AB0019 A PLS multivariate model to predict RA radiological severity by selecting key predictors from a large panel of SNPS and environmental factors

Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene association and linkage studies have recently identified a role for genetics in predicting RA severity [2]. Whilst many genetic variants have been...

Full description

Saved in:
Bibliographic Details
Published inAnnals of the rheumatic diseases Vol. 71; no. Suppl 3; p. 638
Main Authors Taylor, L.H., Wilson, A.G., Teare, M.D.
Format Journal Article
LanguageEnglish
Published Kidlington BMJ Publishing Group Ltd and European League Against Rheumatism 01.06.2013
Elsevier Limited
Online AccessGet full text
ISSN0003-4967
1468-2060
DOI10.1136/annrheumdis-2012-eular.19

Cover

Abstract Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene association and linkage studies have recently identified a role for genetics in predicting RA severity [2]. Whilst many genetic variants have been identified, few have attempted to fit a full predictive model allowing for the many possible gene-gene and gene-environment interactions. This lack of progress is mainly due to the technical limitations of commonly employed linear model based approaches. Partial least squares (PLS) is a dimension reduction technique which creates a linear combination of potential predictive (X) variables which can be used to predict either one or many (Y) response variables. Unlike traditional linear regression type methods, it makes no distributional assumptions, is able to fit models with more variables than subjects, has no problems with collinearity of the variables and can be used in the presence of incomplete data collection or missing data [3, 4]. Objectives Use PLS to create a linear model to predict erosive severity using single nucleotide polymorphisms (SNPs), environmental factors and non-erosive markers of disease severity. To quantify the predictive accuracy of the model and interpret the chosen variables in terms of possible functional relationships. Methods Using data from 912 subjects, 50 of the most predictive variables from 392 SNPS, 51 environmental variables and 14 other non-erosive markers of disease severity were chosen using a sparse PLS analysis to predict the Larsen score for each subject. The combined linear model was cross validated to measure predictive accuracy of the model. Results Although liable to over fitting due to using the same patient population in the test and validation sample, preliminary findings suggest we can predict Larsen score with a median average difference between actual and predicted of 16 Larsen score points (min=0, max=88). A correlation between predicted and actual Larsen score of r=0.684 indicates almost 47% of the variation is being explained by the model. Continued work will assess the cross validation of the prediction estimates with future work aimed to externally validate the findings on independent data. Conclusions In this early work, sparse PLS modelling appears to be a promising approach which may be able to identify key variables contributing to the amount of erosive damage in patients with RA. References Arend WP. The innate immune system in rheumatoid arthritis. Arthritis and Rheumatism. 2001; 44(10):2224-2234. Marinou I, Maxwell JR, Wilson AG. Genetic influences modulating the radiological severity of rheumatoid arthritis. Annals of the Rheumatic Diseases. 2010; 69(3):476-482. Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics. 2007; 8(1):32-44. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wilkström C, Wold S. Multi-and Megavariate Data Analysis, Part 1, Basic Principals and Applications. 2nd revised and enlarged ed: Umetrics Academy, 2006. Disclosure of Interest None Declared
AbstractList Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene association and linkage studies have recently identified a role for genetics in predicting RA severity [2]. Whilst many genetic variants have been identified, few have attempted to fit a full predictive model allowing for the many possible gene-gene and gene-environment interactions. This lack of progress is mainly due to the technical limitations of commonly employed linear model based approaches. Partial least squares (PLS) is a dimension reduction technique which creates a linear combination of potential predictive (X) variables which can be used to predict either one or many (Y) response variables. Unlike traditional linear regression type methods, it makes no distributional assumptions, is able to fit models with more variables than subjects, has no problems with collinearity of the variables and can be used in the presence of incomplete data collection or missing data [3, 4]. Objectives Use PLS to create a linear model to predict erosive severity using single nucleotide polymorphisms (SNPs), environmental factors and non-erosive markers of disease severity. To quantify the predictive accuracy of the model and interpret the chosen variables in terms of possible functional relationships. Methods Using data from 912 subjects, 50 of the most predictive variables from 392 SNPS, 51 environmental variables and 14 other non-erosive markers of disease severity were chosen using a sparse PLS analysis to predict the Larsen score for each subject. The combined linear model was cross validated to measure predictive accuracy of the model. Results Although liable to over fitting due to using the same patient population in the test and validation sample, preliminary findings suggest we can predict Larsen score with a median average difference between actual and predicted of 16 Larsen score points (min=0, max=88). A correlation between predicted and actual Larsen score of r=0.684 indicates almost 47% of the variation is being explained by the model. Continued work will assess the cross validation of the prediction estimates with future work aimed to externally validate the findings on independent data. Conclusions In this early work, sparse PLS modelling appears to be a promising approach which may be able to identify key variables contributing to the amount of erosive damage in patients with RA. References Arend WP. The innate immune system in rheumatoid arthritis. Arthritis and Rheumatism. 2001; 44(10):2224-2234. Marinou I, Maxwell JR, Wilson AG. Genetic influences modulating the radiological severity of rheumatoid arthritis. Annals of the Rheumatic Diseases. 2010; 69(3):476-482. Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics. 2007; 8(1):32-44. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wilkström C, Wold S. Multi-and Megavariate Data Analysis, Part 1, Basic Principals and Applications. 2nd revised and enlarged ed: Umetrics Academy, 2006. Disclosure of Interest None Declared
Author Taylor, L.H.
Wilson, A.G.
Teare, M.D.
Author_xml – sequence: 1
  givenname: L.H.
  surname: Taylor
  fullname: Taylor, L.H.
  organization: School of Health and Related Research, Sheffield University
– sequence: 2
  givenname: A.G.
  surname: Wilson
  fullname: Wilson, A.G.
  organization: Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, United Kingdom
– sequence: 3
  givenname: M.D.
  surname: Teare
  fullname: Teare, M.D.
  organization: School of Health and Related Research, Sheffield University
BookMark eNqVkc9uEzEQxi1UJNLSdzDivMVeb73xCYWIf2poK1K4WuPd2eB0105tb0RuXHgFHpAnwW1ahDjBaTzj7_vNSN8hOXDeISHPODvhXMgX4Fz4guPQ2liUjJcFjj2EE64ekQmv5DQPJTsgE8aYKCol6yfkMMZ1btmUTyfkx-wVY1z9_PZ9Ri8XSzqMfbJbCBYS0sG32NPk6SZga5tEP85ogNb63q9sAz2NuMVg046aXX732CTrVvQadw8OHyLtgh8o0HzWCukGXEb6ji7PL5cUXEvRbW3wbkCXMrGDO9NT8riDPuLxfT0in968vpq_KxYXb9_PZ4vClLyuCg7KcFMbECA6A6qEqWwV63hpZFcpJRsjTf4QFSuzRDUSZSVkiRVXLe-4OCLP99xN8DcjxqTXfgwur9S8rmtVS6GqrFJ7VRN8jAE7vQl2gLDTnOnbGPQfMejbGPRdDJqr7H35l7exCZL1LgWw_T8Rij3BxoRff6-GcK1lLepTff55rueSnZ2dfljqq6yv9nozrP_j0F-7F70e
CODEN ARDIAO
CitedBy_id crossref_primary_10_3390_molecules24101866
ContentType Journal Article
Copyright 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
Copyright: 2013 (c) 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
Copyright_xml – notice: 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
– notice: Copyright: 2013 (c) 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
DBID BSCLL
AAYXX
CITATION
3V.
7X7
7XB
88E
88I
8AF
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
BTHHO
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9-
K9.
LK8
M0R
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1136/annrheumdis-2012-eular.19
DatabaseName Istex
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (NC Live)
Natural Science Collection
BMJ Journals
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Consumer Health Database
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
BMJ Journals
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

ProQuest Central Student
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1468-2060
ExternalDocumentID 4008636021
10_1136_annrheumdis_2012_eular_19
ark_67375_NVC_C60KK5MS_T
annrheumdis
GroupedDBID ---
.55
.GJ
.VT
169
23M
2WC
39C
3O-
4.4
40O
53G
5GY
5RE
5VS
6J9
7X7
7~S
88E
88I
8AF
8FE
8FH
8FI
8FJ
8R4
8R5
AAHLL
AAKAS
AAOJX
AAWJN
AAWTL
AAXUO
ABAAH
ABJNI
ABKDF
ABMQD
ABOCM
ABTFR
ABUWG
ABVAJ
ACGFO
ACGFS
ACGOD
ACGTL
ACHTP
ACMFJ
ACOAB
ACOFX
ACPRK
ACQSR
ACTZY
ADBBV
ADCEG
ADFRT
ADUGQ
ADZCM
AEKJL
AENEX
AFKRA
AFWFF
AGQPQ
AHMBA
AHNKE
AHQMW
AJYBZ
AKKEP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
AZQEC
BAWUL
BBNVY
BENPR
BHPHI
BKNYI
BLJBA
BOMFT
BPHCQ
BTFSW
BTHHO
BVXVI
C1A
C45
CAG
CCPQU
COF
CS3
CXRWF
DIK
DWQXO
E3Z
EBS
EJD
F5P
FDB
FYUFA
GNUQQ
H13
HAJ
HCIFZ
HMCUK
HYE
HZ~
IAO
IEA
IHR
INH
INR
IOF
ITC
J5H
K9-
KQ8
L7B
LK8
M0R
M1P
M2P
M7P
N9A
NTWIH
NXWIF
O9-
OK1
OVD
P2P
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
R53
RHI
RMJ
RPM
RV8
RWL
RXW
TAE
TEORI
TR2
UAW
UKHRP
UYXKK
V24
VM9
VVN
W2D
W8F
WH7
WOQ
X6Y
X7M
YFH
YOC
YQY
ZGI
ZXP
0R~
3V.
BSCLL
FRP
IGG
RHF
AAFWJ
AALRI
AAYXX
CITATION
PHGZM
PJZUB
PPXIY
PQGLB
PUEGO
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-b2174-1a9b1b7ba3a3fba92a86d90f12b6f4996cb6bfba34023a39c6e64362e419d1f13
IEDL.DBID BENPR
ISSN 0003-4967
IngestDate Tue Oct 07 07:10:43 EDT 2025
Wed Oct 01 05:03:27 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Oct 30 09:43:16 EDT 2024
Thu Apr 24 23:06:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Suppl 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2174-1a9b1b7ba3a3fba92a86d90f12b6f4996cb6bfba34023a39c6e64362e419d1f13
Notes local:annrheumdis;71/Suppl_3/638-f
ArticleID:annrheumdis-2012-eular.19
istex:4AD78FD63032D3FEE56A1B5FE8D874C85038C436
ark:/67375/NVC-C60KK5MS-T
href:annrheumdis-71-638-6.pdf
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1777976394
PQPubID 2041045
ParticipantIDs proquest_journals_1777976394
crossref_primary_10_1136_annrheumdis_2012_eular_19
crossref_citationtrail_10_1136_annrheumdis_2012_eular_19
istex_primary_ark_67375_NVC_C60KK5MS_T
bmj_primary_10_1136_annrheumdis_2012_eular_19
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20130601
PublicationDateYYYYMMDD 2013-06-01
PublicationDate_xml – month: 06
  year: 2013
  text: 20130601
  day: 01
PublicationDecade 2010
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Annals of the rheumatic diseases
PublicationTitleAlternate Ann Rheum Dis
PublicationYear 2013
Publisher BMJ Publishing Group Ltd and European League Against Rheumatism
Elsevier Limited
Publisher_xml – name: BMJ Publishing Group Ltd and European League Against Rheumatism
– name: Elsevier Limited
SSID ssj0000818
Score 2.0654063
Snippet Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene...
SourceID proquest
crossref
istex
bmj
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 638
Title AB0019 A PLS multivariate model to predict RA radiological severity by selecting key predictors from a large panel of SNPS and environmental factors
URI http://ard.bmj.com/content/71/Suppl_3/638.6.full
https://api.istex.fr/ark:/67375/NVC-C60KK5MS-T/fulltext.pdf
https://www.proquest.com/docview/1777976394
Volume 71
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1468-2060
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0000818
  issn: 0003-4967
  databaseCode: 7X7
  dateStart: 19390101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1468-2060
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0000818
  issn: 0003-4967
  databaseCode: BENPR
  dateStart: 19390101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfWVpp4QeNLFMZ0SIg3Q-2kdvwwoa7aNDEaVeuG-mbZsaMNtqakHYL_gz-Ys5tsICQEz_Y5Un6X-4jv7kfIK5GUzDg7pFmpUppK7qgamIIWzgmMRwqRRfq2SS6Oz9P38-F8i-RtL0woq2xtYjTUrirCP_K3TEqJrjNR6bvlFxpYo8LtakuhYRpqBbcfR4x1SI-HyVhd0js4zKend7Y5Y1nLoZcqIbfJy4bXJNC-1Bf-5tpdrlB1GKc-1IG-CSN4Ovb6029-qxcg-PaH-Y4-6WiH3G-CSRht0H9AtvziIdmeNNflj8iP0UEIrmAE0w8ziLWDXzE3xvASIgMOrCtY1mH7Gk5HUBt32dpCQI_pA7Ed2O-wimQ56OQAP_lWoqpXEJpTwMBVKCcHtCt4ZFXCLJ_OwCwc_NJFhyc21D6PyfnR4dn4mDY0DNSGfIUyoyyz0prEJKU1iptMODUoGbeixIRJFFZYXEgwFcUtiK_HMEdwnzLlWMmSJ6S7qBb-KQHDfMp9YnjJWWpSo1KULwpZbuZ-iT6h-Kr1cjNoQ8cEJYlN0y00OkCjIzSaqT7JWlB00cw0D9QaV_8iym9F_-N5ryPytxKm_hwq4-RQ5x_HeiwGJyfDyUyf9cluqxq6MQorfafCz_6-_Jzc4xvWDTpgu6S7rm_8C4x91naPdORc7jVq_RNEeAdC
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2VRq8IK6iMOAgAW-G2nGd-GFCXdnU0YuqtUN7M3bsiMHWlqQD9j_4Pfw2jtNkAyEheNizfZwon30u8TnnI-SZjDJmnG3TJFOCipg7qlompalzEv2RVCYlfdtwJHuH4u1R-2iN_KhrYUJaZa0TS0Xt5mn4R_6KxXGMpjNS4vXiMw2sUeF2tabQMBW1gtsuW4xVhR19f_4VQ7hie_8N4v2c873dabdHK5YBaoM7TplRltnYmshEmTWKm0Q61coYtzLDeECmVlociDDSwin4-h6tuOReMOVYxiJcd500RCQUBn-Nnd3R-ODSFiQsqTn7hJLxJnla8agEmpn8gz87dccFblXGqQ95py9Dy591e_rxNzvZCJB_-8NclDZw7ya5UTmv0Fnttltkzc9uk81hdT1_h3zv7ARnDjowHkygzFX8grE4urNQMu7Acg6LPExfwkEHcuOOa90LaKF9INIDew5FSc6DRhVQxdQS87yAUAwDBk5C-jqgHsMl5xlMRuMJmJmDX6r2cMWKSuguObwSQO6Rjdl85u8TMMwL7iPDM86EEUYJlE_TOFv1GZNNQvFT68WqsYcuA6KoLNKuodEBGl1Co5lqkqQGRadVD_VA5XHyL6L8QvQ_nveiRP5CwuSfQiZe3Najd13dla1-vz2c6GmTbNVbQ1dKqNCXR-bB34efkGu96XCgB_uj_kNyna8YP2iLbZGNZX7mH6HftbSPq80N5P1Vn6efqV9DMw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2kSpeEFdRGHCQgDez2knt-AGh0lFtdK0quqG-eXbiiMHWlLQD9j_4Nfw6jp1kAyEheNizfZwo3_G5xOf4I-SpiHJmMtulSa5iGkueUdUxKU2zTGA8kook0LeNxmL3MH47687WyI-mF8aXVTY2MRjqrEj9P_JtJqVE1xmpeDuvyyImO4NXi8_UM0j5k9aGTqNSkaE7_4rp2_Ll3g5i_YzzwZuD_i6tGQao9aE4ZUZZZqU1kYlyaxQ3ichUJ2fcihxzAZFaYXEgwiwLp-CrO_TggruYqYzlLMJ118mmjCLlywnlTF56gYQlDVtfrIRskSc1g4onmCk_uLPT7HiJSso4db7i9IW_7Gfdnn78zUNuerC__eEogvcb3CDX67AVepWe3SRrbn6LtEb1wfxt8r332odx0IPJ_hRCleIXzMIxkIXAtQOrAhaln76Cdz0oTXbcWF1A3-w8hR7Yc1gGWh50p4DGpZEoyiX4NhgwcOIL1wEtGC5Z5DAdT6Zg5hn80q-HK9YkQnfI4ZXAcZdszIu5u0fAMBdzFxmecxab2KgY5dNU5tUNY6JNKH5qvaiu9NAhFYpCe3YDjfbQ6ACNZqpNkgYUnda3p3sSj5N_EeUXov_xvOcB-QsJU37yNXiyq8fv-7ovOsNhdzTVB22y1aiGrs3PUl9ulvt_H35MWriL9P7eePiAXOMV1QftsC2ysSrP3EMMuFb2UdBsIEdXvZV-AtwOQM0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AB0019%E2%80%85A+PLS+multivariate+model+to+predict+RA+radiological+severity+by+selecting+key+predictors+from+a+large+panel+of+SNPS+and+environmental+factors&rft.jtitle=Annals+of+the+rheumatic+diseases&rft.au=Taylor%2C+L.H.&rft.au=Wilson%2C+A.G.&rft.au=Teare%2C+M.D.&rft.date=2013-06-01&rft.pub=BMJ+Publishing+Group+Ltd+and+European+League+Against+Rheumatism&rft.issn=0003-4967&rft.eissn=1468-2060&rft.volume=71&rft.issue=Suppl+3&rft.spage=638&rft_id=info:doi/10.1136%2Fannrheumdis-2012-eular.19&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_NVC_C60KK5MS_T
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4967&client=summon