Markers of Exposure to the Colombian Armed Conflict: A Machine Learning Approach

The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide proper mental-health interventions. Unsupervised learning techniques allow clustering subjects with similar features. Here, we propose a novel met...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Artificial Intelligence - IBERAMIA 2022 Vol. 13788; pp. 185 - 195
Main Authors Cano, María Isabel, Isaza, Claudia, Sucerquia, Angela, Trujillo, Natalia, López, José David
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2023
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3031224183
9783031224188
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-22419-5_16

Cover

Abstract The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide proper mental-health interventions. Unsupervised learning techniques allow clustering subjects with similar features. Here, we propose a novel methodology to automatically finds the features that best relate to levels of exposure to the armed conflict and associated risks (drug dependency, alcoholism, etc.) through cluster centers. Unlike previous studies on the armed conflict field, we do not use key predefined labels to cluster the data. We test this methodology with a mixed-response type characterization database of 528 features obtained from 346 volunteers with different estimated levels of exposure to extreme experiences in the frame of the Colombian armed conflict. As a result, using the proposed approach we identified 62 features related to exposure. In order to confirm the selected features as violence exposure markers, we created a model based on artificial neural networks (ANN). The ANN model uses the 62 features as input and it was able to estimate the subjects’ level of exposure to conflict with 100 % accuracy in training and over 76% in validation.
AbstractList The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide proper mental-health interventions. Unsupervised learning techniques allow clustering subjects with similar features. Here, we propose a novel methodology to automatically finds the features that best relate to levels of exposure to the armed conflict and associated risks (drug dependency, alcoholism, etc.) through cluster centers. Unlike previous studies on the armed conflict field, we do not use key predefined labels to cluster the data. We test this methodology with a mixed-response type characterization database of 528 features obtained from 346 volunteers with different estimated levels of exposure to extreme experiences in the frame of the Colombian armed conflict. As a result, using the proposed approach we identified 62 features related to exposure. In order to confirm the selected features as violence exposure markers, we created a model based on artificial neural networks (ANN). The ANN model uses the 62 features as input and it was able to estimate the subjects’ level of exposure to conflict with 100 % accuracy in training and over 76% in validation.
Author Trujillo, Natalia
López, José David
Isaza, Claudia
Sucerquia, Angela
Cano, María Isabel
Author_xml – sequence: 1
  givenname: María Isabel
  surname: Cano
  fullname: Cano, María Isabel
  email: mariai.cano@udea.edu.co
– sequence: 2
  givenname: Claudia
  surname: Isaza
  fullname: Isaza, Claudia
– sequence: 3
  givenname: Angela
  surname: Sucerquia
  fullname: Sucerquia, Angela
– sequence: 4
  givenname: Natalia
  surname: Trujillo
  fullname: Trujillo, Natalia
– sequence: 5
  givenname: José David
  surname: López
  fullname: López, José David
BookMark eNo1kN1OAjEQhauiEZA38KIvUO203XbrHSH4k0D0Qq-bbpkVBLdrd0l8fAvqxWQyZ3LOTL4RGTSxQUKugd8A5-bWmpJJxiUwIRRYVjjQJ2SSZZnFo1ackiFoACalsmdk9L8o5YAMueSCWaPkBRmB1KUAU4C6JJOu--CcixyjjB2Sl6VPW0wdjTWdf7ex2yekfaT9Guks7uJntfENnaZPXOW5qXeb0N_RKV36sN40SBfoU7Np3um0bVPM4hU5r_2uw8lfH5O3-_nr7JEtnh-eZtMFq4SyPVOlqk1YGVNbLDgWVSk08LrAqg6SYxVM8Lysgl7VodTSWqtwJbyXnssA2soxEb-5XZvyfUyuinHbOeDuANBlUk66jMQdYbkDwGxSv6b869ceu97hwRWw6ZPfhbVv-8zCGdBlLgc5A6yWPydNcCw
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DOI 10.1007/978-3-031-22419-5_16
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783031224195
3031224191
EISSN 1611-3349
Editor Ferro, Mariza
Bicharra Garcia, Ana Cristina
Rodríguez Ribón, Julio Cesar
Editor_xml – sequence: 1
  fullname: Rodríguez Ribón, Julio Cesar
– sequence: 2
  fullname: Ferro, Mariza
– sequence: 3
  fullname: Bicharra Garcia, Ana Cristina
EndPage 195
ExternalDocumentID EBC7168716_178_196
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
AIYYB
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
ID FETCH-LOGICAL-b249t-484f7cd77f9e50e5b82610f5ebfc30ebc7ca08bc6dfc8639994ed2aa3a03c1693
ISBN 3031224183
9783031224188
ISSN 0302-9743
IngestDate Tue Jul 29 20:36:23 EDT 2025
Tue Jul 22 07:49:29 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-b249t-484f7cd77f9e50e5b82610f5ebfc30ebc7ca08bc6dfc8639994ed2aa3a03c1693
OCLC 1368217514
PQID EBC7168716_178_196
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_031_22419_5_16
proquest_ebookcentralchapters_7168716_178_196
PublicationCentury 2000
PublicationDate 2023
2022
PublicationDateYYYYMMDD 2023-01-01
2022-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th Ibero-American Conference on AI, Cartagena de Indias, Colombia, November 23-25, 2022, Proceedings
PublicationTitle Advances in Artificial Intelligence - IBERAMIA 2022
PublicationYear 2023
2022
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002830479
ssj0002792
Score 2.0543547
Snippet The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide...
SourceID springer
proquest
SourceType Publisher
StartPage 185
SubjectTerms Armed conflict
Clustering
Feature selection
Mental health
Unsupervised learning
Title Markers of Exposure to the Colombian Armed Conflict: A Machine Learning Approach
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7168716&ppg=196&c=UERG
http://link.springer.com/10.1007/978-3-031-22419-5_16
Volume 13788
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYuUwcYF9iAyYfdquM4thJGm5ZVdgmitC0od0s23F2WruPICH-et5z7C6NehmXqLISy3k_13lfv_cIOdGm4QU3OautrJm0Mmdaa8FMLXLnZOYyh9zh-Y_87Fpe3GQ3scV9YJe05rP9u5FX8j-owhjgiizZFyC7mhQG4DfgC1dAGK4D5XfdzdqlF3fRe5_PWj36lJ-ucEavxiYbn5_OLqv5eTVOkzTt7w8k6SB5FzML_9wv0VEY9dApHIh3WIsc5r1DD3CgjnQs9rlPv3SxMustKrKeltV3IKRi4ECIDsSBC7LnBau-rRmd8NHz4biuHd_qFMXC9BvP5H4aBjzK8NmSZYpvKIHNy8Gg_9LOTqdg1qFpp3gxUXjT_QPDzmEYYQ9tVLbIFqxtRF5Xs4vvv1Z-NixwJosSaT1x3aIrvPT8Hj1K5aZlrhkfg3i5V0Ou3pE3SE2hyBmBhe-QV26xS97Gxhw0nNN75GcAly4bGsGl7ZICuHQFLvXg0gjuF1rRAC2N0NII7T65_jq7mp6x0DqDGbCnWyYnsilsXRRN6bLEZQasSJ40mTONFYkztrA6mRib142doJJaSlen8CfVibBYn-eAjBbLhXtPqE5sWnBurEusNDwzWmMRQ-mEKV0jykPConSUD_CHrGLbyeJJDaA7JOMoQoW3P6lYORtkr4QC2Ssve4WyP3rh7B_I9vMe_0hG7eNv9wnUxtYch53xD2JzaQM
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+-+IBERAMIA+2022&rft.atitle=Markers+of+Exposure+to+the+Colombian+Armed+Conflict%3A+A+Machine+Learning+Approach&rft.date=2023-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031224188&rft.volume=13788&rft_id=info:doi/10.1007%2F978-3-031-22419-5_16&rft.externalDBID=196&rft.externalDocID=EBC7168716_178_196
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7168716-l.jpg