Markers of Exposure to the Colombian Armed Conflict: A Machine Learning Approach
The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide proper mental-health interventions. Unsupervised learning techniques allow clustering subjects with similar features. Here, we propose a novel met...
Saved in:
| Published in | Advances in Artificial Intelligence - IBERAMIA 2022 Vol. 13788; pp. 185 - 195 |
|---|---|
| Main Authors | , , , , |
| Format | Book Chapter |
| Language | English |
| Published |
Switzerland
Springer International Publishing AG
2023
Springer International Publishing |
| Series | Lecture Notes in Computer Science |
| Subjects | |
| Online Access | Get full text |
| ISBN | 3031224183 9783031224188 |
| ISSN | 0302-9743 1611-3349 |
| DOI | 10.1007/978-3-031-22419-5_16 |
Cover
| Abstract | The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide proper mental-health interventions. Unsupervised learning techniques allow clustering subjects with similar features. Here, we propose a novel methodology to automatically finds the features that best relate to levels of exposure to the armed conflict and associated risks (drug dependency, alcoholism, etc.) through cluster centers. Unlike previous studies on the armed conflict field, we do not use key predefined labels to cluster the data. We test this methodology with a mixed-response type characterization database of 528 features obtained from 346 volunteers with different estimated levels of exposure to extreme experiences in the frame of the Colombian armed conflict. As a result, using the proposed approach we identified 62 features related to exposure. In order to confirm the selected features as violence exposure markers, we created a model based on artificial neural networks (ANN). The ANN model uses the 62 features as input and it was able to estimate the subjects’ level of exposure to conflict with 100 % accuracy in training and over 76% in validation. |
|---|---|
| AbstractList | The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide proper mental-health interventions. Unsupervised learning techniques allow clustering subjects with similar features. Here, we propose a novel methodology to automatically finds the features that best relate to levels of exposure to the armed conflict and associated risks (drug dependency, alcoholism, etc.) through cluster centers. Unlike previous studies on the armed conflict field, we do not use key predefined labels to cluster the data. We test this methodology with a mixed-response type characterization database of 528 features obtained from 346 volunteers with different estimated levels of exposure to extreme experiences in the frame of the Colombian armed conflict. As a result, using the proposed approach we identified 62 features related to exposure. In order to confirm the selected features as violence exposure markers, we created a model based on artificial neural networks (ANN). The ANN model uses the 62 features as input and it was able to estimate the subjects’ level of exposure to conflict with 100 % accuracy in training and over 76% in validation. |
| Author | Trujillo, Natalia López, José David Isaza, Claudia Sucerquia, Angela Cano, María Isabel |
| Author_xml | – sequence: 1 givenname: María Isabel surname: Cano fullname: Cano, María Isabel email: mariai.cano@udea.edu.co – sequence: 2 givenname: Claudia surname: Isaza fullname: Isaza, Claudia – sequence: 3 givenname: Angela surname: Sucerquia fullname: Sucerquia, Angela – sequence: 4 givenname: Natalia surname: Trujillo fullname: Trujillo, Natalia – sequence: 5 givenname: José David surname: López fullname: López, José David |
| BookMark | eNo1kN1OAjEQhauiEZA38KIvUO203XbrHSH4k0D0Qq-bbpkVBLdrd0l8fAvqxWQyZ3LOTL4RGTSxQUKugd8A5-bWmpJJxiUwIRRYVjjQJ2SSZZnFo1ackiFoACalsmdk9L8o5YAMueSCWaPkBRmB1KUAU4C6JJOu--CcixyjjB2Sl6VPW0wdjTWdf7ex2yekfaT9Guks7uJntfENnaZPXOW5qXeb0N_RKV36sN40SBfoU7Np3um0bVPM4hU5r_2uw8lfH5O3-_nr7JEtnh-eZtMFq4SyPVOlqk1YGVNbLDgWVSk08LrAqg6SYxVM8Lysgl7VodTSWqtwJbyXnssA2soxEb-5XZvyfUyuinHbOeDuANBlUk66jMQdYbkDwGxSv6b869ceu97hwRWw6ZPfhbVv-8zCGdBlLgc5A6yWPydNcCw |
| ContentType | Book Chapter |
| Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
| Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
| DBID | FFUUA |
| DOI | 10.1007/978-3-031-22419-5_16 |
| DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISBN | 9783031224195 3031224191 |
| EISSN | 1611-3349 |
| Editor | Ferro, Mariza Bicharra Garcia, Ana Cristina Rodríguez Ribón, Julio Cesar |
| Editor_xml | – sequence: 1 fullname: Rodríguez Ribón, Julio Cesar – sequence: 2 fullname: Ferro, Mariza – sequence: 3 fullname: Bicharra Garcia, Ana Cristina |
| EndPage | 195 |
| ExternalDocumentID | EBC7168716_178_196 |
| GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR AIYYB ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 |
| ID | FETCH-LOGICAL-b249t-484f7cd77f9e50e5b82610f5ebfc30ebc7ca08bc6dfc8639994ed2aa3a03c1693 |
| ISBN | 3031224183 9783031224188 |
| ISSN | 0302-9743 |
| IngestDate | Tue Jul 29 20:36:23 EDT 2025 Tue Jul 22 07:49:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| LCCallNum | Q334-342 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-b249t-484f7cd77f9e50e5b82610f5ebfc30ebc7ca08bc6dfc8639994ed2aa3a03c1693 |
| OCLC | 1368217514 |
| PQID | EBC7168716_178_196 |
| PageCount | 11 |
| ParticipantIDs | springer_books_10_1007_978_3_031_22419_5_16 proquest_ebookcentralchapters_7168716_178_196 |
| PublicationCentury | 2000 |
| PublicationDate | 2023 2022 |
| PublicationDateYYYYMMDD | 2023-01-01 2022-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Cham |
| PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
| PublicationSeriesTitle | Lecture Notes in Computer Science |
| PublicationSeriesTitleAlternate | Lect.Notes Computer |
| PublicationSubtitle | 17th Ibero-American Conference on AI, Cartagena de Indias, Colombia, November 23-25, 2022, Proceedings |
| PublicationTitle | Advances in Artificial Intelligence - IBERAMIA 2022 |
| PublicationYear | 2023 2022 |
| Publisher | Springer International Publishing AG Springer International Publishing |
| Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
| RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
| RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
| SSID | ssj0002830479 ssj0002792 |
| Score | 2.0543547 |
| Snippet | The Colombian armed conflict has affected in some degree its entire population. Health authorities require markers to determine this exposure and provide... |
| SourceID | springer proquest |
| SourceType | Publisher |
| StartPage | 185 |
| SubjectTerms | Armed conflict Clustering Feature selection Mental health Unsupervised learning |
| Title | Markers of Exposure to the Colombian Armed Conflict: A Machine Learning Approach |
| URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7168716&ppg=196&c=UERG http://link.springer.com/10.1007/978-3-031-22419-5_16 |
| Volume | 13788 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYuUwcYF9iAyYfdquM4thJGm5ZVdgmitC0od0s23F2WruPICH-et5z7C6NehmXqLISy3k_13lfv_cIOdGm4QU3OautrJm0Mmdaa8FMLXLnZOYyh9zh-Y_87Fpe3GQ3scV9YJe05rP9u5FX8j-owhjgiizZFyC7mhQG4DfgC1dAGK4D5XfdzdqlF3fRe5_PWj36lJ-ucEavxiYbn5_OLqv5eTVOkzTt7w8k6SB5FzML_9wv0VEY9dApHIh3WIsc5r1DD3CgjnQs9rlPv3SxMustKrKeltV3IKRi4ECIDsSBC7LnBau-rRmd8NHz4biuHd_qFMXC9BvP5H4aBjzK8NmSZYpvKIHNy8Gg_9LOTqdg1qFpp3gxUXjT_QPDzmEYYQ9tVLbIFqxtRF5Xs4vvv1Z-NixwJosSaT1x3aIrvPT8Hj1K5aZlrhkfg3i5V0Ou3pE3SE2hyBmBhe-QV26xS97Gxhw0nNN75GcAly4bGsGl7ZICuHQFLvXg0gjuF1rRAC2N0NII7T65_jq7mp6x0DqDGbCnWyYnsilsXRRN6bLEZQasSJ40mTONFYkztrA6mRib142doJJaSlen8CfVibBYn-eAjBbLhXtPqE5sWnBurEusNDwzWmMRQ-mEKV0jykPConSUD_CHrGLbyeJJDaA7JOMoQoW3P6lYORtkr4QC2Ssve4WyP3rh7B_I9vMe_0hG7eNv9wnUxtYch53xD2JzaQM |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Artificial+Intelligence+-+IBERAMIA+2022&rft.atitle=Markers+of+Exposure+to+the+Colombian+Armed+Conflict%3A+A+Machine+Learning+Approach&rft.date=2023-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783031224188&rft.volume=13788&rft_id=info:doi/10.1007%2F978-3-031-22419-5_16&rft.externalDBID=196&rft.externalDocID=EBC7168716_178_196 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7168716-l.jpg |