
| URI | http://www.bepress.com/sagmb/vol6/iss1/art6/ https://api.istex.fr/ark:/67375/QT4-85VG96K5-3/fulltext.pdf https://www.degruyter.com/doi/10.2202/1544-6115.1248 https://www.ncbi.nlm.nih.gov/pubmed/17402921 https://www.proquest.com/docview/70338790 |
| Volume | 6 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAZK databaseName: De Gruyter Journals customDbUrl: eissn: 1544-6115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0021230 issn: 1544-6115 databaseCode: AGBEV dateStart: 20020501 isFulltext: true titleUrlDefault: https://www.degruyterbrill.com providerName: Walter de Gruyter |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKKyR4mPgmfOYBwUOVzYmdr8cNjU4wEIhu7M2KHadEomlYE8H46znHjrtWnTR4iSrLvjq-y_nu_PMdQq8K6ksci9TLeYw9KgPi8VBmnp9RP09pJNIu3vHxU3R0Qt-fhWeDQX0JtdQ2fFf82Xqv5H-4Cm3AV3VL9h84a4lCA_wG_sITOAzPa_H4aw1uqVRld7t0y7BWMw1r1Xezx8f1-LMEKgaVeVAu5gqNcz7W13MLE6-7bKAq47MjpnII1Otoc5iHtFmd531d3bHJ42ShPWXbnXh8l9XPsrUIndIEpmEBZzZcUOrw66RdqGiLbf_WB7FbXdvbhiVihWQ2ANVOe4EmpF5EsFa10mhXCm2-vr_Zq99oU8o2lXoQdEli7eBdMEmS1fbVH9lv7GoWawhejqLA1HimxjM1_gYaBbAP4CEa7U8ODk-tkw47uYrL2enrRJ-Kwt76DMBh4hqsvGbSjNTX-Xubv3Ib7fzqIBA5CEN70fRH7p0lM72DdowL4u5rebqLBrK6h27qoqQX99FES5XbS5W7kipXSZV7XLtGqlyQKtdKlbsuVQ_QybvD6dsjz5Tb8DhY7Y0HrnkoQyJylRMwj3GW4JwKkYg4AzsS56HIwwL86zyVpJBxURBKRQb7U5L5QZES8hANq0UlHyM35AS-czD_OE8oz4uMRDwosIhBDXCwYR3kmLVjtU6qwpbZbM7VujrI61eTCZOnXpVL-cG2c9JBb2z_nthVPV93zLHdYHEUrjEO2ZcpZUl4OkmjDyEjDnrZc4-BtlVHaFklF-2Swf5IkjjFDnqkmbr6y5jiIA3g1fwNLjOjMZZXTCvyn1z7FZ6iW6uP7RkaNuetfA5WccNfGEH-C2kcswI |
| linkProvider | Walter de Gruyter |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6BZhjgUF4tmFd1YODkxLYkP46FaRNo2uGRdnrTWA-HThsnk9gD4deziuxQOu0F7pJsrVa737darQDeFCw0QaIyX8sk8JmJqC-5yf0wZ6HOWKyyVbzj8CgeHLNPp_z00l0Ym1apzXheLytXIbWnp6q2gbK21kCEdL1na8gg6wl5F_1T2vteTS5uQwfJCsPN2dntv987WdMutM020oJbE7tQm8-zff0wCIGlSz_9y0l1rLx_XodA78Pmj9Wh9vqPL_mm_Qeg2lm5lJTzbl3Jrvp1peDj_037IWw20JXsOl17BLdM-RjuuMcsl0-g_22GJNmQ4epO0ZkiX83YJdmWxEZ7yXBGPhscoVoSRMoEO05sbtCcuMvCRRM93ILj_b3Rh4HfPNPgS0R7lY-UjhtOlba15HQS5GmgmVKpSnLEH4HmSvMCeZnODC1MUhSUMZWjXUvzMCoySrdho5yW5hkQLinqB8IGKVMmdZHTWEZFoBJUH4nYxwOvWSExc8U4xCIfT6SVhgd-u2ZCNfXN7TMbFwJ5jpWesNITVnrCtX-3bt8OdlPLtysVWDdD4dh8uISLLyMmUn7Sz-IDLqgHO62OCNyl9uglL820Xgi0qzRNssCDp051_nwyQQafRTi18IouicaaLG74rTh8_g99duDuYHQ4FMOPRwcv4J4LVUfojV_CRjWvzSvEWJV83Wyi38vVHGg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6BZGDgUJ4F86oODJyc2Jbkx7FAk0JDp0Db4aaxXhkG6mQSeyD8elaRHaDTXuC-kq3VSvt9q9UK4LllsYkyVYRaZlHITEJDyU0ZxiWLdcFSVazjHe8P0_0T9u4z77IJl21apTbTRbOqfYXUoZ6pxgXKuloDCdL1oashg6wn5gP0T_lwru1V6KOvT1kP-rvjV3unG9aFW7MLtODKxBbUpfNsX9wLImDps0__8lF9p-4fFwHQm7D1fX2mvfnhP1zT6BbIblA-I-XroKnlQP08V-_xv0Z9G7Za4Ep2vaXdgSumugvX_FOWq3sw_jRHimzIZH2j6IsiH83Up9hWxMV6yWROjgz2UK8I4mSCDc9cZtCC-KvCto0d3oeT0d7x6_2wfaQhlIj16hAJHTecKu0qyeksKvNIM6VylZWIPiLNleYWWZkuDLUms5Yypkrc1fIyTmxB6Tb0qlllHgLhkqJ1IGiQMmdS25KmMrGRytB4JCKfAIJ2gsTcl-IQy3J6Jp0yAgi7KROqrW7uHtn4JpDlOOUJpzzhlCe8_MuNfNfZZZIv1hawEUPluGy4jIsPx0zk_HRcpAdc0AB2OhMRuEbdwUtZmVmzFLir0jwrogAeeMv5_ckM-XuR4NDic6Yk2r1keclvpfGjf2izA9eP3ozE5O3hwWO44ePUCbriJ9CrF415igCrls_aJfQLi8sbIQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Logistic+Regression+with+Lp+Penalty+for+Biomarker+Identification&rft.jtitle=Statistical+applications+in+genetics+and+molecular+biology&rft.au=Liu%2C+Zhenqiu&rft.au=Jiang%2C+Feng&rft.au=Tian%2C+Guoliang&rft.au=Wang%2C+Suna&rft.date=2007-02-10&rft.issn=2194-6302&rft.eissn=1544-6115&rft.volume=6&rft.issue=1&rft_id=info:doi/10.2202%2F1544-6115.1248&rft.externalDBID=n%2Fa&rft.externalDocID=10_2202_1544_6115_1248 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-6115&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-6115&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-6115&client=summon |