Sparse Logistic Regression with Lp Penalty for Biomarker Identification

In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of ou...

Full description

Saved in:
Bibliographic Details
Published inStatistical Applications in Genetics and Molecular Biology Vol. 6; no. 1; pp. 6 - 27
Main Authors Liu, Zhenqiu, Jiang, Feng, Tian, Guoliang, Wang, Suna, Sato, Fumiaki, Meltzer, Stephen J., Tan, Ming
Format Journal Article
LanguageEnglish
Published Germany bepress 10.02.2007
De Gruyter
Subjects
Online AccessGet full text
ISSN1544-6115
2194-6302
1544-6115
DOI10.2202/1544-6115.1248

Cover

Abstract In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author.
AbstractList In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author.
In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author.In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author.
Abstract In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author. Submitted: August 18, 2006 · Accepted: January 12, 2007 · Published: February 10, 2007 Recommended Citation Liu, Zhenqiu; Jiang, Feng; Tian, Guoliang; Wang, Suna; Sato, Fumiaki; Meltzer, Stephen J.; and Tan, Ming (2007) "Sparse Logistic Regression with Lp Penalty for Biomarker Identification," Statistical Applications in Genetics and Molecular Biology: Vol. 6 : Iss. 1, Article 6. DOI: 10.2202/1544-6115.1248 Available at: http://www.bepress.com/sagmb/vol6/iss1/art6
Author Jiang, Feng
Liu, Zhenqiu
Wang, Suna
Tan, Ming
Tian, Guoliang
Sato, Fumiaki
Meltzer, Stephen J.
Author_xml – sequence: 1
  givenname: Zhenqiu
  surname: Liu
  fullname: Liu, Zhenqiu
  organization: University of Maryland
– sequence: 2
  givenname: Feng
  surname: Jiang
  fullname: Jiang, Feng
  organization: University of Maryland
– sequence: 3
  givenname: Guoliang
  surname: Tian
  fullname: Tian, Guoliang
  organization: University of Maryland
– sequence: 4
  givenname: Suna
  surname: Wang
  fullname: Wang, Suna
  organization: University of Maryland School of Medicine
– sequence: 5
  givenname: Fumiaki
  surname: Sato
  fullname: Sato, Fumiaki
  organization: Johns Hopkins University School of Medicine
– sequence: 6
  givenname: Stephen J.
  surname: Meltzer
  fullname: Meltzer, Stephen J.
  organization: Johns Hopkins University School of Medicine
– sequence: 7
  givenname: Ming
  surname: Tan
  fullname: Tan, Ming
  organization: University of Maryland Greenebaum Cancer Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17402921$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1DAURi3Uij5gyxJ5xS6Dn3GyhAqGqiO1QGFreZybwSUTp7ajMv--TlMGVKkrX1nns757fIIOet8DQm8oWTBG2HsqhShKSuWCMlG9QMf7i4P_5iN0EuMNIYwyTl6iI6oEYTWjx2j5fTAhAl75jYvJWfwNNgFidL7Hdy79wqsBX0FvurTDrQ_4o_NbE35DwOcN9Mm1zpqU4VfosDVdhNeP5yn68fnT9dmXYnW5PD_7sCrWgshUlIRKkNw2FWG8UcRUpBHWVlYZovIsbSPbStGmBt6CalsuhDWq5JWhrK05P0Xv5neH4G9HiElvXbTQdaYHP0atCOeVqkkG3z6C43oLjR6Cy8V3-u_qGVjMgA0-xgDtP4Toya2e9OlJn57c5oB4ErAuPSyfgnHd87Fqjt1liRCa7Hfc5UHf-DFksfGZYDlVLOZo_hr4s--X_etScSX112uhK_lzWZcXUk9y8MyvYZg-cZ-IZrNdP7S5ByEGpz4
CitedBy_id crossref_primary_10_1016_j_bbe_2020_04_003
crossref_primary_10_1109_TCBB_2008_17
crossref_primary_10_1016_j_ins_2014_05_013
crossref_primary_10_1016_j_ijepes_2021_107626
crossref_primary_10_1109_TAI_2022_3170001
crossref_primary_10_1016_j_neucom_2015_12_106
crossref_primary_10_1007_s11633_015_0919_5
crossref_primary_10_1109_TNNLS_2013_2247417
crossref_primary_10_4236_jbise_2020_137016
crossref_primary_10_1155_2014_857398
crossref_primary_10_1186_1471_2164_15_S10_S1
crossref_primary_10_4137_EBO_S9407
crossref_primary_10_1109_TPAMI_2012_266
crossref_primary_10_1109_TNNLS_2016_2551724
crossref_primary_10_1186_1471_2105_9_412
crossref_primary_10_1016_j_eswa_2010_09_140
crossref_primary_10_1109_TNNLS_2013_2263427
crossref_primary_10_1002_bimj_200810475
crossref_primary_10_3390_biomedicines8040088
crossref_primary_10_1186_1748_7188_5_30
crossref_primary_10_4303_ijbdm_B110102
crossref_primary_10_1007_s00500_016_2385_6
crossref_primary_10_1093_bioinformatics_btn585
crossref_primary_10_1007_s11432_012_4679_3
crossref_primary_10_1007_s11590_020_01685_x
crossref_primary_10_1002_cjs_10107
crossref_primary_10_1007_s12561_024_09418_9
crossref_primary_10_1186_s12985_022_01836_9
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2202/1544-6115.1248
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1544-6115
ExternalDocumentID 17402921
10_2202_1544_6115_1248
10_2202_1544_6115_124861
ark_67375_QT4_85VG96K5_3
sagmb1248
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: CA85069
– fundername: NCI NIH HHS
  grantid: CA119758
GroupedDBID ---
-~S
0R~
123
1WD
4.4
9-L
AAAEU
AAAVF
AACIX
AAFPC
AAGVJ
AAILP
AAKRG
AALGR
AAONY
AAOWA
AAPJK
AAQCX
AASQH
AASQN
AAWFC
AAXCG
ABABW
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABLVI
ABMIY
ABPLS
ABRDF
ABRQL
ABUVI
ABVMU
ABWLS
ABXMZ
ABYBW
ACEFL
ACGFO
ACGFS
ACHNZ
ACMKP
ACONX
ACPMA
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADOZN
ADUQZ
AEDGQ
AEGVQ
AEICA
AEJQW
AEKEB
AEMOE
AENEX
AEQDQ
AEQLX
AERZL
AEXIE
AFAUI
AFBAA
AFBQV
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AGGNV
AGWTP
AHCWZ
AHVWV
AHXUK
AIAGR
AIERV
AIKXB
AJATJ
AJPIC
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALUKF
ALWYM
AMAVY
ASPBG
ASYPN
AVWKF
AZFZN
AZMOX
BAKPI
BBCWN
BBDJO
BCIFA
BDLBQ
BSCLL
CS3
DASCH
DBYYV
DU5
EBS
EJD
EMOBN
F5P
FEDTE
FSTRU
H13
HVGLF
HZ~
J9A
K.~
KDIRW
LG7
MV1
O9-
P2P
QD8
ROL
SA.
SLJYH
T2Y
UK5
WTRAM
~Z8
ABDRH
ACDEB
ACRPL
ACUND
ACYCL
ADNMO
ADNPR
AECWL
AFBDD
AFSHE
AGQPQ
AGQYU
AIWOI
CKPZI
DSRVY
LVMAB
AAYXX
CITATION
AAXMT
CAG
CGR
COF
CUY
CVF
ECM
EIF
IY9
NPM
NQBSW
RYL
7X8
ID FETCH-LOGICAL-b405t-6015e53cd8023d70a80d4cc8c7a0780d5cd5f871d9e3fe7ff344ca7638a12f933
ISSN 1544-6115
2194-6302
IngestDate Thu Oct 02 07:00:47 EDT 2025
Thu Apr 03 07:02:45 EDT 2025
Wed Oct 01 02:39:40 EDT 2025
Thu Apr 24 22:51:42 EDT 2025
Sat Sep 06 17:02:30 EDT 2025
Wed Oct 30 09:42:08 EDT 2024
Fri Oct 12 16:17:07 EDT 2018
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b405t-6015e53cd8023d70a80d4cc8c7a0780d5cd5f871d9e3fe7ff344ca7638a12f933
Notes sagmb.2007.6.1.1248.pdf
ArticleID:1544-6115.1248
istex:D197A37135B729C039E8C4561ECC56433F4D6090
ark:/67375/QT4-85VG96K5-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 17402921
PQID 70338790
PQPubID 23479
PageCount 22
ParticipantIDs walterdegruyter_journals_10_2202_1544_6115_124861
istex_primary_ark_67375_QT4_85VG96K5_3
crossref_primary_10_2202_1544_6115_1248
bepress_primary_sagmb1248
proquest_miscellaneous_70338790
pubmed_primary_17402921
crossref_citationtrail_10_2202_1544_6115_1248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-2-10
PublicationDateYYYYMMDD 2007-02-10
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-2-10
  day: 10
PublicationDecade 2000
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Statistical Applications in Genetics and Molecular Biology
PublicationTitleAlternate Stat Appl Genet Mol Biol
PublicationYear 2007
Publisher bepress
De Gruyter
Publisher_xml – name: bepress
– name: De Gruyter
SSID ssj0021230
Score 2.0040483
Snippet Abstract In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we...
In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop...
SourceID proquest
pubmed
crossref
walterdegruyter
istex
bepress
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 6
SubjectTerms Algorithms
Area Under Curve
Biomarkers - analysis
Colon - chemistry
Colonic Neoplasms - chemistry
Colonic Neoplasms - genetics
Esophageal Neoplasms - chemistry
Esophageal Neoplasms - genetics
feature selection
Gene Expression Profiling
Humans
Logistic Models
Lp penalty
microarry analysis
Oligonucleotide Array Sequence Analysis
sparse logistic regression
Title Sparse Logistic Regression with Lp Penalty for Biomarker Identification
URI http://www.bepress.com/sagmb/vol6/iss1/art6/
https://api.istex.fr/ark:/67375/QT4-85VG96K5-3/fulltext.pdf
https://www.degruyter.com/doi/10.2202/1544-6115.1248
https://www.ncbi.nlm.nih.gov/pubmed/17402921
https://www.proquest.com/docview/70338790
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAZK
  databaseName: De Gruyter Journals
  customDbUrl:
  eissn: 1544-6115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0021230
  issn: 1544-6115
  databaseCode: AGBEV
  dateStart: 20020501
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdKKyR4mPgmfOYBwUOVzYmdr8cNjU4wEIhu7M2KHadEomlYE8H46znHjrtWnTR4iSrLvjq-y_nu_PMdQq8K6ksci9TLeYw9KgPi8VBmnp9RP09pJNIu3vHxU3R0Qt-fhWeDQX0JtdQ2fFf82Xqv5H-4Cm3AV3VL9h84a4lCA_wG_sITOAzPa_H4aw1uqVRld7t0y7BWMw1r1Xezx8f1-LMEKgaVeVAu5gqNcz7W13MLE6-7bKAq47MjpnII1Otoc5iHtFmd531d3bHJ42ShPWXbnXh8l9XPsrUIndIEpmEBZzZcUOrw66RdqGiLbf_WB7FbXdvbhiVihWQ2ANVOe4EmpF5EsFa10mhXCm2-vr_Zq99oU8o2lXoQdEli7eBdMEmS1fbVH9lv7GoWawhejqLA1HimxjM1_gYaBbAP4CEa7U8ODk-tkw47uYrL2enrRJ-Kwt76DMBh4hqsvGbSjNTX-Xubv3Ib7fzqIBA5CEN70fRH7p0lM72DdowL4u5rebqLBrK6h27qoqQX99FES5XbS5W7kipXSZV7XLtGqlyQKtdKlbsuVQ_QybvD6dsjz5Tb8DhY7Y0HrnkoQyJylRMwj3GW4JwKkYg4AzsS56HIwwL86zyVpJBxURBKRQb7U5L5QZES8hANq0UlHyM35AS-czD_OE8oz4uMRDwosIhBDXCwYR3kmLVjtU6qwpbZbM7VujrI61eTCZOnXpVL-cG2c9JBb2z_nthVPV93zLHdYHEUrjEO2ZcpZUl4OkmjDyEjDnrZc4-BtlVHaFklF-2Swf5IkjjFDnqkmbr6y5jiIA3g1fwNLjOjMZZXTCvyn1z7FZ6iW6uP7RkaNuetfA5WccNfGEH-C2kcswI
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6BZhjgUF4tmFd1YODkxLYkP46FaRNo2uGRdnrTWA-HThsnk9gD4deziuxQOu0F7pJsrVa737darQDeFCw0QaIyX8sk8JmJqC-5yf0wZ6HOWKyyVbzj8CgeHLNPp_z00l0Ym1apzXheLytXIbWnp6q2gbK21kCEdL1na8gg6wl5F_1T2vteTS5uQwfJCsPN2dntv987WdMutM020oJbE7tQm8-zff0wCIGlSz_9y0l1rLx_XodA78Pmj9Wh9vqPL_mm_Qeg2lm5lJTzbl3Jrvp1peDj_037IWw20JXsOl17BLdM-RjuuMcsl0-g_22GJNmQ4epO0ZkiX83YJdmWxEZ7yXBGPhscoVoSRMoEO05sbtCcuMvCRRM93ILj_b3Rh4HfPNPgS0R7lY-UjhtOlba15HQS5GmgmVKpSnLEH4HmSvMCeZnODC1MUhSUMZWjXUvzMCoySrdho5yW5hkQLinqB8IGKVMmdZHTWEZFoBJUH4nYxwOvWSExc8U4xCIfT6SVhgd-u2ZCNfXN7TMbFwJ5jpWesNITVnrCtX-3bt8OdlPLtysVWDdD4dh8uISLLyMmUn7Sz-IDLqgHO62OCNyl9uglL820Xgi0qzRNssCDp051_nwyQQafRTi18IouicaaLG74rTh8_g99duDuYHQ4FMOPRwcv4J4LVUfojV_CRjWvzSvEWJV83Wyi38vVHGg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lc9MwEN6BZGDgUJ4F86oODJyc2Jbkx7FAk0JDp0Db4aaxXhkG6mQSeyD8elaRHaDTXuC-kq3VSvt9q9UK4LllsYkyVYRaZlHITEJDyU0ZxiWLdcFSVazjHe8P0_0T9u4z77IJl21apTbTRbOqfYXUoZ6pxgXKuloDCdL1oashg6wn5gP0T_lwru1V6KOvT1kP-rvjV3unG9aFW7MLtODKxBbUpfNsX9wLImDps0__8lF9p-4fFwHQm7D1fX2mvfnhP1zT6BbIblA-I-XroKnlQP08V-_xv0Z9G7Za4Ep2vaXdgSumugvX_FOWq3sw_jRHimzIZH2j6IsiH83Up9hWxMV6yWROjgz2UK8I4mSCDc9cZtCC-KvCto0d3oeT0d7x6_2wfaQhlIj16hAJHTecKu0qyeksKvNIM6VylZWIPiLNleYWWZkuDLUms5Yypkrc1fIyTmxB6Tb0qlllHgLhkqJ1IGiQMmdS25KmMrGRytB4JCKfAIJ2gsTcl-IQy3J6Jp0yAgi7KROqrW7uHtn4JpDlOOUJpzzhlCe8_MuNfNfZZZIv1hawEUPluGy4jIsPx0zk_HRcpAdc0AB2OhMRuEbdwUtZmVmzFLir0jwrogAeeMv5_ckM-XuR4NDic6Yk2r1keclvpfGjf2izA9eP3ozE5O3hwWO44ePUCbriJ9CrF415igCrls_aJfQLi8sbIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+Logistic+Regression+with+Lp+Penalty+for+Biomarker+Identification&rft.jtitle=Statistical+applications+in+genetics+and+molecular+biology&rft.au=Liu%2C+Zhenqiu&rft.au=Jiang%2C+Feng&rft.au=Tian%2C+Guoliang&rft.au=Wang%2C+Suna&rft.date=2007-02-10&rft.issn=2194-6302&rft.eissn=1544-6115&rft.volume=6&rft.issue=1&rft_id=info:doi/10.2202%2F1544-6115.1248&rft.externalDBID=n%2Fa&rft.externalDocID=10_2202_1544_6115_1248
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1544-6115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1544-6115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1544-6115&client=summon