AB0019 A PLS multivariate model to predict RA radiological severity by selecting key predictors from a large panel of SNPS and environmental factors
Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene association and linkage studies have recently identified a role for genetics in predicting RA severity [2]. Whilst many genetic variants have been...
Saved in:
| Published in | Annals of the rheumatic diseases Vol. 71; no. Suppl 3; p. 638 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Kidlington
BMJ Publishing Group Ltd and European League Against Rheumatism
01.06.2013
Elsevier Limited |
| Online Access | Get full text |
| ISSN | 0003-4967 1468-2060 |
| DOI | 10.1136/annrheumdis-2012-eular.19 |
Cover
| Abstract | Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene association and linkage studies have recently identified a role for genetics in predicting RA severity [2]. Whilst many genetic variants have been identified, few have attempted to fit a full predictive model allowing for the many possible gene-gene and gene-environment interactions. This lack of progress is mainly due to the technical limitations of commonly employed linear model based approaches. Partial least squares (PLS) is a dimension reduction technique which creates a linear combination of potential predictive (X) variables which can be used to predict either one or many (Y) response variables. Unlike traditional linear regression type methods, it makes no distributional assumptions, is able to fit models with more variables than subjects, has no problems with collinearity of the variables and can be used in the presence of incomplete data collection or missing data [3, 4]. Objectives Use PLS to create a linear model to predict erosive severity using single nucleotide polymorphisms (SNPs), environmental factors and non-erosive markers of disease severity. To quantify the predictive accuracy of the model and interpret the chosen variables in terms of possible functional relationships. Methods Using data from 912 subjects, 50 of the most predictive variables from 392 SNPS, 51 environmental variables and 14 other non-erosive markers of disease severity were chosen using a sparse PLS analysis to predict the Larsen score for each subject. The combined linear model was cross validated to measure predictive accuracy of the model. Results Although liable to over fitting due to using the same patient population in the test and validation sample, preliminary findings suggest we can predict Larsen score with a median average difference between actual and predicted of 16 Larsen score points (min=0, max=88). A correlation between predicted and actual Larsen score of r=0.684 indicates almost 47% of the variation is being explained by the model. Continued work will assess the cross validation of the prediction estimates with future work aimed to externally validate the findings on independent data. Conclusions In this early work, sparse PLS modelling appears to be a promising approach which may be able to identify key variables contributing to the amount of erosive damage in patients with RA. References Arend WP. The innate immune system in rheumatoid arthritis. Arthritis and Rheumatism. 2001; 44(10):2224-2234. Marinou I, Maxwell JR, Wilson AG. Genetic influences modulating the radiological severity of rheumatoid arthritis. Annals of the Rheumatic Diseases. 2010; 69(3):476-482. Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics. 2007; 8(1):32-44. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wilkström C, Wold S. Multi-and Megavariate Data Analysis, Part 1, Basic Principals and Applications. 2nd revised and enlarged ed: Umetrics Academy, 2006. Disclosure of Interest None Declared |
|---|---|
| AbstractList | Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene association and linkage studies have recently identified a role for genetics in predicting RA severity [2]. Whilst many genetic variants have been identified, few have attempted to fit a full predictive model allowing for the many possible gene-gene and gene-environment interactions. This lack of progress is mainly due to the technical limitations of commonly employed linear model based approaches. Partial least squares (PLS) is a dimension reduction technique which creates a linear combination of potential predictive (X) variables which can be used to predict either one or many (Y) response variables. Unlike traditional linear regression type methods, it makes no distributional assumptions, is able to fit models with more variables than subjects, has no problems with collinearity of the variables and can be used in the presence of incomplete data collection or missing data [3, 4]. Objectives Use PLS to create a linear model to predict erosive severity using single nucleotide polymorphisms (SNPs), environmental factors and non-erosive markers of disease severity. To quantify the predictive accuracy of the model and interpret the chosen variables in terms of possible functional relationships. Methods Using data from 912 subjects, 50 of the most predictive variables from 392 SNPS, 51 environmental variables and 14 other non-erosive markers of disease severity were chosen using a sparse PLS analysis to predict the Larsen score for each subject. The combined linear model was cross validated to measure predictive accuracy of the model. Results Although liable to over fitting due to using the same patient population in the test and validation sample, preliminary findings suggest we can predict Larsen score with a median average difference between actual and predicted of 16 Larsen score points (min=0, max=88). A correlation between predicted and actual Larsen score of r=0.684 indicates almost 47% of the variation is being explained by the model. Continued work will assess the cross validation of the prediction estimates with future work aimed to externally validate the findings on independent data. Conclusions In this early work, sparse PLS modelling appears to be a promising approach which may be able to identify key variables contributing to the amount of erosive damage in patients with RA. References Arend WP. The innate immune system in rheumatoid arthritis. Arthritis and Rheumatism. 2001; 44(10):2224-2234. Marinou I, Maxwell JR, Wilson AG. Genetic influences modulating the radiological severity of rheumatoid arthritis. Annals of the Rheumatic Diseases. 2010; 69(3):476-482. Boulesteix AL, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefings in Bioinformatics. 2007; 8(1):32-44. Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wilkström C, Wold S. Multi-and Megavariate Data Analysis, Part 1, Basic Principals and Applications. 2nd revised and enlarged ed: Umetrics Academy, 2006. Disclosure of Interest None Declared |
| Author | Taylor, L.H. Wilson, A.G. Teare, M.D. |
| Author_xml | – sequence: 1 givenname: L.H. surname: Taylor fullname: Taylor, L.H. organization: School of Health and Related Research, Sheffield University – sequence: 2 givenname: A.G. surname: Wilson fullname: Wilson, A.G. organization: Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, United Kingdom – sequence: 3 givenname: M.D. surname: Teare fullname: Teare, M.D. organization: School of Health and Related Research, Sheffield University |
| BookMark | eNqVkc9uEzEQxi1UJNLSdzDivMVeb73xCYWIf2poK1K4WuPd2eB0105tb0RuXHgFHpAnwW1ahDjBaTzj7_vNSN8hOXDeISHPODvhXMgX4Fz4guPQ2liUjJcFjj2EE64ekQmv5DQPJTsgE8aYKCol6yfkMMZ1btmUTyfkx-wVY1z9_PZ9Ri8XSzqMfbJbCBYS0sG32NPk6SZga5tEP85ogNb63q9sAz2NuMVg046aXX732CTrVvQadw8OHyLtgh8o0HzWCukGXEb6ji7PL5cUXEvRbW3wbkCXMrGDO9NT8riDPuLxfT0in968vpq_KxYXb9_PZ4vClLyuCg7KcFMbECA6A6qEqWwV63hpZFcpJRsjTf4QFSuzRDUSZSVkiRVXLe-4OCLP99xN8DcjxqTXfgwur9S8rmtVS6GqrFJ7VRN8jAE7vQl2gLDTnOnbGPQfMejbGPRdDJqr7H35l7exCZL1LgWw_T8Rij3BxoRff6-GcK1lLepTff55rueSnZ2dfljqq6yv9nozrP_j0F-7F70e |
| CODEN | ARDIAO |
| CitedBy_id | crossref_primary_10_3390_molecules24101866 |
| ContentType | Journal Article |
| Copyright | 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions Copyright: 2013 (c) 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions |
| Copyright_xml | – notice: 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions – notice: Copyright: 2013 (c) 2013, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions |
| DBID | BSCLL AAYXX CITATION 3V. 7X7 7XB 88E 88I 8AF 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI BTHHO CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9- K9. LK8 M0R M0S M1P M2P M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.1136/annrheumdis-2012-eular.19 |
| DatabaseName | Istex CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (NC Live) Natural Science Collection BMJ Journals ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection Consumer Health Database ProQuest Health & Medical Complete (Alumni) Biological Sciences Consumer Health Database Health & Medical Collection (Alumni Edition) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Family Health (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest Family Health ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition BMJ Journals ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1468-2060 |
| ExternalDocumentID | 4008636021 10_1136_annrheumdis_2012_eular_19 ark_67375_NVC_C60KK5MS_T annrheumdis |
| GroupedDBID | --- .55 .GJ .VT 169 23M 2WC 39C 3O- 4.4 40O 53G 5GY 5RE 5VS 6J9 7X7 7~S 88E 88I 8AF 8FE 8FH 8FI 8FJ 8R4 8R5 AAHLL AAKAS AAOJX AAWJN AAWTL AAXUO ABAAH ABJNI ABKDF ABMQD ABOCM ABTFR ABUWG ABVAJ ACGFO ACGFS ACGOD ACGTL ACHTP ACMFJ ACOAB ACOFX ACPRK ACQSR ACTZY ADBBV ADCEG ADFRT ADUGQ ADZCM AEKJL AENEX AFKRA AFWFF AGQPQ AHMBA AHNKE AHQMW AJYBZ AKKEP ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN AZQEC BAWUL BBNVY BENPR BHPHI BKNYI BLJBA BOMFT BPHCQ BTFSW BTHHO BVXVI C1A C45 CAG CCPQU COF CS3 CXRWF DIK DWQXO E3Z EBS EJD F5P FDB FYUFA GNUQQ H13 HAJ HCIFZ HMCUK HYE HZ~ IAO IEA IHR INH INR IOF ITC J5H K9- KQ8 L7B LK8 M0R M1P M2P M7P N9A NTWIH NXWIF O9- OK1 OVD P2P PHGZT PQQKQ PROAC PSQYO Q2X R53 RHI RMJ RPM RV8 RWL RXW TAE TEORI TR2 UAW UKHRP UYXKK V24 VM9 VVN W2D W8F WH7 WOQ X6Y X7M YFH YOC YQY ZGI ZXP 0R~ 3V. BSCLL FRP IGG RHF AAFWJ AALRI AAYXX CITATION PHGZM PJZUB PPXIY PQGLB PUEGO 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-b2174-1a9b1b7ba3a3fba92a86d90f12b6f4996cb6bfba34023a39c6e64362e419d1f13 |
| IEDL.DBID | BENPR |
| ISSN | 0003-4967 |
| IngestDate | Tue Oct 07 07:10:43 EDT 2025 Wed Oct 01 05:03:27 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Wed Oct 30 09:43:16 EDT 2024 Thu Apr 24 23:06:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Suppl 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b2174-1a9b1b7ba3a3fba92a86d90f12b6f4996cb6bfba34023a39c6e64362e419d1f13 |
| Notes | local:annrheumdis;71/Suppl_3/638-f ArticleID:annrheumdis-2012-eular.19 istex:4AD78FD63032D3FEE56A1B5FE8D874C85038C436 ark:/67375/NVC-C60KK5MS-T href:annrheumdis-71-638-6.pdf ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 1777976394 |
| PQPubID | 2041045 |
| ParticipantIDs | proquest_journals_1777976394 crossref_primary_10_1136_annrheumdis_2012_eular_19 crossref_citationtrail_10_1136_annrheumdis_2012_eular_19 istex_primary_ark_67375_NVC_C60KK5MS_T bmj_primary_10_1136_annrheumdis_2012_eular_19 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20130601 |
| PublicationDateYYYYMMDD | 2013-06-01 |
| PublicationDate_xml | – month: 06 year: 2013 text: 20130601 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Kidlington |
| PublicationPlace_xml | – name: Kidlington |
| PublicationTitle | Annals of the rheumatic diseases |
| PublicationTitleAlternate | Ann Rheum Dis |
| PublicationYear | 2013 |
| Publisher | BMJ Publishing Group Ltd and European League Against Rheumatism Elsevier Limited |
| Publisher_xml | – name: BMJ Publishing Group Ltd and European League Against Rheumatism – name: Elsevier Limited |
| SSID | ssj0000818 |
| Score | 2.0654063 |
| Snippet | Background The mechanisms contributing to the development of rheumatoid arthritis and to the development of tissue damage are complex [1]. Candidate gene... |
| SourceID | proquest crossref istex bmj |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 638 |
| Title | AB0019 A PLS multivariate model to predict RA radiological severity by selecting key predictors from a large panel of SNPS and environmental factors |
| URI | http://ard.bmj.com/content/71/Suppl_3/638.6.full https://api.istex.fr/ark:/67375/NVC-C60KK5MS-T/fulltext.pdf https://www.proquest.com/docview/1777976394 |
| Volume | 71 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1468-2060 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0000818 issn: 0003-4967 databaseCode: 7X7 dateStart: 19390101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1468-2060 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0000818 issn: 0003-4967 databaseCode: BENPR dateStart: 19390101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELfWVpp4QeNLFMZ0SIg3Q-2kdvwwoa7aNDEaVeuG-mbZsaMNtqakHYL_gz-Ys5tsICQEz_Y5Un6X-4jv7kfIK5GUzDg7pFmpUppK7qgamIIWzgmMRwqRRfq2SS6Oz9P38-F8i-RtL0woq2xtYjTUrirCP_K3TEqJrjNR6bvlFxpYo8LtakuhYRpqBbcfR4x1SI-HyVhd0js4zKend7Y5Y1nLoZcqIbfJy4bXJNC-1Bf-5tpdrlB1GKc-1IG-CSN4Ovb6029-qxcg-PaH-Y4-6WiH3G-CSRht0H9AtvziIdmeNNflj8iP0UEIrmAE0w8ziLWDXzE3xvASIgMOrCtY1mH7Gk5HUBt32dpCQI_pA7Ed2O-wimQ56OQAP_lWoqpXEJpTwMBVKCcHtCt4ZFXCLJ_OwCwc_NJFhyc21D6PyfnR4dn4mDY0DNSGfIUyoyyz0prEJKU1iptMODUoGbeixIRJFFZYXEgwFcUtiK_HMEdwnzLlWMmSJ6S7qBb-KQHDfMp9YnjJWWpSo1KULwpZbuZ-iT6h-Kr1cjNoQ8cEJYlN0y00OkCjIzSaqT7JWlB00cw0D9QaV_8iym9F_-N5ryPytxKm_hwq4-RQ5x_HeiwGJyfDyUyf9cluqxq6MQorfafCz_6-_Jzc4xvWDTpgu6S7rm_8C4x91naPdORc7jVq_RNEeAdC |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLa2VRq8IK6iMOAgAW-G2nGd-GFCXdnU0YuqtUN7M3bsiMHWlqQD9j_4Pfw2jtNkAyEheNizfZwon30u8TnnI-SZjDJmnG3TJFOCipg7qlompalzEv2RVCYlfdtwJHuH4u1R-2iN_KhrYUJaZa0TS0Xt5mn4R_6KxXGMpjNS4vXiMw2sUeF2tabQMBW1gtsuW4xVhR19f_4VQ7hie_8N4v2c873dabdHK5YBaoM7TplRltnYmshEmTWKm0Q61coYtzLDeECmVlociDDSwin4-h6tuOReMOVYxiJcd500RCQUBn-Nnd3R-ODSFiQsqTn7hJLxJnla8agEmpn8gz87dccFblXGqQ95py9Dy591e_rxNzvZCJB_-8NclDZw7ya5UTmv0Fnttltkzc9uk81hdT1_h3zv7ARnDjowHkygzFX8grE4urNQMu7Acg6LPExfwkEHcuOOa90LaKF9INIDew5FSc6DRhVQxdQS87yAUAwDBk5C-jqgHsMl5xlMRuMJmJmDX6r2cMWKSuguObwSQO6Rjdl85u8TMMwL7iPDM86EEUYJlE_TOFv1GZNNQvFT68WqsYcuA6KoLNKuodEBGl1Co5lqkqQGRadVD_VA5XHyL6L8QvQ_nveiRP5CwuSfQiZe3Najd13dla1-vz2c6GmTbNVbQ1dKqNCXR-bB34efkGu96XCgB_uj_kNyna8YP2iLbZGNZX7mH6HftbSPq80N5P1Vn6efqV9DMw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZ2kSpeEFdRGHCQgDez2knt-AGh0lFtdK0quqG-eXbiiMHWlLQD9j_4Nfw6jp1kAyEheNizfZwo3_G5xOf4I-SpiHJmMtulSa5iGkueUdUxKU2zTGA8kook0LeNxmL3MH47687WyI-mF8aXVTY2MRjqrEj9P_JtJqVE1xmpeDuvyyImO4NXi8_UM0j5k9aGTqNSkaE7_4rp2_Ll3g5i_YzzwZuD_i6tGQao9aE4ZUZZZqU1kYlyaxQ3ichUJ2fcihxzAZFaYXEgwiwLp-CrO_TggruYqYzlLMJ118mmjCLlywnlTF56gYQlDVtfrIRskSc1g4onmCk_uLPT7HiJSso4db7i9IW_7Gfdnn78zUNuerC__eEogvcb3CDX67AVepWe3SRrbn6LtEb1wfxt8r332odx0IPJ_hRCleIXzMIxkIXAtQOrAhaln76Cdz0oTXbcWF1A3-w8hR7Yc1gGWh50p4DGpZEoyiX4NhgwcOIL1wEtGC5Z5DAdT6Zg5hn80q-HK9YkQnfI4ZXAcZdszIu5u0fAMBdzFxmecxab2KgY5dNU5tUNY6JNKH5qvaiu9NAhFYpCe3YDjfbQ6ACNZqpNkgYUnda3p3sSj5N_EeUXov_xvOcB-QsJU37yNXiyq8fv-7ovOsNhdzTVB22y1aiGrs3PUl9ulvt_H35MWriL9P7eePiAXOMV1QftsC2ysSrP3EMMuFb2UdBsIEdXvZV-AtwOQM0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AB0019%E2%80%85A+PLS+multivariate+model+to+predict+RA+radiological+severity+by+selecting+key+predictors+from+a+large+panel+of+SNPS+and+environmental+factors&rft.jtitle=Annals+of+the+rheumatic+diseases&rft.au=Taylor%2C+L.H.&rft.au=Wilson%2C+A.G.&rft.au=Teare%2C+M.D.&rft.date=2013-06-01&rft.pub=BMJ+Publishing+Group+Ltd+and+European+League+Against+Rheumatism&rft.issn=0003-4967&rft.eissn=1468-2060&rft.volume=71&rft.issue=Suppl+3&rft.spage=638&rft_id=info:doi/10.1136%2Fannrheumdis-2012-eular.19&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_NVC_C60KK5MS_T |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4967&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4967&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4967&client=summon |