imply : improving cell-type deconvolution accuracy using personalized reference profiles
Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that t...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory
29.09.2023
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2023.09.27.559579 |
Cover
Abstract | Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present
, a novel algorithm to deconvolute cell type proportions using personalized reference panels.
can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkinson's disease. Our proposed tool
is available through the R/Bioconductor package
at https://bioconductor.org/packages/ISLET/. |
---|---|
AbstractList | Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. imply can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkin-son’s disease. Our proposed tool imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/. Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. imply can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkinson's disease. Our proposed tool imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/.Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present imply, a novel algorithm to deconvolute cell type proportions using personalized reference panels. imply can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkinson's disease. Our proposed tool imply is available through the R/Bioconductor package ISLET at https://bioconductor.org/packages/ISLET/. Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be deconvoluted to solve for the abundance of constituent cell types. However, existing deconvolution methods are conditioned on the assumption that the whole study population is served by a single reference panel, which ignores person-to-person heterogeneity. Here we present , a novel algorithm to deconvolute cell type proportions using personalized reference panels. can borrow information across repeatedly measured samples for each subject, and obtain precise cell type proportion estimations. Simulation studies demonstrate reduced bias in cell type abundance estimation compared with existing methods. Real data analyses on large longitudinal consortia show more realistic deconvolution results that align with biological facts. Our results suggest that disparities in cell type proportions are associated with several disease phenotypes in type 1 diabetes and Parkinson's disease. Our proposed tool is available through the R/Bioconductor package at https://bioconductor.org/packages/ISLET/. |
Author | Li, Qian Schumacher, Fredrick R Pan, Yue Feng, Hao Tang, Wen Cui, Ying Zhang, Lijun He, Sijia Meng, Guanqun Wang, Ming Wang, Rui Krischer, Jeffrey |
Author_xml | – sequence: 1 givenname: Guanqun surname: Meng fullname: Meng, Guanqun organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA – sequence: 2 givenname: Yue surname: Pan fullname: Pan, Yue organization: Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA – sequence: 3 givenname: Wen surname: Tang fullname: Tang, Wen organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA – sequence: 4 givenname: Lijun surname: Zhang fullname: Zhang, Lijun organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA – sequence: 5 givenname: Ying surname: Cui fullname: Cui, Ying organization: Department of Biomedical Data Science, Stanford University, Stanford, 94305, CA, USA – sequence: 6 givenname: Fredrick R surname: Schumacher fullname: Schumacher, Fredrick R organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA – sequence: 7 givenname: Ming surname: Wang fullname: Wang, Ming organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA – sequence: 8 givenname: Rui surname: Wang fullname: Wang, Rui organization: Department of Surgery, Division of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, 44106, OH, USA – sequence: 9 givenname: Sijia surname: He fullname: He, Sijia organization: Department of Biostatistics, University of Michigan, Ann Arbor, 48109, MI, USA – sequence: 10 givenname: Jeffrey surname: Krischer fullname: Krischer, Jeffrey organization: Health Informatics Institute, University of South Florida, Tampa, 38105, FL, USA – sequence: 11 givenname: Qian surname: Li fullname: Li, Qian organization: Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, 38105, TN, USA – sequence: 12 givenname: Hao orcidid: 0000-0003-2243-9949 surname: Feng fullname: Feng, Hao organization: Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, 44106, OH, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37808714$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kD1PwzAQhi1UREvpD2BBGVkS_BHHDhuq-JIqsXRgsxzngoxcJ8RNIfx6ErVUTEx3w_O-p3vO0cTXHhC6JDghBJMbiilLcJ5QkXCec5GfoBnNchpLivnkzz5FixDeMcY0zwgT6RmaMiGxFCSdoVe7aVwf3UbDbOud9W-RAefibd9AVIKp_a523dbWPtLGdK02fdSFEWugDbXXzn5DGbVQQQveQDS0VNZBuECnlXYBFoc5R-uH-_XyKV69PD4v71ZxQaTMY5MOR7jAlJAy00LgSjJuuJSsSEVaSi15IUBAxdK84ESXWVZSrjGnZSFNxuaI7ms73-j-UzunmtZudNsrgtUoSo2iFM4VFWovaghd70OFrdsvuztG_kGHvz46CFu1sWE0pD3UXVBUilQymdERvTqgXbGB8lj6K5v9APqIgQg |
ContentType | Journal Article Paper |
Copyright | 2023, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2023, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. UNPAY |
DOI | 10.1101/2023.09.27.559579 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv Unpaywall |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 10.1101/2023.09.27.559579 2023.09.27.559579v1 37808714 |
Genre | Preprint |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA021765 – fundername: NIDDK NIH HHS grantid: U24 DK097771 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI 7X8 PUEGO FX. UNPAY |
ID | FETCH-LOGICAL-b1889-c4dec570211d6a770f835c5883b474d8a85b7e7ef349b51ad66d25a052db8c63 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Thu Aug 28 10:59:50 EDT 2025 Tue Jan 07 19:00:21 EST 2025 Thu Sep 04 19:46:34 EDT 2025 Mon Jul 21 06:02:27 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 cc-by-nc-nd |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1889-c4dec570211d6a770f835c5883b474d8a85b7e7ef349b51ad66d25a052db8c63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Working Paper/Pre-Print-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0003-2243-9949 0000-0001-5794-7201 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2023.09.27.559579 |
PMID | 37808714 |
PQID | 2874838629 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | unpaywall_primary_10_1101_2023_09_27_559579 biorxiv_primary_2023_09_27_559579 proquest_miscellaneous_2874838629 pubmed_primary_37808714 |
PublicationCentury | 2000 |
PublicationDate | 2023-Sep-29 20230929 |
PublicationDateYYYYMMDD | 2023-09-29 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-Sep-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2023 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | 38685057 - Genome Med. 2024 Apr 29;16(1):65. doi: 10.1186/s13073-024-01338-z Newman, Steen, Liu, Gentles, Chaudhuri, Scherer, Khodadoust, Esfahani, Luca, Steiner (2023.09.27.559579v1.45) 2019; 37 Di Biase, Geaghan, Reay, Seidlitz, Weickert, Pébay, Green, Quidé, Atkins, Coleman (2023.09.27.559579v1.15) 2022; 27 Wang, Yao, Luo, Zhou, Jin, Xu, Yan, Li, Xu, Cheng (2023.09.27.559579v1.54) 2021; 7 de Oliveira, Chaves, Cardoso, Pinheiro, Antunes, de Faria Grossi, Lyon, Bueno, da Costa Rocha, da Silva Menezes (2023.09.27.559579v1.14) 2022; 24 Gong, Szustakowski (2023.09.27.559579v1.25) 2013; 29 Huang, Cai, Lu, McKennan, Wang (2023.09.27.559579v1.26) 2023 Qiao, Quon, Csaszar, Yu, Morris, Zandstra (2023.09.27.559579v1.46) 2012; 8 Zhong, Wan, Pang, Chow, Liu (2023.09.27.559579v1.58) 2013; 14 Lawrence, Lin (2023.09.27.559579v1.31) 1989 Nabekura, Chen, Schroeder, Park, Vivier, Lanier, Liu (2023.09.27.559579v1.43) 2018; 200 Vehik, Lynch, Wong, Tian, Ross, Gibbs, Ajami, Petrosino, Rewers, Toppari (2023.09.27.559579v1.53) 2019; 25 Galiano-Landeira, Torra, Vila, Bove (2023.09.27.559579v1.20) 2020; 143 Feng, Meng, Lin, Parikh, Pan, Li, Krischer, Li (2023.09.27.559579v1.17) 2023; 24 Wu, Wang, Wu (2023.09.27.559579v1.56) 2015; 31 Moschopoulos (2023.09.27.559579v1.42) 1985; 37 Li, Liu, Yang, Erlund, Lernmark, Hagopian, Rewers, She, Toppari, Ziegler (2023.09.27.559579v1.34) 2021; 70 Liu (2023.09.27.559579v1.37) 2014; 92 Markle, Frank, Mortin-Toth, Robertson, Feazel, Rolle-Kampczyk, Von Bergen, McCoy, Macpherson, Danska (2023.09.27.559579v1.39) 2013; 339 Lowry, Guo, Zhang, Fantacone, Logan, Campbell, Zhang, Le, Indra, Ganguli-Indra (2023.09.27.559579v1.38) 2020; 198 Clarke, Seo, Clarke (2023.09.27.559579v1.12) 2010; 26 Gombart, Saito, Koeffler (2023.09.27.559579v1.24) 2009; 10 Bates, Mächler, Bolker, Walker (2023.09.27.559579v1.8) 2014 Tsoucas, Dong, Chen, Zhu, Guo, Yuan (2023.09.27.559579v1.52) 2019; 10 Sutton, Poppe, Simmons, Walsh, Nawaz, Lister, Gagnon-Bartsch, Voineagu (2023.09.27.559579v1.50) 2022; 13 Rahmani, Schweiger, Rhead, Criswell, Barcellos, Eskin, Rosset, Sankararaman, Halperin (2023.09.27.559579v1.47) 2019; 10 Avila Cobos, Vandesompele, Mestdagh, De Preter (2023.09.27.559579v1.5) 2018; 34 Kedlian, Donertas, Thornton (2023.09.27.559579v1.28) 2019; 11 Dong, Thennavan, Urrutia, Li, Perou, Zou, Jiang (2023.09.27.559579v1.16) 2021; 22 Schölkopf, Smola, Williamson, Bartlett (2023.09.27.559579v1.48) 2000; 12 Lawson, Hanson (2023.09.27.559579v1.32) 1974 Ghaffari, Bouchonville, Saleh, Schmidt, Offer, Sinha (2023.09.27.559579v1.22) 2023; 24 Modlich, Prisack, Munnes, Audretsch, Bojar (2023.09.27.559579v1.41) 2004; 10 Aran, Hu, Butte (2023.09.27.559579v1.4) 2017; 18 Kuhn, Thu, Waldvogel, Faull, Luthi-Carter (2023.09.27.559579v1.29) 2011; 8 Avila Cobos, Alquicira-Hernandez, Powell, Mestdagh, De Preter (2023.09.27.559579v1.6) 2020; 11 Linsley, Speake, Whalen, Chaussabel (2023.09.27.559579v1.36) 2014; 9 Li, Wu, Jin, Wu (2023.09.27.559579v1.35) 2019; 35 Xhonneux, Knight, Lernmark, Bonifacio, Hagopian, Rewers, She, Toppari, Parikh, Smith (2023.09.27.559579v1.57) 2021; 13 Wang, Park, Susztak, Zhang, Li (2023.09.27.559579v1.55) 2019; 10 Gaujoux, Seoighe (2023.09.27.559579v1.21) 2012; 12 Kuhn, Kumar, Beilina, Dillman, Cookson, Singleton (2023.09.27.559579v1.30) 2012; 13 Çalişkan, Baker, Gilad, Ober (2023.09.27.559579v1.9) 2015; 11 Newman, Liu, Green, Gentles, Feng, Xu, Hoang, Diehn, Alizadeh (2023.09.27.559579v1.44) 2015; 12 Troester, Hoadley, Sørlie, Herbert, Børresen-Dale, Lønning, Shay, Kaufmann, Perou (2023.09.27.559579v1.51) 2004; 64 Aguirre-Gamboa, Joosten, Urbano, van der Molen, van Rijssen, van Cranenbroek, Oosting, Smeekens, Jaeger, Zorro (2023.09.27.559579v1.1) 2016; 17 Idaghdour, Czika, Shianna, Lee, Visscher, Martin, Miclaus, Jadallah, Goldstein, Wolfinger (2023.09.27.559579v1.27) 2010; 42 Finotello, Trajanoski (2023.09.27.559579v1.19) 2018; 67 Lawson, Hanson (2023.09.27.559579v1.33) 1995 Findley, Monziani, Richards, Rhodes, Ward, Kalita, Alazizi, Pazokitoroudi, Sankararaman, Wen (2023.09.27.559579v1.18) 2021; 10 Meng, Tang, Huang, Li, Feng (2023.09.27.559579v1.40) 2023; 24 Shen-Orr, Tibshirani, Khatri, Bodian, Staedtler, Perry, Hastie, Sarwal, Davis, Butte (2023.09.27.559579v1.49) 2010; 7 Chiu, Hsieh, Huang (2023.09.27.559579v1.11) 2019; 12 Cui, Peng, Hu, Lai (2023.09.27.559579v1.13) 2021; 70 Baba, Kuroiwa, Uitti, Wszolek, Yamada (2023.09.27.559579v1.7) 2005; 11 Aitchison, Barceló-Vidal, Martín-Fernández, Pawlowsky-Glahn (2023.09.27.559579v1.2) 2000; 32 Aliee, Theis (2023.09.27.559579v1.3) 2021; 12 Gibson (2023.09.27.559579v1.23) 2008; 9 Cheng, Li, Riggan, Chen, Tafti, Chin, Ma, Pellegrini, Hrncir, Arnold (2023.09.27.559579v1.10) 2023 |
References_xml | – reference: 38685057 - Genome Med. 2024 Apr 29;16(1):65. doi: 10.1186/s13073-024-01338-z – volume: 11 start-page: 2253 issue: 8 year: 2019 ident: 2023.09.27.559579v1.28 article-title: The widespread increase in inter-individual variability of gene expression in the human brain with age publication-title: Aging (Albany NY) – volume: 13 start-page: 1 year: 2012 end-page: 15 ident: 2023.09.27.559579v1.30 article-title: Cell population-specific expression analysis of human cerebellum publication-title: BMC genomics – volume: 31 start-page: 233 issue: 2 year: 2015 end-page: 241 ident: 2023.09.27.559579v1.56 article-title: Proper: comprehensive power evaluation for differential expression using rna-seq publication-title: Bioinformatics – volume: 32 start-page: 271 year: 2000 end-page: 275 ident: 2023.09.27.559579v1.2 article-title: Logratio analysis and compositional distance publication-title: Mathematical geology – year: 1995 ident: 2023.09.27.559579v1.33 publication-title: Solving least squares problems. SIAM – volume: 37 start-page: 541 issue: 1 year: 1985 end-page: 544 ident: 2023.09.27.559579v1.42 article-title: The distribution of the sum of independent gamma random variables publication-title: Annals of the Institute of Statistical Mathematics – volume: 27 start-page: 2052 issue: 4 year: 2022 end-page: 2060 ident: 2023.09.27.559579v1.15 article-title: Cell type-specific manifestations of cortical thickness heterogeneity in schizophrenia publication-title: Molecular psychiatry – volume: 198 start-page: 105552 year: 2020 ident: 2023.09.27.559579v1.38 article-title: A mouse model for vitamin dinduced human cathelicidin antimicrobial peptide gene expression publication-title: The Journal of steroid biochemistry and molecular biology – start-page: 263 year: 1974 ident: 2023.09.27.559579v1.32 publication-title: Solving least squares problems. prentice-hall inc., englewood cliffs, new jersey – volume: 11 start-page: e1005111 issue: 4 year: 2015 ident: 2023.09.27.559579v1.9 article-title: Host genetic variation influences gene expression response to rhinovirus infection publication-title: PLoS genetics – volume: 24 start-page: 1 issue: 1 year: 2023 end-page: 30 ident: 2023.09.27.559579v1.22 article-title: Bedwars: a robust bayesian approach to bulk gene expression deconvolution with noisy reference signatures publication-title: Genome Biology – volume: 34 start-page: 1969 issue: 11 year: 2018 end-page: 1979 ident: 2023.09.27.559579v1.5 article-title: Computational deconvolution of transcriptomics data from mixed cell populations publication-title: Bioinformatics – volume: 14 start-page: 1 issue: 1 year: 2013 end-page: 10 ident: 2023.09.27.559579v1.58 article-title: Digital sorting of complex tissues for cell type-specific gene expression profiles publication-title: BMC bioinformatics – volume: 42 start-page: 62 issue: 1 year: 2010 end-page: 67 ident: 2023.09.27.559579v1.27 article-title: Geographical genomics of human leukocyte gene expression variation in southern morocco publication-title: Nature genetics – volume: 17 start-page: 2474 issue: 9 year: 2016 end-page: 2487 ident: 2023.09.27.559579v1.1 article-title: Differential effects of environmental and genetic factors on t and b cell immune traits publication-title: Cell reports – volume: 22 start-page: 416 issue: 1 year: 2021 end-page: 427 ident: 2023.09.27.559579v1.16 article-title: Scdc: bulk gene expression deconvolution by multiple single-cell rna sequencing references publication-title: Briefings in bioinformatics – volume: 24 start-page: 174 issue: 1 year: 2023 ident: 2023.09.27.559579v1.17 article-title: Islet: individual-specific reference panel recovery improves cell-type-specific inference publication-title: Genome Biology – volume: 11 start-page: 493 issue: 8 year: 2005 end-page: 498 ident: 2023.09.27.559579v1.7 article-title: Alterations of t-lymphocyte populations in parkinson disease publication-title: Parkinsonism & related disorders – volume: 143 start-page: 3717 issue: 12 year: 2020 end-page: 3733 ident: 2023.09.27.559579v1.20 article-title: Cd8 t cell nigral infiltration precedes synucleinopathy in early stages of parkinson’s disease publication-title: Brain – volume: 13 start-page: eabd5666 issue: 587 year: 2021 ident: 2023.09.27.559579v1.57 article-title: Transcriptional networks in at-risk individuals identify signatures of type 1 diabetes progression publication-title: Science translational medicine – volume: 18 start-page: 1 year: 2017 end-page: 14 ident: 2023.09.27.559579v1.4 article-title: xcell: digitally portraying the tissue cellular heterogeneity landscape publication-title: Genome biology – volume: 12 start-page: 706 issue: 7 year: 2021 end-page: 715 ident: 2023.09.27.559579v1.3 article-title: Autogenes: automatic gene selection using multi-objective optimization for rna-seq deconvolution publication-title: Cell Systems – volume: 37 start-page: 773 issue: 7 year: 2019 end-page: 782 ident: 2023.09.27.559579v1.45 article-title: Determining cell type abundance and expression from bulk tissues with digital cytometry publication-title: Nature biotechnology – volume: 8 start-page: e1002838 issue: 12 year: 2012 ident: 2023.09.27.559579v1.46 article-title: Pert: a method for expression deconvolution of human blood samples from varied microenviron-mental and developmental conditions publication-title: PLoS computational biology – volume: 11 start-page: 5650 issue: 1 year: 2020 ident: 2023.09.27.559579v1.6 article-title: Benchmarking of cell type deconvolution pipelines for transcriptomics data publication-title: Nature communications – volume: 10 start-page: 1 issue: 1 year: 2009 end-page: 11 ident: 2023.09.27.559579v1.24 article-title: Exaptation of an ancient alu short interspersed element provides a highly conserved vitamin d-mediated innate immune response in humans and primates publication-title: BMC genomics – start-page: 255 year: 1989 end-page: 268 ident: 2023.09.27.559579v1.31 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 13 start-page: 1358 issue: 1 year: 2022 ident: 2023.09.27.559579v1.50 article-title: Comprehensive evaluation of deconvolution methods for human brain gene expression publication-title: Nature Communications – volume: 10 start-page: 6418 issue: 19 year: 2004 end-page: 6431 ident: 2023.09.27.559579v1.41 article-title: Immediate gene expression changes after the first course of neoadjuvant chemotherapy in patients with primary breast cancer disease publication-title: Clinical cancer research – volume: 200 start-page: 3420 issue: 10 year: 2018 end-page: 3428 ident: 2023.09.27.559579v1.43 article-title: Crk adaptor proteins regulate nk cell expansion and differentiation during mouse cytomegalovirus infection publication-title: The Journal of Immunology – volume: 7 start-page: 287 issue: 4 year: 2010 end-page: 289 ident: 2023.09.27.559579v1.49 article-title: Cell type–specific gene expression differences in complex tissues publication-title: Nature methods – volume: 67 start-page: 1031 issue: 7 year: 2018 end-page: 1040 ident: 2023.09.27.559579v1.19 article-title: Quantifying tumor-infiltrating immune cells from transcriptomics data publication-title: Cancer Immunology, Immunotherapy – volume: 10 start-page: 3417 issue: 1 year: 2019 ident: 2023.09.27.559579v1.47 article-title: Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology publication-title: Nature communications – volume: 24 start-page: 104981 issue: 6-7 year: 2022 ident: 2023.09.27.559579v1.14 article-title: Reduced vitamin d receptor (vdr) and cathelicidin antimicrobial peptide (camp) gene expression contribute to the maintenance of inflammatory immune response in leprosy patients publication-title: Microbes and Infection – start-page: 1 year: 2023 end-page: 12 ident: 2023.09.27.559579v1.10 article-title: The x-linked epigenetic regulator utx controls nk cell-intrinsic sex differences publication-title: Nature Immunology – volume: 24 start-page: bbac516 issue: 1 year: 2023 ident: 2023.09.27.559579v1.40 article-title: A comprehensive assessment of cell type-specific differential expression methods in bulk data publication-title: Briefings in bioinformatics – volume: 26 start-page: 1043 issue: 8 year: 2010 end-page: 1049 ident: 2023.09.27.559579v1.12 article-title: Statistical expression deconvolution from mixed tissue samples publication-title: Bioinformatics – volume: 35 start-page: 3898 issue: 20 year: 2019 end-page: 3905 ident: 2023.09.27.559579v1.35 article-title: Dissecting differential signals in high-throughput data from complex tissues publication-title: Bioinformatics – volume: 70 start-page: 282 issue: 1 year: 2021 end-page: 292 ident: 2023.09.27.559579v1.34 article-title: Plasma metabolome and circulating vitamins stratified onset age of an initial islet autoantibody and progression to type 1 diabetes: the teddy study publication-title: Diabetes – volume: 10 start-page: 380 issue: 1 year: 2019 ident: 2023.09.27.559579v1.55 article-title: Bulk tissue cell type deconvolution with multi-subject single-cell expression reference publication-title: Nature communications – volume: 8 start-page: 945 issue: 11 year: 2011 end-page: 947 ident: 2023.09.27.559579v1.29 article-title: Populationspecific expression analysis (psea) reveals molecular changes in diseased brain publication-title: Nature methods – volume: 9 start-page: e109760 issue: 10 year: 2014 ident: 2023.09.27.559579v1.36 article-title: Copy number loss of the interferon gene cluster in melanomas is linked to reduced t cell infiltrate and poor patient prognosis publication-title: PloS one – volume: 12 start-page: 1 year: 2019 end-page: 17 ident: 2023.09.27.559579v1.11 article-title: Improved cell composition deconvolution method of bulk gene expression profiles to quantify subsets of immune cells publication-title: BMC medical genomics – volume: 12 start-page: 453 issue: 5 year: 2015 end-page: 457 ident: 2023.09.27.559579v1.44 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nature methods – volume: 70 start-page: 1027 issue: 4 year: 2021 end-page: 1048 ident: 2023.09.27.559579v1.13 article-title: Assessing the reproducibility of microbiome measurements based on concordance correlation coefficients publication-title: Journal of the Royal Statistical Society Series C: Applied Statistics – volume: 9 start-page: 575 issue: 8 year: 2008 end-page: 581 ident: 2023.09.27.559579v1.23 article-title: The environmental contribution to gene expression profiles publication-title: Nature reviews genetics – volume: 12 start-page: 1207 issue: 5 year: 2000 end-page: 1245 ident: 2023.09.27.559579v1.48 article-title: New support vector algorithms publication-title: Neural computation – volume: 339 start-page: 1084 issue: 6123 year: 2013 end-page: 1088 ident: 2023.09.27.559579v1.39 article-title: Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity publication-title: Science – start-page: 2023 year: 2023 end-page: 03 ident: 2023.09.27.559579v1.26 article-title: Accurate estimation of rare cell type fractions from tissue omics data via hierarchical deconvolution publication-title: bioRxiv – volume: 25 start-page: 1865 issue: 12 year: 2019 end-page: 1872 ident: 2023.09.27.559579v1.53 article-title: Prospective virome analyses in young children at increased genetic risk for type 1 diabetes publication-title: Nature medicine – volume: 64 start-page: 4218 issue: 12 year: 2004 end-page: 4226 ident: 2023.09.27.559579v1.51 article-title: Cell-type-specific responses to chemotherapeutics in breast cancer publication-title: Cancer research – volume: 10 start-page: e67077 year: 2021 ident: 2023.09.27.559579v1.18 article-title: Functional dynamic genetic effects on gene regulation are specific to particular cell types and environmental conditions publication-title: Elife – volume: 10 start-page: 2975 issue: 1 year: 2019 ident: 2023.09.27.559579v1.52 article-title: Accurate estimation of cell-type composition from gene expression data publication-title: Nature communications – volume: 12 start-page: 913 issue: 5 year: 2012 end-page: 921 ident: 2023.09.27.559579v1.21 article-title: Semi-supervised nonnegative matrix factorization for gene expression deconvolution: a case study publication-title: Infection, Genetics and Evolution – volume: 92 start-page: 80 issue: 1 year: 2014 end-page: 89 ident: 2023.09.27.559579v1.37 article-title: The adaptor protein crk in immune response publication-title: Immunology and cell biology – year: 2014 ident: 2023.09.27.559579v1.8 article-title: Fitting linear mixed-effects models using lme4 publication-title: arXiv preprint – volume: 29 start-page: 1083 issue: 8 year: 2013 end-page: 1085 ident: 2023.09.27.559579v1.25 article-title: Deconrnaseq: a statistical framework for deconvolution of heterogeneous tissue samples based on mrna-seq data publication-title: Bioinformatics – volume: 7 start-page: 52 issue: 1 year: 2021 ident: 2023.09.27.559579v1.54 article-title: Single-cell transcriptome and tcr profiling reveal activated and expanded t cell populations in parkinson’s disease publication-title: Cell Discovery |
SSID | ssj0002961374 |
Score | 1.8504496 |
SecondaryResourceType | preprint |
Snippet | Real-world clinical samples are often admixtures of signal mosaics from multiple pure cell types. Using computational tools, bulk transcriptomics can be... |
SourceID | unpaywall biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Bioinformatics |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELbY9oD2wEO8BchI3FZJk9ixHW4IgRASFQfQwinyK6tqSxq1DVB-PePErRBwQeKWh-OJPZP4m4dnEDoWieSCZc3mGBVQqWQgge-BkpLGWlgWN1GV1312eUev7tN7v7Nu4sMq1WA0fhk8NX58F7ANf9-ev9azLu2v09hJL8p6SdYcukylCQ8BHKc8C53dOqxM8Qt1mfM6dVD3rn9z-uB9miCDnx8C9OspfIU0f6Pluqzk7FkOh-9Wn4tVNJ2_dxt08j-spyrUrx9SOv7wwNbQiker-LQVr3W0ZMsN9HfwWA1nJ3gwt0dgZ_0PnDEXG6dfP3lxxlLreiz1DLvo-n-4mgP_V2vwor4J9mXDJ5vo9uL89uwy8PUZAhW74ChNodOUA0qIDZOcRwXAOZ0KQRTl1AgpUsUttwWhmUpjaRgzSSqjNDFKaEa2UKcclXYHYaNJVmhCpBWAIGkhNGg5cCqYKZQVdBcd-XnKqzYJR-6mJ4-yPOF5Oz3QZs64HD4RN3JZ2lE9yV1Kf0FAdYM22y1HF90QLiLQGYHCnwWLFzcbBSmKP9Pa-1brfdSZjmt7AOhlqg69NL4BjFfuyg priority: 102 providerName: Unpaywall |
Title | imply : improving cell-type deconvolution accuracy using personalized reference profiles |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37808714 https://www.proquest.com/docview/2874838629 https://www.biorxiv.org/content/10.1101/2023.09.27.559579 https://www.biorxiv.org/content/biorxiv/early/2023/09/29/2023.09.27.559579.full.pdf |
UnpaywallVersion | acceptedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2692-8205 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: BENPR dateStart: 20131107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA_qEPXJ72-J4JtU2iZtUt9UHCI4hijOp3L5qAxmVzanzr_eS9sVQR98TJvm0uu1-d3l1ztCTmQIQsZJ-XOM8jgo8ACfu6cAeKCljYOSVXnXiW8e-W0v6v0o9eVolao_HH3238t9fEfYxq9v9XL7gfPVmUtMGoozxMKRSOZJC02MOzZXu3fWhFfCBNcpwet9zD-vRMRbS_oLXa6QpUlewPQDBoMfK057lbS6UNjRGpmz-TpZrEpGTjfIU_-1GEzPaX8WDKAu9O65SCo1zrl9r22JgtaTEegpddT2F1rMUPeXNbQpLkLrmt3jTfLQvn64uvHq4gieChwzSXMcNBK4RAcmBiH8DLGUjqRkigtuJMhICStsxniiogBMHJswAj8KjZI6ZltkIR_mdodQo1mSacbASoRvPJMaXQxsythkykq-S45rPaVFlQEjdbpM_SQNRVrpEvvMNJiifbo7h9wOJ-PU5dOXDP0m7LNdqbYZhgnpo8OGEk4bXTcnS-_ED37L2vvHfPbJsjvmiB1hckAW3kYTe4jo4U0dkdbldad7f1TaC7YeO92L528H3cGc |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT4NAEN74iFFPvt-6Jt4MDbALu3g1NvUZDzX2RmYfmCaVktaq9dc7C5SY6MEj2WUHhoH55tthhpAzGYKQcVL-HKM8Dgo8wOfuKQAeaGnjoMyqvH-IO0_8phf1asJtXKdVqv5w9Nl_L_fxXcI2fn2rl9sPXKzOXGHSULQQC0ciaTmaep4sop1xZ-HtXqvhWMIEnZXg9Wbmn6cj7K3F_QUxV8nyJC9g-gGDwQ-3014ji49Q2NE6mbP5Blmq-kZON8lz_7UYTC9of8YIUMe_e45OpcZFuO-1QVHQejICPaUuv_2FFjPo_WUNbTqM0Lpx93iLdNtX3cuOV3dI8FTg0pM0x0UjgX46MDEI4WcIqHQkJVNccCNBRkpYYTPGExUFYOLYhBH4UWiU1DHbJgv5MLe7hBrNkkwzBlYihuOZ1Bhn4KGMTaas5HvktNZTWlRlMFKny9RP0lCklS5xzkyDKRqpu3PI7XAyTl1RfckweMI5O5Vqm2WYkD5GbSjhvNF1M1iGKH7wW9b-P67nhCx3uvd36d31w-0BWXHjLtMjTA7JwttoYo8QTryp49JmvgH1A8Mg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI54iNeJ9xuCxA11apu0SbkCE29xALFb5TyKJo2u2hgwfj1O21VIcOBYJbJb122-z3FsQo5lCELGSXk4RnkcFHiA791TADzQ0sZBmVV5dx9fPvHrTtT5cRbGpVWqbn_w2X0v9_Fdwjb-fauP2w8cV2euMGkoWoiFI5G0XJi6VZhsmsyir3FHwNqdVhNnCRNcsASvNzT_FIHQt1b5F8xcIgujvIDxB_R6P5ae9jKZfYDCDlbIlM1XyVzVO3K8Rp67r0VvfEq7k6gAdTF4z4VUqXEs9712Kgpajwagx9TluL_QYgK_v6yhTZcRWjfvHq6Tx_bF49mlV3dJ8FTgUpQ0R6GRwLU6MDEI4WcIqnQkJVNccCNBRkpYYTPGExUFYOLYhBH4UWiU1DHbIDN5P7dbhBrNkkwzBlYijuOZ1Mg18FLGJlNW8m1yVNspLapSGKmzZeonaSjSypY4Z2LBFB3VPTnktj8apq6wvmRIoHDOZmXaRgwT0kfmhhpOGls3gyVN8YPfunb-cT-HZP7hvJ3eXt3f7JJFN-ySPcJkj8y8DUZ2HxHFmzooXeYb5ZTEMQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT-MwELbY9oD2wEO8BchI3FZJk9ixHW4IgRASFQfQwinyK6tqSxq1DVB-PePErRBwQeKWh-OJPZP4m4dnEDoWieSCZc3mGBVQqWQgge-BkpLGWlgWN1GV1312eUev7tN7v7Nu4sMq1WA0fhk8NX58F7ANf9-ev9azLu2v09hJL8p6SdYcukylCQ8BHKc8C53dOqxM8Qt1mfM6dVD3rn9z-uB9miCDnx8C9OspfIU0f6Pluqzk7FkOh-9Wn4tVNJ2_dxt08j-spyrUrx9SOv7wwNbQiker-LQVr3W0ZMsN9HfwWA1nJ3gwt0dgZ_0PnDEXG6dfP3lxxlLreiz1DLvo-n-4mgP_V2vwor4J9mXDJ5vo9uL89uwy8PUZAhW74ChNodOUA0qIDZOcRwXAOZ0KQRTl1AgpUsUttwWhmUpjaRgzSSqjNDFKaEa2UKcclXYHYaNJVmhCpBWAIGkhNGg5cCqYKZQVdBcd-XnKqzYJR-6mJ4-yPOF5Oz3QZs64HD4RN3JZ2lE9yV1Kf0FAdYM22y1HF90QLiLQGYHCnwWLFzcbBSmKP9Pa-1brfdSZjmt7AOhlqg69NL4BjFfuyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=imply%3A+improving+cell-type+deconvolution+accuracy+using+personalized+reference+profiles&rft.jtitle=bioRxiv&rft.au=Meng%2C+Guanqun&rft.au=Pan%2C+Yue&rft.au=Tang%2C+Wen&rft.au=Zhang%2C+Lijun&rft.date=2023-09-29&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.09.27.559579&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |