Validation of Structure Tensor Analysis for Orientation Estimation in Brain Tissue Microscopy

Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of pos...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Gray, Bryson, Smith, Andrew, MacKenzie-Graham, Allan, Shattuck, David W, Tward, Daniel
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 16.01.2025
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2025.01.16.633408

Cover

Abstract Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation. However, structure tensor analysis itself has not been well-validated and is subject to uncertainty in its angular resolution, and selectivity to specific spatial scales. In this work, we conducted a simulation study to investigate the accuracy of using structure tensors to estimate the orientations of fibers arranged in configurations with and without crossings. We examined a range of simulated conditions, with a focus on investigating the method's behavior on images with anisotropic resolution, which is particularly common in microscopy data acquisition. We also analyzed 2D and 3D optical microscopy data. Our results show that parameter choice in structure tensor analysis has relatively little effect on accuracy for estimating single orientations, although accuracy decreases with anisotropy. On the other hand, when estimating the orientations of crossing fibers, the choice of parameters becomes critical, and poor choices result in orientation estimates that are essentially random. This work provides a set of recommendations for researchers seeking to apply structure tensor analysis effectively in the study of axonal orientations in brain imaging data and quantifies the method's limitations, particularly in the case of anisotropic data.
AbstractList Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation. However, structure tensor analysis itself has not been well-validated and is subject to uncertainty in its angular resolution, and selectivity to specific spatial scales. In this work, we conducted a simulation study to investigate the accuracy of using structure tensors to estimate the orientations of fibers arranged in configurations with and without crossings. We examined a range of simulated conditions, with a focus on investigating the method's behavior on images with anisotropic resolution, which is particularly common in microscopy data acquisition. We also analyzed 2D and 3D optical microscopy data. Our results show that parameter choice in structure tensor analysis has relatively little effect on accuracy for estimating single orientations, although accuracy decreases with anisotropy. On the other hand, when estimating the orientations of crossing fibers, the choice of parameters becomes critical, and poor choices result in orientation estimates that are essentially random. This work provides a set of recommendations for researchers seeking to apply structure tensor analysis effectively in the study of axonal orientations in brain imaging data and quantifies the method's limitations, particularly in the case of anisotropic data.Competing Interest StatementThe authors have declared no competing interest.
Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation. However, structure tensor analysis itself has not been well-validated and is subject to uncertainty in its angular resolution, and selectivity to specific spatial scales. In this work, we conducted a simulation study to investigate the accuracy of using structure tensors to estimate the orientations of fibers arranged in configurations with and without crossings. We examined a range of simulated conditions, with a focus on investigating the method's behavior on images with anisotropic resolution, which is particularly common in microscopy data acquisition. We also analyzed 2D and 3D optical microscopy data. Our results show that parameter choice in structure tensor analysis has relatively little effect on accuracy for estimating single orientations, although accuracy decreases with anisotropy. On the other hand, when estimating the orientations of crossing fibers, the choice of parameters becomes critical, and poor choices result in orientation estimates that are essentially random. This work provides a set of recommendations for researchers seeking to apply structure tensor analysis effectively in the study of axonal orientations in brain imaging data and quantifies the method's limitations, particularly in the case of anisotropic data.Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation. However, structure tensor analysis itself has not been well-validated and is subject to uncertainty in its angular resolution, and selectivity to specific spatial scales. In this work, we conducted a simulation study to investigate the accuracy of using structure tensors to estimate the orientations of fibers arranged in configurations with and without crossings. We examined a range of simulated conditions, with a focus on investigating the method's behavior on images with anisotropic resolution, which is particularly common in microscopy data acquisition. We also analyzed 2D and 3D optical microscopy data. Our results show that parameter choice in structure tensor analysis has relatively little effect on accuracy for estimating single orientations, although accuracy decreases with anisotropy. On the other hand, when estimating the orientations of crossing fibers, the choice of parameters becomes critical, and poor choices result in orientation estimates that are essentially random. This work provides a set of recommendations for researchers seeking to apply structure tensor analysis effectively in the study of axonal orientations in brain imaging data and quantifies the method's limitations, particularly in the case of anisotropic data.
Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not thoroughly understood. A fruitful approach to validating accuracy is to consider microscopy data that have been co-registered with MRI of post mortem samples. In this setting, structure tensor analysis is a standard approach to computing local orientations for validation. However, structure tensor analysis itself has not been well-validated and is subject to uncertainty in its angular resolution, and selectivity to specific spatial scales. In this work, we conducted a simulation study to investigate the accuracy of using structure tensors to estimate the orientations of fibers arranged in configurations with and without crossings. We examined a range of simulated conditions, with a focus on investigating the method's behavior on images with anisotropic resolution, which is particularly common in microscopy data acquisition. We also analyzed 2D and 3D optical microscopy data. Our results show that parameter choice in structure tensor analysis has relatively little effect on accuracy for estimating single orientations, although accuracy decreases with anisotropy. On the other hand, when estimating the orientations of crossing fibers, the choice of parameters becomes critical, and poor choices result in orientation estimates that are essentially random. This work provides a set of recommendations for researchers seeking to apply structure tensor analysis effectively in the study of axonal orientations in brain imaging data and quantifies the method's limitations, particularly in the case of anisotropic data.
Author Gray, Bryson
Tward, Daniel
MacKenzie-Graham, Allan
Smith, Andrew
Shattuck, David W
Author_xml – sequence: 1
  givenname: Bryson
  orcidid: 0000-0001-8857-3492
  surname: Gray
  fullname: Gray, Bryson
  organization: University of California, Los Angeles, Ahmanson-Lovelace Brain Mapping Center, 635 Charles E Young Dr S, Los Angeles, CA 90095, USA
– sequence: 2
  givenname: Andrew
  surname: Smith
  fullname: Smith, Andrew
  organization: University of California, Los Angeles, Ahmanson-Lovelace Brain Mapping Center, 635 Charles E Young Dr S, Los Angeles, CA 90095, USA
– sequence: 3
  givenname: Allan
  orcidid: 0000-0001-9966-2335
  surname: MacKenzie-Graham
  fullname: MacKenzie-Graham, Allan
  organization: University of California, Los Angeles, Ahmanson-Lovelace Brain Mapping Center, 635 Charles E Young Dr S, Los Angeles, CA 90095, USA
– sequence: 4
  givenname: David W
  surname: Shattuck
  fullname: Shattuck, David W
  organization: University of California, Los Angeles, Ahmanson-Lovelace Brain Mapping Center, 635 Charles E Young Dr S, Los Angeles, CA 90095, USA
– sequence: 5
  givenname: Daniel
  orcidid: 0000-0002-4607-6807
  surname: Tward
  fullname: Tward, Daniel
  organization: University of California, Los Angeles, Ahmanson-Lovelace Brain Mapping Center, 635 Charles E Young Dr S, Los Angeles, CA 90095, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39868114$$D View this record in MEDLINE/PubMed
BookMark eNptUUtP3DAQthCI9w_ggiL10ssuM3ZiOydEEbSVQBzY9lZZTuJQo6yd2gnt_vs6CgVa9eKZkb_HPA7ItvPOEHKCsEQEPKNAiyXgEvmSM5aD3CL7lJd0ISkU22_yPXIc4yMA0JIjE_ku2WOl5BIx3yffvurONnqw3mW-ze6HMNbDGEy2Mi76kF043W2ijVmbirtgjRtm8FUc7HpOrcs-BJ3elY1xNNmtrYOPte83R2Sn1V00x8_xkHy5vlpdflrc3H38fHlxs6gocrnQpYGGoi6ZaATQKm-wqVGKVpgi57RqC4ltWbC6Ek0rcy2MBkMliIYyISiwQ0Jn3dH1evNTd53qQ2ovbBSCmtalpnWpFJGreV2JdD6T-rFam6ZOowX9SvTaqr9_nP2uHvxT0hMccjbZvp8VKuvDL_v0wv2f2TO0D_7HaOKg1jbWpuu0M36MiiEHEGmmSfXdP9BHP4Z0hwlVcFrIkhcJdfq2-xfrP6dlvwExRqUd
ContentType Journal Article
Paper
Copyright 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
5PM
UNPAY
DOI 10.1101/2025.01.16.633408
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
ProQuest Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
Unpaywall
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 10.1101/2025.01.16.633408
PMC11760430
2025.01.16.633408v1
39868114
Genre Journal Article
Preprint
Working Paper/Pre-Print
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS121761
– fundername: NINDS NIH HHS
  grantid: R01 NS086981
– fundername: NINDS NIH HHS
  grantid: R21 NS121806
– fundername: NIMH NIH HHS
  grantid: U19 MH114821
– fundername: NIMH NIH HHS
  grantid: RF1 MH128875
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
FX.
5PM
UNPAY
ID FETCH-LOGICAL-b2168-a9e0d21a937d702b4d1dc187f7e5462bf581f953cb7df84a7ea0e2807d2377203
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Sun Oct 26 03:14:41 EDT 2025
Tue Sep 30 17:05:42 EDT 2025
Sat Jan 18 17:09:45 EST 2025
Fri Sep 05 03:42:24 EDT 2025
Fri Jul 25 09:16:24 EDT 2025
Sun Aug 10 01:31:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Structure tensor analysis
Validation
Brain connectivity
Tractography
Axon orientation
Diffusion MRI
White matter
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial 4.0 International), CC BY-NC 4.0, as described at http://creativecommons.org/licenses/by-nc/4.0
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2168-a9e0d21a937d702b4d1dc187f7e5462bf581f953cb7df84a7ea0e2807d2377203
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-8857-3492
0000-0001-9966-2335
0000-0002-4607-6807
OpenAccessLink https://www.biorxiv.org/content/10.1101/2025.01.16.633408
PMID 39868114
PQID 3156258965
PQPubID 2050091
ParticipantIDs unpaywall_primary_10_1101_2025_01_16_633408
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11760430
biorxiv_primary_2025_01_16_633408
proquest_miscellaneous_3160072800
proquest_journals_3156258965
pubmed_primary_39868114
PublicationCentury 2000
PublicationDate 20250116
PublicationDateYYYYMMDD 2025-01-16
PublicationDate_xml – month: 1
  year: 2025
  text: 20250116
  day: 16
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References 40738261 - J Neurosci Methods. 2025 Jul 28;423:110539. doi: 10.1016/j.jneumeth.2025.110539.
References_xml – reference: 40738261 - J Neurosci Methods. 2025 Jul 28;423:110539. doi: 10.1016/j.jneumeth.2025.110539.
SSID ssj0002961374
Score 1.899058
SecondaryResourceType preprint
Snippet Accurate localization of white matter pathways using diffusion MRI is critical to investigating brain connectivity, but the accuracy of current methods is not...
SourceID unpaywall
pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Accuracy
Anisotropy
Data acquisition
Fibers
Light microscopy
Localization
Magnetic resonance imaging
Microscopy
Neural networks
Neuroimaging
Neuroscience
Spatial distribution
Substantia alba
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9QwFD6sMyz65t3qKhF8k2rStLk8iLAyyyLsuOis7IuUZJKyhaUdq6POvzcnveiy4nOSNjknl3NJvg_ghaZV8BsqlrLcVWlecZ1qwxF1XyHJFfUmQimdLMXxWf7-vDjfg-X4FgavVY57YtyoXbvGGPlrztBUV1oUbzdfU2SNwuzqSKFhBmoF9yZCjN2AeYbIWDOYHy6Wpx-nqEumw_EVoZkzocNWkNFiSHWGqYmBgAjiycQrwXmOlJP7tm67X_WPfxmg1-9R3tw2G7P7aS4v_zqkjm7D_NRsfHcH9nxzF_Z7lsndPfjyOdjaPXUSaSvyKSLGbjtPVsGFbTsy4pKQYL-SD109vEZqyCIs__5lI6kbcohkEmQVFUVO8B4fvmjZ3Yezo8Xq3XE6sCqkNmNCpUZ76jJmgl3iJM1s7phbMyUr6YtcZLYqFKt0wddWukrlRnpDPWLmuIxLTNo-gFnTNv4RECmMtkEpTCuaG26VpkYUzts191Iqn8DzQXzlpsfOKFHEJWUlE2Uv4gQORsGWw_L5Vv5RdvjEVBwmPmYzTOPbLdZBaP3QMZrAw14P01-4VkIFTy8BdUVDUwUE1b5a0tQXEVybMSkQBy2Bl5Myp2bRYwq9vzaKx_8fxRO4hU0wdMPEAcyCov3TYMx8t8-GGfobCa_v-A
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQciiXPlSgaQEZiRvKyo4TP460AiEkHhK7CA4osje2iLpK0MK2wK_vTBIiKBzgGk8SxzNOvsnMfEPIlmEB_IbAY54WIU6DMLGxAln3NTa5Yt42VEqHR3J_nB6cZ-cdWTTWwjyN34O1oG_e8GpyOZRCpFjWuygzgN0Dsjg-Otm56CKVr8oCpnVlPbsr_7yGH1-mQX6YV9f2_q-dTp98Y_Y-tdlZNw01IaaW_B7Ob91w8vAfceObpv-ZfOyQJt1pTeMLWfDVV3J5Bri7baNE60BPG_bY-czTEbiz9Yw-cpRQwLL0eFZ2lUkV3YVXQVvlSMuK_sTGEnTUKI0eYk4fVrfcL5Px3u7o137cdViIXcKljq3xrEi4BYxSKJa4tODFhGsVlM9SmbiQaR5MJiZOFUGnVnnLPPLnFIlQGMBdIYOqrvw3QpW0xiUgbzRLrXDaMCuzwruJ8EppH5HNThf5dcujkePi5IznXObt4kRk7VFLebeVbnLB0UfTRmZwiX4YNgFGNmzl6znKIM0-TIxFZLVVan8XYbTU4PVFRD9Tdy-ABNvPR6ryqiHa5lxJ5ESLyHZvGf1pjfcEs3_xFN_fJf2DLOEx_KvD5RoZgN79OuCcW7fRWfg_t_j1pg
  priority: 102
  providerName: Unpaywall
Title Validation of Structure Tensor Analysis for Orientation Estimation in Brain Tissue Microscopy
URI https://www.ncbi.nlm.nih.gov/pubmed/39868114
https://www.proquest.com/docview/3156258965
https://www.proquest.com/docview/3160072800
https://www.biorxiv.org/content/10.1101/2025.01.16.633408
https://pubmed.ncbi.nlm.nih.gov/PMC11760430
https://doi.org/10.1101/2025.01.16.633408
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELfQKgRv4zswJiPxhjLZseOPR4ZaTUgrFbSoPKDIbmwt0pRUYQX633OXZNGm7YHHxHZs39nxne_ud4S8tyyC3hB5ymUZUxmFTa0TiLpvMMkVC66DUjqfq7OV_LzO1zdSfaFbpa-a9m_1u7Pjo8M2_H37zc046uodziZXJ0oIiWG-Ew1HPHpzzdYn4_VKZuGc0nKwY97bEiTeoaf7pMu7TpKPdvXW7f-4y8sbJ9DskEwWbhvaJ-RBqJ-Sh30Kyf0z8vM7CNJ9XiTaRPqtg4PdtYEuQT9tWnoNOkJBOKVf2moINarpFPZ2H7ZIq5qeYqYIuuy4QM_RSQ_DVfbPyWo2XX46S4eUCanPuDKps4GVGXcgdJSaZV6WvNxwo6MOuVSZj7nh0eZi43UZjXQ6OBYQEKfMhEaL7AtyUDd1eEWoVs76DOpbw6QT3ljmVF4GvxFBaxMS8m4gX7HtgTEKJHHBeMFV0ZM4IUfXhC2GvfGrEByVLmNVDp8Yi2FVo6nC1aHZYR3EzYeBsYS87Pkw9iKsUQbUuISYWxwaKyBi9u2SurrokLM51wpBzhLyYWTm2KxTh2D0d2bx-j9m-oY8xnd4OcPVETkAboe3IK5c-WMyOZ3OF1-PuwUKT6v54uOPf6Zg5qY
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKV1W58Sa0gJHghALxI34cKqTCVlvaXSrYol5QcDaOiFQl2y1L2T_Hb2MmL6iKuPVsx7Fn_JgZe76PkOc2ysFvyFnIZJaHMhc2tE4g6r5BkqvIuxpKaTxRo2P5_iQ-WSO_ulwYfFbZ7Yn1Rp1VM4yRvxYMTXVjVfxmfhYiaxTernYUGq6lVsh2aoixNrHjwK8uwIU739l_B_p-wfnecPp2FLYsA2HKmTKhsz7KOHNwTmc64qnMWDZjRufax1LxNI8Ny20sZqnOciOd9i7yiCGTcaHxEhPavUEGUkgLzt9gdzg5-thHebiF47KGgubKwtbDo7i9WoWlgIGHGjSUqVdKCIkUlxtpUS1-Fj_-ZfBefbe5uSznbnXhTk__OhT3bpHBkZv7xW2y5ss7ZKNhtVzdJV8-g23fUDXRKqefaoTa5cLTKbjM1YJ2OCgU7GX6YVG02U8lHcJ202RS0qKku0heQaf1xKBjfDeIGTSre-T4WuR7n6yXVekfEqqVsylMAmZNJJ1IjY2cijOfzoTX2viAPGvFl8wbrI4ERZxELGEqaUQckO1OsEm7XM-TP5MLmuiLYaHh7YkrfbXEOgjlDx2LAvKg0UP_F2GNMuBZBsRc0lBfAUG8L5eUxbcazJsxrRB3LSAve2X2n9UeGvT-yige_X8UT8nmaDo-TA73Jwdb5CZ-jmEjprbJOijdPwZD6nv6pJ2tlHy97gXyG_PwK-s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFH6CViw31hIoYCRuKCM7drxcgY7K0lKJKZoLiuyxLSJVySgwwPx7_JI0atUeONvx8p4dv_V7AK8NjUlviCxnwsdcRG5yYzmi7mssckWD7aGUjo7l4an4uCyXF3JhMKzS1W33t_7d-_ExYDv9fYfLTRnq6j3OJpMzybmgeoZm6tnax5uwq9JbjwrYfDmb7CyFSQ-WEqND89ohkug7TnmdmHk1WvLOplnb7R97dnbhKZrfg90Tuw7dfbgRmgdwa6gluX0I378liXookETaSL72uLCbLpBFUlTbjpyjj5AkpZIvXT3mHDXkIF3yIX-R1A15iyUjyKJnBznCaD3MW9k-gtP5weLdYT7WTshdwaTOrQnUF8wm6cMrWjjhmV8xraIKpZCFi6Vm0ZR85ZSPWlgVLA2IjOMLrtA1-xh2mrYJT4AoaY0rUn-jqbDcaUOtLH1wKx6U0iGDVyP5qvWAkFEhiSvKKiargcQZ7J8Tthovyc-KM9S-tJFlGmJqTscbfRa2Ce0G-yCAfloYzWBv4MM0Czda6qTPZaAvcWjqgNDZl1ua-kcPoc2Ykoh2lsGbiZnTZ71elFZ_ZRdP_2OnL-H2yft59fnD8adncBeb0WDD5D7sJMaH50mE-eVe9Gf0Hzxu6Ts
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbQciiXPlSgaQEZiRvKyo4TP460AiEkHhK7CA4osje2iLpK0MK2wK_vTBIiKBzgGk8SxzNOvsnMfEPIlmEB_IbAY54WIU6DMLGxAln3NTa5Yt42VEqHR3J_nB6cZ-cdWTTWwjyN34O1oG_e8GpyOZRCpFjWuygzgN0Dsjg-Otm56CKVr8oCpnVlPbsr_7yGH1-mQX6YV9f2_q-dTp98Y_Y-tdlZNw01IaaW_B7Ob91w8vAfceObpv-ZfOyQJt1pTeMLWfDVV3J5Bri7baNE60BPG_bY-czTEbiz9Yw-cpRQwLL0eFZ2lUkV3YVXQVvlSMuK_sTGEnTUKI0eYk4fVrfcL5Px3u7o137cdViIXcKljq3xrEi4BYxSKJa4tODFhGsVlM9SmbiQaR5MJiZOFUGnVnnLPPLnFIlQGMBdIYOqrvw3QpW0xiUgbzRLrXDaMCuzwruJ8EppH5HNThf5dcujkePi5IznXObt4kRk7VFLebeVbnLB0UfTRmZwiX4YNgFGNmzl6znKIM0-TIxFZLVVan8XYbTU4PVFRD9Tdy-ABNvPR6ryqiHa5lxJ5ESLyHZvGf1pjfcEs3_xFN_fJf2DLOEx_KvD5RoZgN79OuCcW7fRWfg_t_j1pg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Validation+of+Structure+Tensor+Analysis+for+Orientation+Estimation+in+Brain+Tissue+Microscopy&rft.jtitle=bioRxiv&rft.au=Gray%2C+Bryson&rft.au=Smith%2C+Andrew&rft.au=MacKenzie-Graham%2C+Allan&rft.au=Shattuck%2C+David+W&rft.date=2025-01-16&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.01.16.633408&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon