Optimizing electrode placement and information capacity for local field potentials in cortex
Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inheren...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory
12.08.2025
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2025.04.25.650658 |
Cover
Abstract | Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants. |
---|---|
AbstractList | Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one’s neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.
A tool for simulating subject-specific local field potentials and electrode sensitivity.
Optimized electrode placement enhances ROI source coverage, and signal quality.
Sparse sensor-based classification boosts data quality without extra electrode cost.
Unbiased comparisons of devices and contact arrangements. Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants. Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants. |
Author | Seymour, John P Ruan, Yilan Abrego, Amada M Willis, Jace A Moitra, Promit Ramakrishnan, Arjun Joshi, Anand Alan Stallings, Joshua Tandon, Nitin Medani, Takfa Wright, Christopher E Zhu, Ruoqian Mosher, John C Leahy, Richard M |
Author_xml | – sequence: 1 givenname: Jace A orcidid: 0000-0001-5625-4059 surname: Willis fullname: Willis, Jace A – sequence: 2 givenname: Christopher E surname: Wright fullname: Wright, Christopher E – sequence: 3 givenname: Ruoqian surname: Zhu fullname: Zhu, Ruoqian – sequence: 4 givenname: Yilan surname: Ruan fullname: Ruan, Yilan – sequence: 5 givenname: Joshua orcidid: 0009-0005-1175-198X surname: Stallings fullname: Stallings, Joshua – sequence: 6 givenname: Amada M orcidid: 0000-0003-0311-5244 surname: Abrego fullname: Abrego, Amada M – sequence: 7 givenname: Takfa surname: Medani fullname: Medani, Takfa – sequence: 8 givenname: Promit surname: Moitra fullname: Moitra, Promit – sequence: 9 givenname: John C orcidid: 0000-0002-3221-229X surname: Mosher fullname: Mosher, John C – sequence: 10 givenname: Arjun orcidid: 0000-0002-4622-4873 surname: Ramakrishnan fullname: Ramakrishnan, Arjun – sequence: 11 givenname: Anand Alan orcidid: 0000-0002-9582-3848 surname: Joshi fullname: Joshi, Anand Alan – sequence: 12 givenname: Richard M orcidid: 0000-0002-7278-5471 surname: Leahy fullname: Leahy, Richard M – sequence: 13 givenname: Nitin orcidid: 0000-0002-2752-2365 surname: Tandon fullname: Tandon, Nitin – sequence: 14 givenname: John P orcidid: 0000-0002-3783-7838 surname: Seymour fullname: Seymour, John P |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40832273$$D View this record in MEDLINE/PubMed |
BookMark | eNptUctKBDEQDKL43A_wIjl62TXvZE4i4gsEL3oTQjbJaCSTjDOzuuvXm2V1VfDSabqrKkX1HthMOXkADjGaYIzwCUGETxCblCo4ElxtgF0iKjJWBPHNX_0OGPX9C0KIVAJTybbBDkOKEiLpLni8a4fQhI-QnqCP3g5ddh620Vjf-DRAkxwMqc5dY4aQE7SmNTYMC1hGMGZrIqyDjw62eSj4YGJf8NDmbvDzA7BVl4Effb374OHy4v78enx7d3VzfnY7nmKl1JhgU3lW7CHlEWXc8orbmgvkiCXKGImF4rayTEonnBNl6eoKOWsls1xSug_ISneWWrN4NzHqtguN6RYaI71MSy_T0ojpUldpFdLpitTOpo13trjvzA8xm6D_blJ41k_5TWNCBVUYF4XjlcI05G4e3tbc_z77grZdfp35ftBN6K2P0SSfZ72mhGGKZSWX0KPfvtai3zejn2GSmZA |
Cites_doi | 10.1016/j.jneumeth.2020.108759 10.1523/JNEUROSCI.2072-19.2019 10.1001/jamaneurol.2019.0098 10.1227/NEU.0b013e31827d1161 10.1103/RevModPhys.65.413 10.1093/acprof:oso/9780195050387.001.0001 10.1093/braincomms/fcac122 10.1088/1741-2552/acb230 10.1016/j.clinph.2004.10.010 10.1016/j.neuron.2011.09.029 10.1002/adhm.202303401 10.1109/79.962275 10.1038/s44222-024-00239-5 10.1093/braincomms/fcab156 10.1111/epi.13713 10.1007/s10548-019-00701-3 10.7554/eLife.44494.001 10.1016/j.neuroimage.2017.08.035 10.1016/j.neuroimage.2015.02.003 10.1038/s41583-024-00819-9 10.1097/WCO.0000000000000528 10.3171/jns.1999.91.4.0697 10.1038/s41593-023-01554-7 10.1002/hbm.23431 10.1038/micronano.2016.66 10.1111/epi.13791 10.1137/15M1036713 10.1038/s41597-022-01413-3 10.1016/j.neuroimage.2022.119851 10.1016/j.neuroimage.2020.117467 10.1002/hbm.25272 10.1002/mds.27096 10.1016/j.conb.2018.01.009 10.1016/j.cell.2015.09.029 |
ContentType | Journal Article Paper |
Copyright | 2025, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2025, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. 5PM UNPAY |
DOI | 10.1101/2025.04.25.650658 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv PubMed Central (Full Participant titles) Unpaywall |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 10.1101/2025.04.25.650658 PMC12363811 2025.04.25.650658v1 40832273 |
Genre | Journal Article Preprint |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC PUEGO RHI 7X8 FX. 5PM UNPAY |
ID | FETCH-LOGICAL-b1888-21a9e402908e0345c595cf560d2c28aa71685c9c477d6dd65cfdf90dcc74c5733 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Thu Aug 28 11:27:46 EDT 2025 Tue Sep 30 17:02:33 EDT 2025 Sat May 03 18:20:33 EDT 2025 Fri Sep 05 15:04:33 EDT 2025 Mon Sep 15 01:52:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | surgery planning electrode scarcity Trajectory information mapping optimization LFP |
Language | English |
License | The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1888-21a9e402908e0345c595cf560d2c28aa71685c9c477d6dd65cfdf90dcc74c5733 |
Notes | ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-3221-229X 0000-0001-5625-4059 0000-0002-9582-3848 0009-0005-1175-198X 0000-0002-4622-4873 0000-0002-3783-7838 0000-0002-2752-2365 0000-0002-7278-5471 0000-0003-0311-5244 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2025.04.25.650658 |
PMID | 40832273 |
PQID | 3241317978 |
PQPubID | 23479 |
PageCount | 34 |
ParticipantIDs | unpaywall_primary_10_1101_2025_04_25_650658 pubmedcentral_primary_oai_pubmedcentral_nih_gov_12363811 biorxiv_primary_2025_04_25_650658 proquest_miscellaneous_3241317978 pubmed_primary_40832273 |
PublicationCentury | 2000 |
PublicationDate | 20250812 |
PublicationDateYYYYMMDD | 2025-08-12 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250812 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2025 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | Schüpbach, Chabardes, Matthies, Pollo, Steigerwald, Timmermann, Visser Vandewalle, Volkmann, Schuurman (2025.04.25.650658v1.33) 2017; 32 Shattuck, Leahy (2025.04.25.650658v1.36) 2002; 8 Shannon (2025.04.25.650658v1.35) 1948; 27 Cardinale, Cossu, Castana, Casaceli, Schiariti, Miserocchi, Fuschillo, Moscato, Caborni, Arnulfo, Lo Russo (2025.04.25.650658v1.10) 2013; 72 Murakami, Okada (2025.04.25.650658v1.25) 2015; 111 Piastra, Nüßing, Vorwerk, Clerc, Engwer, Wolters (2025.04.25.650658v1.31) 2021; 42 Vakharia, Sparks, O’Keeffe, Rodionov, Miserocchi, McEvoy, Ourselin, Duncan (2025.04.25.650658v1.43) 2017; 58 Bernabei, Arnold, Shah, Revell, Ong, Kini, Stein, Shinohara, Lucas, Davis, Bassett, Litt (2025.04.25.650658v1.5) 2021; 3 Despouy, Curot, Reddy, Nowak, Deudon, Sol, Lotterie, Denuelle, Maziz, Bergaud, Thorpe, Valton, Barbeau (2025.04.25.650658v1.11) 2020; 341 Seymour, Wu, Wise, Yoon (2025.04.25.650658v1.34) 2017; 3 Bartolo, Saunders, Mitz, Averbeck (2025.04.25.650658v1.3) 2020; 40 Lewis, Boehler, Liljemalm, Fries, Stieglitz, Asplund (2025.04.25.650658v1.21) 2024 Gad (2025.04.25.650658v1.15) 2021 Patrick-Krueger, Burkhart, Contreras-Vidal (2025.04.25.650658v1.30) 2024 Rush, Driscoll (2025.04.25.650658v1.32) 1969; 16 Nunez, Nunez, Srinivasan (2025.04.25.650658v1.27) 2019; 32 Tandon, Tong, Friedman, Johnson, Von Allmen, Thomas, Hope, Kalamangalam, Slater, Thompson (2025.04.25.650658v1.41) 2019; 76 Fischl, Dale, Raichle (2025.04.25.650658v1.13) 2000; 97 Silva, Littlejohn, Liu, Moses, Chang (2025.04.25.650658v1.38) 2024 Zhou, Park, Koltun (2025.04.25.650658v1.44) 2018 Markram, Muller, Ramaswamy, Reimann, Abdellah, Sanchez, Ailamaki, Alonso-Nanclares, Antille, Arsever, Kahou, Berger, Bilgili, Buncic, Chalimourda, Chindemi, Courcol, Delalondre, Delattre, Schürmann (2025.04.25.650658v1.22) 2015; 163 Mendoza-Halliday, Major, Lee, Lichtenfeld, Carlson, Mitchell, Meng, Xiong, Westerberg, Jia, Johnston, Selvanayagam, Everling, Maier, Desimone, Miller, Bastos (2025.04.25.650658v1.24) 2024; 27 Palomero-Gallagher, Zilles (2025.04.25.650658v1.29) 2019; 197 Abrego, Khan, Wright, Islam, Ghajar, Bai, Tandon, Seymour (2025.04.25.650658v1.1) 2023; 20 Kajikawa, Schroeder (2025.04.25.650658v1.19) 2011; 72 Nunez, Srinivasan (2025.04.25.650658v1.28) 2006 Medani, Garcia-Prieto, Tadel, Antonakakis, Erdbrügger, Höltershinken, Mead, Schrader, Joshi, Engwer, Wolters, Mosher, Leahy (2025.04.25.650658v1.23) 2023; 267 Koessler, Colnat-Coulbois, Cecchin, Hofmanis, Dmochowski, Norcia, Maillard (2025.04.25.650658v1.20) 2017; 38 Engel (2025.04.25.650658v1.12) 2018; 31 Bhalla, Dura-Bernal, Suter, Gleeson, Cantarelli, Quintana, Rodriguez, Kedziora, Chadderdon, Kerr, Neymotin, McDougal, Hines, Shepherd (2025.04.25.650658v1.6) Sun, Barth, Qiao, Chiang, Wang, Rahimpour, Trumpis, Duraivel, Dubey, Wingel, Rachinskiy, Voinas, Ferrentino, Southwell, Haglund, Friedman, Lad, Doyle, Solzbacher, Viventi (2025.04.25.650658v1.40) 2022; 4 Brunton, Brunton, Proctor, Kutz (2025.04.25.650658v1.9) 2016; 76 Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (2025.04.25.650658v1.17) 1993; 65 Næss, Halnes, Hagen, Hagler, Dale, Einevoll, Ness (2025.04.25.650658v1.26) 2021; 225 Bartolomei, Lagarde, Wendling, McGonigal, Jirsa, Guye, Bénar (2025.04.25.650658v1.4) 2017; 58 Fried, Wilson, Maidment, Engel, Behnke, Fields, Macdonald, Morrow, Ackerson (2025.04.25.650658v1.14) 1999; 91 Ikeda, Wang, Okada (2025.04.25.650658v1.18) 2005; 116 Gao, Dong, Liu, Fan, Jiang, Wang, Margulies, Li, Zuo (2025.04.25.650658v1.16) 2022; 9 2025.04.25.650658v1.8 2025.04.25.650658v1.7 (2025.04.25.650658v1.42) 2024 Steinmetz, Koch, Harris, Carandini (2025.04.25.650658v1.39) 2018; 50 Shattuck, Sandor-Leahy, Schaper, Rottenberg, Leahy (2025.04.25.650658v1.37) 2001; 13 Baillet, Mosher, Leahy (2025.04.25.650658v1.2) 2001; 18 |
References_xml | – volume: 341 start-page: 108759 year: 2020 ident: 2025.04.25.650658v1.11 article-title: Recording local field potential and neuronal activity with tetrodes in epileptic patients publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2020.108759 – year: 2024 ident: 2025.04.25.650658v1.42 publication-title: SEPIO Code Repository – ident: 2025.04.25.650658v1.8 publication-title: Surface/Volume Registration Exercises – volume: 16 start-page: 1 year: 1969 ident: 2025.04.25.650658v1.32 article-title: EEG Electrode Sensitivity-An Application of Reciprocity publication-title: IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING – volume: 40 start-page: 1668 issue: 8 year: 2020 end-page: 1678 ident: 2025.04.25.650658v1.3 article-title: Information-Limiting Correlations in Large Neural Populations publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.2072-19.2019 – volume: 76 start-page: 672 issue: 6 year: 2019 ident: 2025.04.25.650658v1.41 article-title: Analysis of Morbidity and Outcomes Associated With Use of Subdural Grids vs Stereoelectroencephalography in Patients With Intractable Epilepsy publication-title: JAMA Neurology doi: 10.1001/jamaneurol.2019.0098 – volume: 72 start-page: 353 issue: 3 year: 2013 end-page: 366 ident: 2025.04.25.650658v1.10 article-title: Stereoelectroencephalography: Surgical methodology, safety, and stereotactic application accuracy in 500 procedures publication-title: Neurosurgery doi: 10.1227/NEU.0b013e31827d1161 – volume: 65 start-page: 413 issue: 2 year: 1993 end-page: 497 ident: 2025.04.25.650658v1.17 article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: Reviews of Modern Physics doi: 10.1103/RevModPhys.65.413 – year: 2006 ident: 2025.04.25.650658v1.28 publication-title: Electric Fields of the Brain doi: 10.1093/acprof:oso/9780195050387.001.0001 – volume: 4 start-page: 3 year: 2022 ident: 2025.04.25.650658v1.40 article-title: Intraoperative microseizure detection using a high-density micro-electrocorticography electrode array publication-title: Brain Communications doi: 10.1093/braincomms/fcac122 – volume: 20 start-page: 1 year: 2023 ident: 2025.04.25.650658v1.1 article-title: Sensing local field potentials with a directional and scalable depth electrode array publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/acb230 – volume: 116 start-page: 827 issue: 4 year: 2005 end-page: 841 ident: 2025.04.25.650658v1.18 article-title: Origins of the somatic N20 and high-frequency oscillations evoked by trigeminal stimulation in the piglets publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2004.10.010 – volume: 72 start-page: 847 issue: 5 year: 2011 end-page: 858 ident: 2025.04.25.650658v1.19 article-title: How local is the local field potential? publication-title: Neuron doi: 10.1016/j.neuron.2011.09.029 – year: 2024 ident: 2025.04.25.650658v1.21 article-title: Recording Quality Is Systematically Related to Electrode Impedance publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.202303401 – volume: 18 start-page: 14 issue: 6 year: 2001 end-page: 30 ident: 2025.04.25.650658v1.2 article-title: Electromagnetic brain mapping publication-title: IEEE Signal Processing Magazine doi: 10.1109/79.962275 – year: 2024 ident: 2025.04.25.650658v1.30 article-title: The state of clinical trials of implantable brain–computer interfaces publication-title: Nature Reviews Bioengineering doi: 10.1038/s44222-024-00239-5 – volume: 3 start-page: 3 year: 2021 ident: 2025.04.25.650658v1.5 article-title: Electrocorticography and stereo EEG provide distinct measures of brain connectivity: implications for network models publication-title: Brain Communications doi: 10.1093/braincomms/fcab156 – volume: 58 start-page: 921 issue: 6 year: 2017 end-page: 932 ident: 2025.04.25.650658v1.43 article-title: Accuracy of intracranial electrode placement for stereoencephalography: A systematic review and meta-analysis publication-title: In Epilepsia doi: 10.1111/epi.13713 – year: 2018 ident: 2025.04.25.650658v1.44 article-title: Open3D: A Modern Library for 3D Data Processing publication-title: Arxiv – volume: 32 start-page: 193 issue: 2 year: 2019 end-page: 214 ident: 2025.04.25.650658v1.27 article-title: Multi-Scale Neural Sources of EEG: Genuine publication-title: Equivalent, and Representative. A Tutorial Review. Brain Topography doi: 10.1007/s10548-019-00701-3 – ident: 2025.04.25.650658v1.6 doi: 10.7554/eLife.44494.001 – volume: 197 start-page: 716 year: 2019 end-page: 741 ident: 2025.04.25.650658v1.29 article-title: Cortical layers: Cyto-, myelo-, receptor-and synaptic architecture in human cortical areas publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.08.035 – volume: 111 start-page: 49 year: 2015 end-page: 58 ident: 2025.04.25.650658v1.25 article-title: Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.02.003 – year: 2024 ident: 2025.04.25.650658v1.38 article-title: The speech neuroprosthesis publication-title: In Nature Reviews Neuroscience. Springer Nature doi: 10.1038/s41583-024-00819-9 – volume: 31 start-page: 192 issue: 2 year: 2018 end-page: 197 ident: 2025.04.25.650658v1.12 article-title: The current place of epilepsy surgery publication-title: In Current Opinion in Neurology doi: 10.1097/WCO.0000000000000528 – volume: 91 start-page: 697 issue: 4 year: 1999 end-page: 705 ident: 2025.04.25.650658v1.14 article-title: Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients publication-title: Journal of Neurosurgery doi: 10.3171/jns.1999.91.4.0697 – volume: 27 start-page: 547 issue: 3 year: 2024 end-page: 560 ident: 2025.04.25.650658v1.24 article-title: A ubiquitous spectrolaminar motif of local field potential power across the primate cortex publication-title: Nature Neuroscience doi: 10.1038/s41593-023-01554-7 – volume: 38 start-page: 974 issue: 2 year: 2017 end-page: 986 ident: 2025.04.25.650658v1.20 article-title: In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes publication-title: Human Brain Mapping doi: 10.1002/hbm.23431 – volume: 3 start-page: 16066 issue: 1 year: 2017 ident: 2025.04.25.650658v1.34 article-title: State-of-the-art MEMS and microsystem tools for brain research publication-title: Microsystems & Nanoengineering doi: 10.1038/micronano.2016.66 – volume: 58 start-page: 1131 issue: 7 year: 2017 end-page: 1147 ident: 2025.04.25.650658v1.4 article-title: Defining epileptogenic networks: Contribution of SEEG and signal analysis publication-title: In Epilepsia doi: 10.1111/epi.13791 – volume: 76 start-page: 2099 issue: 5 year: 2016 end-page: 2122 ident: 2025.04.25.650658v1.9 article-title: Sparse sensor placement optimization for classification publication-title: SIAM Journal on Applied Mathematics doi: 10.1137/15M1036713 – volume: 9 start-page: 286 issue: 1 year: 2022 ident: 2025.04.25.650658v1.16 article-title: A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping publication-title: Scientific Data doi: 10.1038/s41597-022-01413-3 – volume: 267 year: 2023 ident: 2025.04.25.650658v1.23 article-title: Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119851 – volume: 225 year: 2021 ident: 2025.04.25.650658v1.26 article-title: Biophysically detailed forward modeling of the neural origin of EEG and MEG signals publication-title: NeuroImage doi: 10.1016/j.neuroimage.2020.117467 – volume: 42 start-page: 978 issue: 4 year: 2021 end-page: 992 ident: 2025.04.25.650658v1.31 article-title: A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources publication-title: Human Brain Mapping doi: 10.1002/hbm.25272 – volume: 8 start-page: 129 issue: 2 year: 2002 end-page: 142 ident: 2025.04.25.650658v1.36 article-title: BrainSuite: An Automated Cortical Surface Identification Tool publication-title: Medical Image Analysis – ident: 2025.04.25.650658v1.7 publication-title: Cortical Surface Extraction Tutorial – volume: 32 start-page: 1371 issue: 10 year: 2017 end-page: 1375 ident: 2025.04.25.650658v1.33 article-title: Directional leads for deep brain stimulation: Opportunities and challenges publication-title: Movement Disorders doi: 10.1002/mds.27096 – volume: 27 start-page: 379 issue: 3 year: 1948 end-page: 423 ident: 2025.04.25.650658v1.35 article-title: A Mathematical Theory of Communication publication-title: Bell System Technical Journal – volume: 13 start-page: 856 issue: 5 year: 2001 end-page: 876 ident: 2025.04.25.650658v1.37 article-title: Magnetic Resonance Image Tissue Classification Using a Partial Volume Model publication-title: NeuroImage – volume: 50 start-page: 92 year: 2018 end-page: 100 ident: 2025.04.25.650658v1.39 article-title: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes publication-title: In Current Opinion in Neurobiology doi: 10.1016/j.conb.2018.01.009 – year: 2021 ident: 2025.04.25.650658v1.15 – volume: 163 start-page: 456 issue: 2 year: 2015 end-page: 492 ident: 2025.04.25.650658v1.22 article-title: Reconstruction and Simulation of Neocortical Microcircuitry publication-title: Cell doi: 10.1016/j.cell.2015.09.029 – volume: 97 start-page: 11050 issue: 20 year: 2000 end-page: 11055 ident: 2025.04.25.650658v1.13 article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images publication-title: Proc. Natl. Acad. Sci. USA |
SSID | ssj0002961374 |
Score | 1.9230645 |
SecondaryResourceType | preprint |
Snippet | Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico... |
SourceID | unpaywall pubmedcentral biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Neuroscience |
Title | Optimizing electrode placement and information capacity for local field potentials in cortex |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40832273 https://www.proquest.com/docview/3241317978 https://www.biorxiv.org/content/10.1101/2025.04.25.650658 https://pubmed.ncbi.nlm.nih.gov/PMC12363811 https://www.biorxiv.org/content/biorxiv/early/2025/04/28/2025.04.25.650658.full.pdf |
UnpaywallVersion | acceptedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2692-8205 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: BENPR dateStart: 20131107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6Ifrmt_NjRPBNKkmbrs2rsjEE5xAHexBKmqQ4mN2Ym27-9d61tWxsD77kIbn043LJ3eWO3xFyE2oDVkHiOlq4whHGwDnoC-4ErkEwTJ54GXbnU6fR7onHvt9fKvWFaZXxYDSZD76yOD4mbMPpm29uxtFX9xGbFFqwLUB9bpMqiJjAbK5W_668XnEl6KlAFHHMjTPB4i3etMm6XE-S3J2lY7X4VsPhkgZq7ZNqV43t5IBs2fSQ7OQlJBdH5O0Z9vzH4Ac0EC1K2hhLs0wrvPejKjW0AEfFJaAalKMGy5tCF80UGc2S2Oh4hBxAaQR6qjEHd35Meq3m60PbKSomODEPUeS5khY8QslCyzzha1_6OgGjxrjaDZUC5yj0tdQiCEzDmAYMmkQyo3UgNCIjnpBKOkrtGaHSJsJarmLwd4RKpFQBYwpadGDiRNXIdcG9aJzjYkTI4YiJCNqcw0Dzx9cIpBZDESq1o9ln5GE4D4QhAJrTnM_lYwTDUybwaiRcWYGSABGxV0fSwXuGjI1QMmCC8Bq5LRernJa5O4yvf-b5P37lguxhH94mc_eSVKaTmb0Cc2Qa10n1vtnpvtQzAfwFVBjbyg |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYhMqNnbIaiRtKZSdOE58RVdk5UKkHpMixHVGppFEXaPl6ZpIQUbUHLj7E4yzjiefNePRMyGWoDaCCxHW0cIUjjIF10BfcCVyDZJg88XLuzsenZrsj7rp-t0y4jcqyyrg3GE57n_k-PhZsw-pb_NyMY6zuIzcptIAtwH02ME29StbBzgRaeKvbqHIsrgRnFYhyM3PpcIC95eOWQczFSsnaJM3U7Ev1-3_cUGuLrL-ozA63yYpNd8hGcY7kbJe8PcOP_9H7BjdEy3NtjKV5uRUm_6hKDS0ZUnEeqAYPqQF-U7hEc29G80o2mg1QDWiSIE81FuJO90indfN63XbKYxOcmIdo91xJC2GhZKFlnvC1L32dALIxrnZDpSBCCn0ttQgC0zSmCZ0mkcxoHQiN9Ij7ZC0dpPaQUGkTYS1XMQQ9QiVSqoAxBS1GMXGi6uSi1F6UFeQYEWo4YiKCttAwyPzqNQLTxf0IldrBZBR5uKcHFhGAzEGh5-o2guFSE3h1Es7NQCWAtNjzPWnvPafHRj4ZwCG8Tq6qyaqG5TEP44uvefSPTzkntfbr40P0cPt0f0w2sR_Ty9w9IWvj4cSeAj4Zx2e5Ef4ATJve_g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4QwFG5c4nJzd1xr4s0waaEM9KxO3J2Dk8zBhJS2RJIRyOio46_3PUAyRg9eeqCPAq-vfStfCTkOtQGrIHEdLVzhCGNgH_QFdwLXIBgmT7wSu_P2rnPRF1cDfzD1LwyWVcZpPvpI38o8PhZsw-5bLW7G0Vf3EZsUWrAtQH22MUzdLkwyS-ZB1gQ6YN1Bu4mzuBIUViDqhOafQ4DpWz_yLzPzd7Xk0jgr1ORdDYdTqqi7QuZ7qrCjVTJjszWyUJ0lOVknj_ew-J_TT1BFtD7bxlhallxhAJCqzNAaJRXngmrQkhpMcAqXaKnRaFnNRoscWYFiCfRUYzHuxwbpd88fTi-c-ugEJ-Yhyj5X0oJrKFlomSd87UtfJ2DdGFe7oVLgJYW-lloEgekY04FOk0hmtA6ERojETTKX5ZndJlTaRFjLVQyOj1CJlCpgTEGLnkycqBY5qrkXFRVARoQcjpiIoK04DDTffI1AfDEnoTKbj18iD_N6IBUB0GxVfG6GEQy3m8BrkfDHDDQECI39sydLn0qIbMSUAVuEt8hJM1nNbaXfw_jv19z5x6ccksXeWTe6uby73iXL2I0RZu7ukbnX0djug4nyGh-UMvgFkkDgDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+electrode+placement+and+information+capacity+for+local+field+potentials+in+cortex&rft.jtitle=bioRxiv&rft.au=Willis%2C+Jace+A&rft.au=Wright%2C+Christopher+E&rft.au=Zhu%2C+Ruoqian&rft.au=Ruan%2C+Yilan&rft.date=2025-08-12&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.04.25.650658&rft_id=info%3Apmid%2F40832273&rft.externalDocID=40832273 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |