On Self‐Affine and Self‐Similar Graphs of Fractal Interpolation Functions Generated from Iterated Function Systems

This chapter provides a brief and coarse discussion on the theory of fractal interpolation functions and their recent developments including some of the research made by the authors. It focuses on fractal interpolation as well as on recurrent fractal interpolation in one and two dimensions. The resu...

Full description

Saved in:
Bibliographic Details
Published inInTech eBooks
Main Author Dillon, Sean
Format Book Chapter
LanguageEnglish
Published IntechOpen 01.01.2017
Subjects
Online AccessGet full text
ISBN953513213X
9789535132134
DOI10.5772/intechopen.68499

Cover

Abstract This chapter provides a brief and coarse discussion on the theory of fractal interpolation functions and their recent developments including some of the research made by the authors. It focuses on fractal interpolation as well as on recurrent fractal interpolation in one and two dimensions. The resulting self‐affine or self‐similar graphs, which usually have non‐integral dimension, were generated through a family of (discrete) dynamic systems, the iterated function system, by using affine transformations. Specifically, the fractal interpolation surfaces presented here were constructed over triangular as well as over polygonal lattices with triangular subdomains. A further purpose of this chapter is the exploration of the existent breakthroughs and their application to a flexible and integrated software that constructs and visualises the above‐mentioned models. We intent to supply both a panoramic view of interpolating functions and a useful source of links to assist a novice as well as an expert in fractals. The ideas or findings contained in this paper are not claimed to be exhaustive, but are intended to be read before, or in parallel with, technical papers available in the literature on this subject.
AbstractList This chapter provides a brief and coarse discussion on the theory of fractal interpolation functions and their recent developments including some of the research made by the authors. It focuses on fractal interpolation as well as on recurrent fractal interpolation in one and two dimensions. The resulting self‐affine or self‐similar graphs, which usually have non‐integral dimension, were generated through a family of (discrete) dynamic systems, the iterated function system, by using affine transformations. Specifically, the fractal interpolation surfaces presented here were constructed over triangular as well as over polygonal lattices with triangular subdomains. A further purpose of this chapter is the exploration of the existent breakthroughs and their application to a flexible and integrated software that constructs and visualises the above‐mentioned models. We intent to supply both a panoramic view of interpolating functions and a useful source of links to assist a novice as well as an expert in fractals. The ideas or findings contained in this paper are not claimed to be exhaustive, but are intended to be read before, or in parallel with, technical papers available in the literature on this subject.
Author Dillon, Sean
Author_xml – sequence: 1
  fullname: Dillon, Sean
BookMark eNpNUE1rGzEQFaSFfDT3HvUH7EjaXa10NKZ2DIEc3EJvYqQdYQWttGjXLb71J-Q35pfErh3ay8y8mffewLsln1JOSMhXzuZN24qHkCZ0uzxgmktVa31FbnVTNbwSvPp5Te7H8YUxJpRmWjU35NdzoluM_u3P68L7kJBC6j4229CHCIWuCwy7kWZPVwXcBJFujl_KkCNMISe62id3Gka6xoQFJuyoL7mnm-mCPhh0exgn7Mcv5LOHOOL9pd-RH6tv35ePs6fn9Wa5eJpZwaSeYQtOeFah1l6wynPZolK-bpxGoTrFNSjuas-UrFolulppLaxskEsGLWJ1R_jZd58GOPyGGM1QQg_lYDgzp8DMv8DM38COGnPW2GBjyDZD6czpXnBEKG4Xgy0nhwzB_M9xuTetFKplFgy6Y6mtkEaxrjOeOSUaKxzIrnoHAsCK1w
ContentType Book Chapter
Copyright https://creativecommons.org/licenses/by/4.0/legalcode
Copyright_xml – notice: https://creativecommons.org/licenses/by/4.0/legalcode
DBID BIANM
ABOKW
UNPAY
DOI 10.5772/intechopen.68499
DatabaseName Open Research Library (Open Access)
Unpaywall for CDI: Monographs and Miscellaneous Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BIANM
  name: Open Research Library (Open Access)
  url: https://openresearchlibrary.org
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
ExternalDocumentID 10.5772/intechopen.68499
oai_biblioboard_com_762870ba_ecba_4b26_80dd_f0c825b2ca6d
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
BIANM
FR4
V1H
ABOKW
UNPAY
ID FETCH-LOGICAL-b2069-e7ac2f03e99f203f167e88f45c9e28d819a81c4f0863782d48992b65e160a7ee3
IEDL.DBID BIANM
ISBN 953513213X
9789535132134
IngestDate Wed Oct 29 11:59:35 EDT 2025
Tue Sep 02 16:18:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b2069-e7ac2f03e99f203f167e88f45c9e28d819a81c4f0863782d48992b65e160a7ee3
Notes MODID-6d55e02e354:IntechOpen
OpenAccessLink https://openresearchlibrary.org/viewer/762870ba-ecba-4b26-80dd-f0c825b2ca6d
ParticipantIDs unpaywall_primary_10_5772_intechopen_68499
biblioboard_openresearchlibrary_oai_biblioboard_com_762870ba_ecba_4b26_80dd_f0c825b2ca6d
PublicationCentury 2000
PublicationDate 2017-01-01T00:00:00Z
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01T00:00:00Z
  day: 01
PublicationDecade 2010
PublicationTitle InTech eBooks
PublicationYear 2017
Publisher IntechOpen
Publisher_xml – name: IntechOpen
SSID ssj0002890985
Score 1.5003228
Snippet This chapter provides a brief and coarse discussion on the theory of fractal interpolation functions and their recent developments including some of the...
SourceID unpaywall
biblioboard
SourceType Open Access Repository
SubjectTerms Health Care Delivery
Medical
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVgOSA4AKKIrQD50BOSIXFsxz6iqsuHBK0KK21Plj_FipCs6C6oPfUn9DfySxiTbLvixiVSoklkjSeeN_G8F4Q-2UiZV4UgVnFGGKQMYiBNkBhL6wwTISsSG_nySpwN2cWIj5ZQPufCpLbKJJQA7z6U8y2poROrJhMfyeyhOuZpc2cZrQgO8LuHVoZX305-tFuQHMDi8cL9QrKk6rpmx7YaN7YBr6-h1Vk9Mb-eTFUtpJLBBvo-H0TbQXJ3NJvaI_f7jT7ju0a5idYTZwEnMgH4aQsthXobPX6t8XWo4vOfvycxAprEpvbzK9fj-zEUtfg0CVb_xE3Eg8SXMhVu2xCbtkcODyDvvYYmbgWqAaDiREnB59PubG6BO_HzD2g4-HLz-Yx0v1kglmZCkVAaR2NWBKUizYqYizJIGRl3KlDpATIYmTsWofgpAE94BiUatYKHXGSmDKHYQb26qcMuwkVJufOcBhoCU1IC1vHwFFtEqXLl8j4aLcyETs7rNI1uu49WOsldL9qAbzUs2LCsWKODgwOzVGiZea9j5qDAtdQZ4fvo8N-06kmr1KGhwkkRof_PlX6NiI_vMd5DvenDLOwD-Jjagy7cXgClnejt
  priority: 102
  providerName: Unpaywall
Title On Self‐Affine and Self‐Similar Graphs of Fractal Interpolation Functions Generated from Iterated Function Systems
URI https://openresearchlibrary.org/viewer/762870ba-ecba-4b26-80dd-f0c825b2ca6d
https://www.intechopen.com/citation-pdf-url/55516
UnpaywallVersion publishedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLZYd4BxAQFiwCYfOCGZJv6Kza2glQ5pBWkUlZPlz1EpJFPXMe3GT-A38kt43aSlB65cEjmyosiPnfd5bL-PEXrpEuVBM0mcFpxwCBnEQpggKVXOWy5jwXI28tlUTmb8w1zM--OArt50Z0b1NjfftqYPy4thniePyyEMXehgzpLo4cIdzW66IZBUeJA6jnorwx7apxXIkAHaf3s6mp5tp1zymppWArSZFkyADCtZ78GzLfNuJVMA5xxmvwb4BcEHvZaKZ3PYA7dw9aJ1LYB3gO5eN5f29sbW9U5EGj9A93OWAs7pA9AyD9Gd2DxCPz42-DzW6ffPX6OUgD9i24TNk_PF9wXIWPw-W1Rf4Tbhcc6QsjXuNh623a44PIZIt-6MuLOkBkqKcxIKPl31pU0N3NudP0az8cnndxPSH6xAHC2kJrGynqaCRa0TLVgqZRWVSlx4HakKQBKsKj1PIHcYMIjAQZRRJ0UsZWGrGNkTNGjaJj5FmFVU-CBopDFyrRSwmwBvcSwpXWpfHqL5TqOZf8BrssH1bh0YaWaDs8k4m4yzyTibXZwP0astAuay8-YwoGkyeOYveGYN3rP_9x3P0T2aY_16XuYFGqyW1_EImMrKHfc9EO6z6afR12O096Wc_AH9su_2
linkProvider BiblioLabs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwELVgOSA4AKKIrQD50BOSIXFsxz6iqsuHBK0KK21Plj_FipCs6C6oPfUn9DfySxiTbLvixiVSoklkjSeeN_G8F4Q-2UiZV4UgVnFGGKQMYiBNkBhL6wwTISsSG_nySpwN2cWIj5ZQPufCpLbKJJQA7z6U8y2poROrJhMfyeyhOuZpc2cZrQgO8LuHVoZX305-tFuQHMDi8cL9QrKk6rpmx7YaN7YBr6-h1Vk9Mb-eTFUtpJLBBvo-H0TbQXJ3NJvaI_f7jT7ju0a5idYTZwEnMgH4aQsthXobPX6t8XWo4vOfvycxAprEpvbzK9fj-zEUtfg0CVb_xE3Eg8SXMhVu2xCbtkcODyDvvYYmbgWqAaDiREnB59PubG6BO_HzD2g4-HLz-Yx0v1kglmZCkVAaR2NWBKUizYqYizJIGRl3KlDpATIYmTsWofgpAE94BiUatYKHXGSmDKHYQb26qcMuwkVJufOcBhoCU1IC1vHwFFtEqXLl8j4aLcyETs7rNI1uu49WOsldL9qAbzUs2LCsWKODgwOzVGiZea9j5qDAtdQZ4fvo8N-06kmr1KGhwkkRof_PlX6NiI_vMd5DvenDLOwD-Jjagy7cXgClnejt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.au=Dillon%2C+Sean&rft.atitle=On+Self%E2%80%90Affine+and+Self%E2%80%90Similar+Graphs+of+Fractal+Interpolation+Functions+Generated+from+Iterated+Function+Systems&rft.date=2017-01-01&rft.pub=IntechOpen&rft.isbn=9789535132134&rft_id=info:doi/10.5772%2Fintechopen.68499&rft.externalDBID=n%2Fa&rft.externalDocID=oai_biblioboard_com_762870ba_ecba_4b26_80dd_f0c825b2ca6d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9789535132134/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9789535132134/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9789535132134/sc.gif&client=summon&freeimage=true