Recognizing EEG responses to active TMS vs. sham stimulations in different TMS-EEG datasets: a machine learning approach

Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical neurons. However, TMS-evoked EEG potentials (TEPs) can be affected by components unrelated to TMS direct neuronal activation. Accurate, automatic to...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Keihani, Ahmadreza, Donati, Francesco L, Russo, Simone, Parmigiani, Sara, Solbiati, Michela, Casali, Adenauer G, Fecchio, Matteo, Chaichian, Omeed, Rothwell, John, Massimini, Marcello, Rocchi, Lorenzo, Rosanova, Mario, Ferrarelli, Fabio
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory 04.07.2025
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2025.06.29.662189

Cover

Abstract Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical neurons. However, TMS-evoked EEG potentials (TEPs) can be affected by components unrelated to TMS direct neuronal activation. Accurate, automatic tools are therefore needed to establish the quality of TEPs. To assess the discriminability of EEG responses to TMS vs. EEG responses to sham stimulations using sequence-to-sequence machine learning (ML). Two indipendent TMS-EEG datasets including TMS and several sham stimulation conditions were obtained from the left motor area of healthy volunteers (N=33 across datasets). A Bi-directional Long Short-Term Memory (BiLSTM) ML network was used to label each time point of the EEG signals as pertaining to TMS or sham conditions. Main outcome measures included accuracy at single-trial level and after averaging five to twenty trials. For TMS conditions, post-stimulus vs. baseline/pre-stimulus EEG comparisons yielded moderate (60%-75%) single-trial accuracy and high-accuracy (>75%) for 20 trials across datasets, while for sham conditions post- vs. baseline/pre-stimulus EEG comparisons yielded lower accuracy rates than for TMS conditions, except for unmasked auditory stimulation. Furthermore, baseline/pre-stimulus TMS vs. baseline/pre-stimulus sham EEG comparisons showed chance-level accuracy, whereas post-stimulus TMS vs. post-stimulus sham EEG comparisons had moderate (single trial) to high (20 trial) accuracy, except for TMS with and without the click noise masking. Single-subject findings were comparable to group-level results across datasets. TEPs after active TMS are discernible from various sham stimulations even after a handful of trials and at the single-subject level using a BiLSTM ML approach.
AbstractList Background: Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical neurons. However, TMS-evoked EEG potentials (TEPs) can be affected by components unrelated to TMS direct neuronal activation. Accurate, automatic tools are therefore needed to establish the quality of TEPs. Objective: To assess the discriminability of EEG responses to TMS vs. EEG responses to sham stimulations using sequence-to-sequence machine learning (ML). Methods: Two indipendent TMS-EEG datasets including TMS and several sham stimulation conditions were obtained from the left motor area of healthy volunteers (N=33 across datasets). A Bi-directional Long Short-Term Memory (BiLSTM) ML network was used to label each time point of the EEG signals as pertaining to TMS or sham conditions. Main outcome measures included accuracy at single-trial level and after averaging five to twenty trials. Results: For TMS conditions, post-stimulus vs. baseline/pre-stimulus EEG comparisons yielded moderate (60%-75%) single-trial accuracy and high-accuracy (>75%) for 20 trials across datasets, while for sham conditions post- vs. baseline/pre-stimulus EEG comparisons yielded lower accuracy rates than for TMS conditions, except for unmasked auditory stimulation. Furthermore, baseline/pre-stimulus TMS vs. baseline/pre-stimulus sham EEG comparisons showed chance-level accuracy, whereas post-stimulus TMS vs. post-stimulus sham EEG comparisons had moderate (single trial) to high (20 trial) accuracy, except for TMS with and without the click noise masking. Single-subject findings were comparable to group-level results across datasets. Conclusions: TEPs after active TMS are discernible from various sham stimulations even after a handful of trials and at the single-subject level using a BiLSTM ML approach.
Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical neurons. However, TMS-evoked EEG potentials (TEPs) can be affected by components unrelated to TMS direct neuronal activation. Accurate, automatic tools are therefore needed to establish the quality of TEPs. To assess the discriminability of EEG responses to TMS vs. EEG responses to sham stimulations using sequence-to-sequence machine learning (ML). Two indipendent TMS-EEG datasets including TMS and several sham stimulation conditions were obtained from the left motor area of healthy volunteers (N=33 across datasets). A Bi-directional Long Short-Term Memory (BiLSTM) ML network was used to label each time point of the EEG signals as pertaining to TMS or sham conditions. Main outcome measures included accuracy at single-trial level and after averaging five to twenty trials. For TMS conditions, post-stimulus vs. baseline/pre-stimulus EEG comparisons yielded moderate (60%-75%) single-trial accuracy and high-accuracy (>75%) for 20 trials across datasets, while for sham conditions post- vs. baseline/pre-stimulus EEG comparisons yielded lower accuracy rates than for TMS conditions, except for unmasked auditory stimulation. Furthermore, baseline/pre-stimulus TMS vs. baseline/pre-stimulus sham EEG comparisons showed chance-level accuracy, whereas post-stimulus TMS vs. post-stimulus sham EEG comparisons had moderate (single trial) to high (20 trial) accuracy, except for TMS with and without the click noise masking. Single-subject findings were comparable to group-level results across datasets. TEPs after active TMS are discernible from various sham stimulations even after a handful of trials and at the single-subject level using a BiLSTM ML approach.
Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical neurons. However, TMS-evoked EEG potentials (TEPs) can be affected by components unrelated to TMS direct neuronal activation. Accurate, automatic tools are therefore needed to establish the quality of TEPs.BackgroundTranscranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical neurons. However, TMS-evoked EEG potentials (TEPs) can be affected by components unrelated to TMS direct neuronal activation. Accurate, automatic tools are therefore needed to establish the quality of TEPs.To assess the discriminability of EEG responses to TMS vs. EEG responses to sham stimulations using sequence-to-sequence machine learning (ML).ObjectiveTo assess the discriminability of EEG responses to TMS vs. EEG responses to sham stimulations using sequence-to-sequence machine learning (ML).Two indipendent TMS-EEG datasets including TMS and several sham stimulation conditions were obtained from the left motor area of healthy volunteers (N=33 across datasets). A Bi-directional Long Short-Term Memory (BiLSTM) ML network was used to label each time point of the EEG signals as pertaining to TMS or sham conditions. Main outcome measures included accuracy at single-trial level and after averaging five to twenty trials.MethodsTwo indipendent TMS-EEG datasets including TMS and several sham stimulation conditions were obtained from the left motor area of healthy volunteers (N=33 across datasets). A Bi-directional Long Short-Term Memory (BiLSTM) ML network was used to label each time point of the EEG signals as pertaining to TMS or sham conditions. Main outcome measures included accuracy at single-trial level and after averaging five to twenty trials.For TMS conditions, post-stimulus vs. baseline/pre-stimulus EEG comparisons yielded moderate (60%-75%) single-trial accuracy and high-accuracy (>75%) for 20 trials across datasets, while for sham conditions post- vs. baseline/pre-stimulus EEG comparisons yielded lower accuracy rates than for TMS conditions, except for unmasked auditory stimulation. Furthermore, baseline/pre-stimulus TMS vs. baseline/pre-stimulus sham EEG comparisons showed chance-level accuracy, whereas post-stimulus TMS vs. post-stimulus sham EEG comparisons had moderate (single trial) to high (20 trial) accuracy, except for TMS with and without the click noise masking. Single-subject findings were comparable to group-level results across datasets.ResultsFor TMS conditions, post-stimulus vs. baseline/pre-stimulus EEG comparisons yielded moderate (60%-75%) single-trial accuracy and high-accuracy (>75%) for 20 trials across datasets, while for sham conditions post- vs. baseline/pre-stimulus EEG comparisons yielded lower accuracy rates than for TMS conditions, except for unmasked auditory stimulation. Furthermore, baseline/pre-stimulus TMS vs. baseline/pre-stimulus sham EEG comparisons showed chance-level accuracy, whereas post-stimulus TMS vs. post-stimulus sham EEG comparisons had moderate (single trial) to high (20 trial) accuracy, except for TMS with and without the click noise masking. Single-subject findings were comparable to group-level results across datasets.TEPs after active TMS are discernible from various sham stimulations even after a handful of trials and at the single-subject level using a BiLSTM ML approach.ConclusionsTEPs after active TMS are discernible from various sham stimulations even after a handful of trials and at the single-subject level using a BiLSTM ML approach.
Author Rocchi, Lorenzo
Russo, Simone
Rosanova, Mario
Keihani, Ahmadreza
Parmigiani, Sara
Chaichian, Omeed
Solbiati, Michela
Massimini, Marcello
Ferrarelli, Fabio
Donati, Francesco L
Fecchio, Matteo
Rothwell, John
Casali, Adenauer G
Author_xml – sequence: 1
  givenname: Ahmadreza
  orcidid: 0000-0001-6278-3854
  surname: Keihani
  fullname: Keihani, Ahmadreza
– sequence: 2
  givenname: Francesco L
  surname: Donati
  fullname: Donati, Francesco L
– sequence: 3
  givenname: Simone
  surname: Russo
  fullname: Russo, Simone
– sequence: 4
  givenname: Sara
  orcidid: 0000-0001-9783-9029
  surname: Parmigiani
  fullname: Parmigiani, Sara
– sequence: 5
  givenname: Michela
  surname: Solbiati
  fullname: Solbiati, Michela
– sequence: 6
  givenname: Adenauer G
  orcidid: 0000-0001-7024-9029
  surname: Casali
  fullname: Casali, Adenauer G
– sequence: 7
  givenname: Matteo
  orcidid: 0000-0002-0347-8531
  surname: Fecchio
  fullname: Fecchio, Matteo
– sequence: 8
  givenname: Omeed
  surname: Chaichian
  fullname: Chaichian, Omeed
– sequence: 9
  givenname: John
  orcidid: 0000-0003-1367-6467
  surname: Rothwell
  fullname: Rothwell, John
– sequence: 10
  givenname: Marcello
  orcidid: 0000-0003-2271-957X
  surname: Massimini
  fullname: Massimini, Marcello
– sequence: 11
  givenname: Lorenzo
  orcidid: 0000-0003-3979-156X
  surname: Rocchi
  fullname: Rocchi, Lorenzo
– sequence: 12
  givenname: Mario
  orcidid: 0000-0002-9107-4472
  surname: Rosanova
  fullname: Rosanova, Mario
– sequence: 13
  givenname: Fabio
  orcidid: 0000-0003-0560-0227
  surname: Ferrarelli
  fullname: Ferrarelli, Fabio
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40631086$$D View this record in MEDLINE/PubMed
BookMark eNptUUtv1DAQtlARfdAfwAX5yCXBHieOwwWhailIrZDacrbGjnfXKHFCnGxbfn0dbWmLhA_jkf09PJ-PyUHogyPkHWc554x_BAZlzmQOdS4lcFW_Ikcga8gUsPLgRX9ITmP8xRiDWnJRFW_IYcGk4EzJI3J35Wy_Cf6PDxu6Wp3T0cWhD9FFOvUU7eR3jt5cXtNdzGncYkfj5Lu5xcknFPWBNn69dqML0wLLFokGJ4xuip8o0g7t1gdHW4djWDxwGMY-Hb4lr9fYRnf6uJ-Qn19XN2ffsosf59_PvlxkhitVZ2gqcGBNiapWZVmAwKJRlTRiXTdKSacsTwtMI43hFnmhOABChVaUCpk4IbDXncOA97fYtnoYfYfjveZML0nqJUnNpIZa75NMpM970jCbzjU2TTfiM7FHr_-9CX6rN_1OJ28hq7JKCh_2Csb3453fPXH_Z_YITcH8nl2cdOejdW2LwfVz1AJAlVClkqDvX77rSfTvf4oHJYSh2Q
ContentType Journal Article
Paper
Copyright 2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
5PM
UNPAY
DOI 10.1101/2025.06.29.662189
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
Unpaywall
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 10.1101/2025.06.29.662189
PMC12236757
2025.06.29.662189v1
40631086
Genre Journal Article
Preprint
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
5PM
UNPAY
ID FETCH-LOGICAL-b1889-ab72e2cb5a89855423a4d876b3f9d886e8c11112bd6bb1ca148122a27ac358a03
IEDL.DBID UNPAY
ISSN 2692-8205
IngestDate Sun Oct 26 02:48:25 EDT 2025
Tue Sep 30 17:01:45 EDT 2025
Sat Jul 05 18:00:24 EDT 2025
Fri Sep 05 15:42:24 EDT 2025
Mon Jul 21 06:01:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1889-ab72e2cb5a89855423a4d876b3f9d886e8c11112bd6bb1ca148122a27ac358a03
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0003-0560-0227
0000-0001-7024-9029
0000-0002-0347-8531
0000-0002-9107-4472
0000-0001-9783-9029
0000-0001-6278-3854
0000-0003-3979-156X
0000-0003-1367-6467
0000-0003-2271-957X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.biorxiv.org/content/biorxiv/early/2025/07/04/2025.06.29.662189.full.pdf
PMID 40631086
PQID 3228527285
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1101_2025_06_29_662189
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12236757
biorxiv_primary_2025_06_29_662189
proquest_miscellaneous_3228527285
pubmed_primary_40631086
PublicationCentury 2000
PublicationDate 20250704
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 7
  year: 2025
  text: 20250704
  day: 4
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
SSID ssj0002961374
Score 1.9168544
SecondaryResourceType preprint
Snippet Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of cortical...
Background: Transcranial Magnetic Stimulation (TMS) with simultaneous Electroencephalogram (TMS-EEG) allows assessing the neurophysiological properties of...
SourceID unpaywall
pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Neuroscience
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwELYWqhXc2AdQYJGR9rZK1dh52FxRC0JitWKp1Fs0dh2o1KZVk_L69cwkaVRUDlyiKLGTeGzPw_4yH2O_LdpRMzLouZlUeoGMAadUAJ6IdKroH-YAaL3j5m90NQiuh-FwjeqLYJVmPFs8jx_LfXwCbKP2rSZ316dYPaSEm0J3ogjNk95irRhNPKG5-sNOs7wiNNqpOKj3MT-siR5v_aaPvMtNkOTOMpvDyxNMJmsWqL_HWv9g7hbf2BeXfWdfKwrJlx_s-bZCAL2iCeK93iVfVKBXl_NixqHUZvzu5j9_zDs8f4Apxzk9rTm7cj7O-IoipaBiHj2CUKO5K_JzDnxagi0dr9kl7vkqCflPNuj37i6uvJpNwTM-QZnAxMIJa0JQmrBpQkIwQl1oZKpHSkVOWVKfwowiY3wLGCf5QoCIwcpQQVfus-1slrlDxq1I0bEJhdWhDMJYgksjZUE5iycadJud1ZJN5lXOjISkn3SjROikkj6WWck8wRFN2xSQudkyT1DFqFDEeGizg6oPmseg-yGJG6rN1LveaQpQtuz3d7LxQ5k1GxsjMTqK2-xP05FNtTIU6vqbn3n0iaYcs126VoJ4gxO2XSyW7he6KoU5LQflG4R04sk
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Recognizing EEG responses to active TMS vs. sham stimulations in different TMS-EEG datasets: a machine learning approach
URI https://www.ncbi.nlm.nih.gov/pubmed/40631086
https://www.proquest.com/docview/3228527285
https://www.biorxiv.org/content/10.1101/2025.06.29.662189
https://pubmed.ncbi.nlm.nih.gov/PMC12236757
https://www.biorxiv.org/content/biorxiv/early/2025/07/04/2025.06.29.662189.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFD5i7QO8cBG3DqiMxBtKmtq5OLwN1DIhrZrGKpWn6NhxWMWaVk26jf16jhO3YpQXJF4iyzl24tu52J_PAXinSY6qXJHmpgrhhSJBWlIhejxOC2nvMIdo9ztOJvHxNPwyi2buZl3lYJVqvlzfzK-ac3wL2CbuO3B5A2Pd_lqLPRoEySAIm6T1wMlTP45JXqW-3bf2V3lxAN04IgW9A93p5PTomzvTpDm4X4i0X_eFv2ma-4DJ-5tyhT-v8fLyN2k0fgT1th0tCOWHv6mVr2__cPH4nxv6GB467ZUdtdPtCdwz5VO4OWtBSLckBdlo9JmtW9ytqVi9ZNgwVHZ-8pVdVT6rLnDBiK0sXNiwis1Lto3SUlsyz1ZhgauVqasPDNmiwXsa5gJcfGdbP-jPYDoenX869lxAB08NLZoKVcIN1ypCmVp4HBcY5sSOlSjSXMrYSG05OFd5rNRQI5lqQ86RJ6hFJDEQz6FTLkvzEpjmBelWEddpJMIoEWiKWGqURlMixbQHb11PZqvWbUdmOzAL4oynWduBRLMd6owWlT0pwdIsN1VGXE5GPKFHD160Q7-rhjQgYcNT9UDemRQ7Auuw--6bcn7ROO6mxggy0JIevN_Nn12xxhoLhvu_efhP1K_ggc1rEMXha-jU6415Q3pTrfrQ_TianJ714WA88_tuVfwC44cX5A
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_BJjTeGJ8FBkbiDaVq7HzYvKJ2BdYJQSf1LTq7Dqu0plWTjo2_nrskjTZtD7xEUfyR-Gzfl3-5A_joSI7auSXNzeYqiFSKtKUiDGRics3_MEfI_o7JaTI-i77N4lnrcCtbWKVdrDZXi8v6HJ8B28R9m809CNlWjzngpjT9JCHxZPrspn4I-ynJeV7ho1m_87HQk1ClUXuYeW9zUnvb192nYt5FSh5sizVe_8GLixtiaPQE9n_g2m8O4YEvnsKjJo_k9TO4-tnAgP6SHBLD4bHYNMhXX4pqJbBmaWI6-SUuy74oz3EpaGMv28RdpVgUYpcnpeJqAXfB0NHSV-VngWJZIy69aFNM_Ba7SOTP4Ww0nH4ZB21KhcCGjGdCm0ovnY1RGwaoSYXRnBiiVbmZa5147ZiHSjtPrA0dkrEUSokyRadijQP1AvaKVeFfgXAyJ-0mls7EKopThT5PtEPtHd0YND340FI2WzeBMzKmfjZIMmmyhvpUZ0fzjJY1n1Vg4VfbMiM-o2OZ0qUHL5s56LohHURxgqge6Fuz01XgkNm3S4rFeR06mwajyERKe_Cpm8iuWW0PDcK7n_n6P4byHg7G08lJdvL19PsbeMzlNao3egt71Wbrj0h3qey7eoH-A_RY55c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9swDCa2Fjvedi87NWBvg41Y8iHtdUvWHS2KrQXyZlCyvAZonCB2una_fqTtGC3ah70YBkTLEiXxkD6RAO8d6VFbWLLcbKmCWGVISyrGQKam1HyHOUbe79g_SPeO42-zZHbpLgzDKu18uT6fn7Xn-AzYJunbLe5xxL56wgE3pQnTlNSTCXmbOlwV5W3YzUjXswM2nYXDPos0pLCyuD_QvLEKMn37X95kZl5HS97bVCu8-IOnp5dU0fQB7B7iyq8fwi1fPYI7XS7Ji8dw_rODAv0lXSQmky9i3aFffS2apcBWrImj_V_irA5FfYILQYt70SfvqsW8EttcKQ2TBVwFw0dr39QfBYpFi7r0ok8z8Vtso5E_gePp5OjTXtCnVQhsxJgmtJn00tkEtWGQmlQYFyQUrSpNoXXqtWM5Km2RWhs5JIcpkhJlhk4lGsfqKexUy8o_B-FkSRZOIp1JVJxkCn2ZaofaO3oxaEbwrudsvuqCZ-TM_Xyc5tLkHfeJZsvznKY2n1dg5ZebOidZoxOZ0WMEz7oxGKohO0RxkqgR6CujMxBw2OyrJdX8pA2fTZ1R5CZlI_gwDOTwWesTjaPrzXzxH115C3cPP0_zH18Pvr-E-1zcAnvjV7DTrDf-NZkvjX3Tzs9_Wt_oqA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bb9MwFLage4AXLuJWbjISbyhpaieOzduEOiakTQhWaTxFx46zVaxp1aRj7NdzTuJWjPKCxEtkOcdOfDsX-_M5jL11KEdtaVFzs5WMUpkDLqkUIqFMpekOcwq033F0rA6n6afT7DTcrGsCrNLOFqur2WV3jk-AbeS-o5A38uT2lyz2bJTkoyTtkuSBU5hYKZRXJqZ963hZVrfZnspQQR-wvenx5_1v4UwT5-BuIdR-wxf-pmnuAibvrOsl_PwBFxe_SaOD-6zdtKMHoXyP162N3fUfLh7_c0MfsHtBe-X7_XR7yG75-hG7-tKDkK5RCvLJ5CNf9bhb3_B2waFjqPzk6Cu_bGLenMOcI1uZh7BhDZ_VfBOlpSWyiKog4Grj2-Y9Bz7v8J6ehwAXZ3zjB_0xmx5MTj4cRiGgQ2THhKYCmwsvnM1AG4LHCQlpiezYysqUWiuvHXFwYUtl7dgBmmpjIUDk4GSmIZFP2KBe1P4Z405UqFtlwplMplkuwVdKO9DeYcKAGbI3oSeLZe-2o6AOLBJVCFP0HYg0m6EucFHRSQnUfrFuCuRyOhM5PobsaT_022pQA5IUnmrI9I1JsSUgh90339Sz885xNzZGooGWD9m77fzZFuussWS8-5vP_4n6BbtLeR2iOH3JBu1q7V-h3tTa12Ed_AKqdhVd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recognizing+EEG+responses+to+active+TMS+vs.+sham+stimulations+in+different+TMS-EEG+datasets%3A+a+machine+learning+approach&rft.jtitle=bioRxiv&rft.au=Keihani%2C+Ahmadreza&rft.au=Donati%2C+Francesco+L&rft.au=Russo%2C+Simone&rft.au=Parmigiani%2C+Sara&rft.date=2025-07-04&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.06.29.662189&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon