Optimizing electrode placement and information capacity for local field potentials in cortex

Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inheren...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Willis, Jace A, Wright, Christopher E, Zhu, Ruoqian, Ruan, Yilan, Stallings, Joshua, Abrego, Amada M, Medani, Takfa, Moitra, Promit, Mosher, John C, Ramakrishnan, Arjun, Joshi, Anand Alan, Leahy, Richard M, Tandon, Nitin, Seymour, John P
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory 12.08.2025
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2025.04.25.650658

Cover

Abstract Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.
AbstractList Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one’s neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants. A tool for simulating subject-specific local field potentials and electrode sensitivity. Optimized electrode placement enhances ROI source coverage, and signal quality. Sparse sensor-based classification boosts data quality without extra electrode cost. Unbiased comparisons of devices and contact arrangements.
Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.
Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico modeling tool for optimizing electrode placement and maximizing coverage with a variety of devices. The basis for optimization is the inherent information patterns of field potentials derived from dipolar sources. The approach integrates subject-specific MRI data with finite element modeling (FEM) used to simulate the sensitivity of subdural and intracortical devices. Sensitivity maps, or lead fields, from these models enable the comparison of different electrode placements, contact sizes, contact configurations, and substrate properties, which are often overlooked factors. One tool is a genetic algorithm that optimizes electrode placement by maximizing information capacity. Another is a sparse sensor method, Sparse Electrode Placement for Input Optimization (SEPIO), that selects the best sensor subsets for accurate source classification. We demonstrate several use cases for clinicians, engineers, and researchers. Overall, these open-source tools offer a quantitative framework to juxtapose devices in one's neurosurgical armament or optimize device and contact placement. It may help users refine electrode coverage with low channel count devices and minimize invasive surgery burden. The study demonstrates that optimized electrode placement significantly improves the information capacity and signal quality of LFP recordings. The tools developed offer a valuable approach for refining neurosurgical techniques and enhancing the design of neural implants.
Author Seymour, John P
Ruan, Yilan
Abrego, Amada M
Willis, Jace A
Moitra, Promit
Ramakrishnan, Arjun
Joshi, Anand Alan
Stallings, Joshua
Tandon, Nitin
Medani, Takfa
Wright, Christopher E
Zhu, Ruoqian
Mosher, John C
Leahy, Richard M
Author_xml – sequence: 1
  givenname: Jace A
  orcidid: 0000-0001-5625-4059
  surname: Willis
  fullname: Willis, Jace A
– sequence: 2
  givenname: Christopher E
  surname: Wright
  fullname: Wright, Christopher E
– sequence: 3
  givenname: Ruoqian
  surname: Zhu
  fullname: Zhu, Ruoqian
– sequence: 4
  givenname: Yilan
  surname: Ruan
  fullname: Ruan, Yilan
– sequence: 5
  givenname: Joshua
  orcidid: 0009-0005-1175-198X
  surname: Stallings
  fullname: Stallings, Joshua
– sequence: 6
  givenname: Amada M
  orcidid: 0000-0003-0311-5244
  surname: Abrego
  fullname: Abrego, Amada M
– sequence: 7
  givenname: Takfa
  surname: Medani
  fullname: Medani, Takfa
– sequence: 8
  givenname: Promit
  surname: Moitra
  fullname: Moitra, Promit
– sequence: 9
  givenname: John C
  orcidid: 0000-0002-3221-229X
  surname: Mosher
  fullname: Mosher, John C
– sequence: 10
  givenname: Arjun
  orcidid: 0000-0002-4622-4873
  surname: Ramakrishnan
  fullname: Ramakrishnan, Arjun
– sequence: 11
  givenname: Anand Alan
  orcidid: 0000-0002-9582-3848
  surname: Joshi
  fullname: Joshi, Anand Alan
– sequence: 12
  givenname: Richard M
  orcidid: 0000-0002-7278-5471
  surname: Leahy
  fullname: Leahy, Richard M
– sequence: 13
  givenname: Nitin
  orcidid: 0000-0002-2752-2365
  surname: Tandon
  fullname: Tandon, Nitin
– sequence: 14
  givenname: John P
  orcidid: 0000-0002-3783-7838
  surname: Seymour
  fullname: Seymour, John P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40832273$$D View this record in MEDLINE/PubMed
BookMark eNptUctKBDEQDKL43A_wIjl62TXvZE4i4gsEL3oTQjbJaCSTjDOzuuvXm2V1VfDSabqrKkX1HthMOXkADjGaYIzwCUGETxCblCo4ElxtgF0iKjJWBPHNX_0OGPX9C0KIVAJTybbBDkOKEiLpLni8a4fQhI-QnqCP3g5ddh620Vjf-DRAkxwMqc5dY4aQE7SmNTYMC1hGMGZrIqyDjw62eSj4YGJf8NDmbvDzA7BVl4Effb374OHy4v78enx7d3VzfnY7nmKl1JhgU3lW7CHlEWXc8orbmgvkiCXKGImF4rayTEonnBNl6eoKOWsls1xSug_ISneWWrN4NzHqtguN6RYaI71MSy_T0ojpUldpFdLpitTOpo13trjvzA8xm6D_blJ41k_5TWNCBVUYF4XjlcI05G4e3tbc_z77grZdfp35ftBN6K2P0SSfZ72mhGGKZSWX0KPfvtai3zejn2GSmZA
Cites_doi 10.1016/j.jneumeth.2020.108759
10.1523/JNEUROSCI.2072-19.2019
10.1001/jamaneurol.2019.0098
10.1227/NEU.0b013e31827d1161
10.1103/RevModPhys.65.413
10.1093/acprof:oso/9780195050387.001.0001
10.1093/braincomms/fcac122
10.1088/1741-2552/acb230
10.1016/j.clinph.2004.10.010
10.1016/j.neuron.2011.09.029
10.1002/adhm.202303401
10.1109/79.962275
10.1038/s44222-024-00239-5
10.1093/braincomms/fcab156
10.1111/epi.13713
10.1007/s10548-019-00701-3
10.7554/eLife.44494.001
10.1016/j.neuroimage.2017.08.035
10.1016/j.neuroimage.2015.02.003
10.1038/s41583-024-00819-9
10.1097/WCO.0000000000000528
10.3171/jns.1999.91.4.0697
10.1038/s41593-023-01554-7
10.1002/hbm.23431
10.1038/micronano.2016.66
10.1111/epi.13791
10.1137/15M1036713
10.1038/s41597-022-01413-3
10.1016/j.neuroimage.2022.119851
10.1016/j.neuroimage.2020.117467
10.1002/hbm.25272
10.1002/mds.27096
10.1016/j.conb.2018.01.009
10.1016/j.cell.2015.09.029
ContentType Journal Article
Paper
Copyright 2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
5PM
UNPAY
DOI 10.1101/2025.04.25.650658
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
Unpaywall
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 10.1101/2025.04.25.650658
PMC12363811
2025.04.25.650658v1
40832273
Genre Journal Article
Preprint
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PUEGO
RHI
7X8
FX.
5PM
UNPAY
ID FETCH-LOGICAL-b1888-21a9e402908e0345c595cf560d2c28aa71685c9c477d6dd65cfdf90dcc74c5733
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Thu Aug 28 11:27:46 EDT 2025
Tue Sep 30 17:02:33 EDT 2025
Sat May 03 18:20:33 EDT 2025
Fri Sep 05 15:04:33 EDT 2025
Mon Sep 15 01:52:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords surgery planning
electrode scarcity
Trajectory
information mapping
optimization
LFP
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1888-21a9e402908e0345c595cf560d2c28aa71685c9c477d6dd65cfdf90dcc74c5733
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-3221-229X
0000-0001-5625-4059
0000-0002-9582-3848
0009-0005-1175-198X
0000-0002-4622-4873
0000-0002-3783-7838
0000-0002-2752-2365
0000-0002-7278-5471
0000-0003-0311-5244
OpenAccessLink https://www.biorxiv.org/content/10.1101/2025.04.25.650658
PMID 40832273
PQID 3241317978
PQPubID 23479
PageCount 34
ParticipantIDs unpaywall_primary_10_1101_2025_04_25_650658
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12363811
biorxiv_primary_2025_04_25_650658
proquest_miscellaneous_3241317978
pubmed_primary_40832273
PublicationCentury 2000
PublicationDate 20250812
PublicationDateYYYYMMDD 2025-08-12
PublicationDate_xml – month: 8
  year: 2025
  text: 20250812
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References Schüpbach, Chabardes, Matthies, Pollo, Steigerwald, Timmermann, Visser Vandewalle, Volkmann, Schuurman (2025.04.25.650658v1.33) 2017; 32
Shattuck, Leahy (2025.04.25.650658v1.36) 2002; 8
Shannon (2025.04.25.650658v1.35) 1948; 27
Cardinale, Cossu, Castana, Casaceli, Schiariti, Miserocchi, Fuschillo, Moscato, Caborni, Arnulfo, Lo Russo (2025.04.25.650658v1.10) 2013; 72
Murakami, Okada (2025.04.25.650658v1.25) 2015; 111
Piastra, Nüßing, Vorwerk, Clerc, Engwer, Wolters (2025.04.25.650658v1.31) 2021; 42
Vakharia, Sparks, O’Keeffe, Rodionov, Miserocchi, McEvoy, Ourselin, Duncan (2025.04.25.650658v1.43) 2017; 58
Bernabei, Arnold, Shah, Revell, Ong, Kini, Stein, Shinohara, Lucas, Davis, Bassett, Litt (2025.04.25.650658v1.5) 2021; 3
Despouy, Curot, Reddy, Nowak, Deudon, Sol, Lotterie, Denuelle, Maziz, Bergaud, Thorpe, Valton, Barbeau (2025.04.25.650658v1.11) 2020; 341
Seymour, Wu, Wise, Yoon (2025.04.25.650658v1.34) 2017; 3
Bartolo, Saunders, Mitz, Averbeck (2025.04.25.650658v1.3) 2020; 40
Lewis, Boehler, Liljemalm, Fries, Stieglitz, Asplund (2025.04.25.650658v1.21) 2024
Gad (2025.04.25.650658v1.15) 2021
Patrick-Krueger, Burkhart, Contreras-Vidal (2025.04.25.650658v1.30) 2024
Rush, Driscoll (2025.04.25.650658v1.32) 1969; 16
Nunez, Nunez, Srinivasan (2025.04.25.650658v1.27) 2019; 32
Tandon, Tong, Friedman, Johnson, Von Allmen, Thomas, Hope, Kalamangalam, Slater, Thompson (2025.04.25.650658v1.41) 2019; 76
Fischl, Dale, Raichle (2025.04.25.650658v1.13) 2000; 97
Silva, Littlejohn, Liu, Moses, Chang (2025.04.25.650658v1.38) 2024
Zhou, Park, Koltun (2025.04.25.650658v1.44) 2018
Markram, Muller, Ramaswamy, Reimann, Abdellah, Sanchez, Ailamaki, Alonso-Nanclares, Antille, Arsever, Kahou, Berger, Bilgili, Buncic, Chalimourda, Chindemi, Courcol, Delalondre, Delattre, Schürmann (2025.04.25.650658v1.22) 2015; 163
Mendoza-Halliday, Major, Lee, Lichtenfeld, Carlson, Mitchell, Meng, Xiong, Westerberg, Jia, Johnston, Selvanayagam, Everling, Maier, Desimone, Miller, Bastos (2025.04.25.650658v1.24) 2024; 27
Palomero-Gallagher, Zilles (2025.04.25.650658v1.29) 2019; 197
Abrego, Khan, Wright, Islam, Ghajar, Bai, Tandon, Seymour (2025.04.25.650658v1.1) 2023; 20
Kajikawa, Schroeder (2025.04.25.650658v1.19) 2011; 72
Nunez, Srinivasan (2025.04.25.650658v1.28) 2006
Medani, Garcia-Prieto, Tadel, Antonakakis, Erdbrügger, Höltershinken, Mead, Schrader, Joshi, Engwer, Wolters, Mosher, Leahy (2025.04.25.650658v1.23) 2023; 267
Koessler, Colnat-Coulbois, Cecchin, Hofmanis, Dmochowski, Norcia, Maillard (2025.04.25.650658v1.20) 2017; 38
Engel (2025.04.25.650658v1.12) 2018; 31
Bhalla, Dura-Bernal, Suter, Gleeson, Cantarelli, Quintana, Rodriguez, Kedziora, Chadderdon, Kerr, Neymotin, McDougal, Hines, Shepherd (2025.04.25.650658v1.6)
Sun, Barth, Qiao, Chiang, Wang, Rahimpour, Trumpis, Duraivel, Dubey, Wingel, Rachinskiy, Voinas, Ferrentino, Southwell, Haglund, Friedman, Lad, Doyle, Solzbacher, Viventi (2025.04.25.650658v1.40) 2022; 4
Brunton, Brunton, Proctor, Kutz (2025.04.25.650658v1.9) 2016; 76
Hämäläinen, Hari, Ilmoniemi, Knuutila, Lounasmaa (2025.04.25.650658v1.17) 1993; 65
Næss, Halnes, Hagen, Hagler, Dale, Einevoll, Ness (2025.04.25.650658v1.26) 2021; 225
Bartolomei, Lagarde, Wendling, McGonigal, Jirsa, Guye, Bénar (2025.04.25.650658v1.4) 2017; 58
Fried, Wilson, Maidment, Engel, Behnke, Fields, Macdonald, Morrow, Ackerson (2025.04.25.650658v1.14) 1999; 91
Ikeda, Wang, Okada (2025.04.25.650658v1.18) 2005; 116
Gao, Dong, Liu, Fan, Jiang, Wang, Margulies, Li, Zuo (2025.04.25.650658v1.16) 2022; 9
2025.04.25.650658v1.8
2025.04.25.650658v1.7
(2025.04.25.650658v1.42) 2024
Steinmetz, Koch, Harris, Carandini (2025.04.25.650658v1.39) 2018; 50
Shattuck, Sandor-Leahy, Schaper, Rottenberg, Leahy (2025.04.25.650658v1.37) 2001; 13
Baillet, Mosher, Leahy (2025.04.25.650658v1.2) 2001; 18
References_xml – volume: 341
  start-page: 108759
  year: 2020
  ident: 2025.04.25.650658v1.11
  article-title: Recording local field potential and neuronal activity with tetrodes in epileptic patients
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2020.108759
– year: 2024
  ident: 2025.04.25.650658v1.42
  publication-title: SEPIO Code Repository
– ident: 2025.04.25.650658v1.8
  publication-title: Surface/Volume Registration Exercises
– volume: 16
  start-page: 1
  year: 1969
  ident: 2025.04.25.650658v1.32
  article-title: EEG Electrode Sensitivity-An Application of Reciprocity
  publication-title: IEEE TRANSACTIONS ON BIO-MEDICAL ENGINEERING
– volume: 40
  start-page: 1668
  issue: 8
  year: 2020
  end-page: 1678
  ident: 2025.04.25.650658v1.3
  article-title: Information-Limiting Correlations in Large Neural Populations
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.2072-19.2019
– volume: 76
  start-page: 672
  issue: 6
  year: 2019
  ident: 2025.04.25.650658v1.41
  article-title: Analysis of Morbidity and Outcomes Associated With Use of Subdural Grids vs Stereoelectroencephalography in Patients With Intractable Epilepsy
  publication-title: JAMA Neurology
  doi: 10.1001/jamaneurol.2019.0098
– volume: 72
  start-page: 353
  issue: 3
  year: 2013
  end-page: 366
  ident: 2025.04.25.650658v1.10
  article-title: Stereoelectroencephalography: Surgical methodology, safety, and stereotactic application accuracy in 500 procedures
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e31827d1161
– volume: 65
  start-page: 413
  issue: 2
  year: 1993
  end-page: 497
  ident: 2025.04.25.650658v1.17
  article-title: Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: Reviews of Modern Physics
  doi: 10.1103/RevModPhys.65.413
– year: 2006
  ident: 2025.04.25.650658v1.28
  publication-title: Electric Fields of the Brain
  doi: 10.1093/acprof:oso/9780195050387.001.0001
– volume: 4
  start-page: 3
  year: 2022
  ident: 2025.04.25.650658v1.40
  article-title: Intraoperative microseizure detection using a high-density micro-electrocorticography electrode array
  publication-title: Brain Communications
  doi: 10.1093/braincomms/fcac122
– volume: 20
  start-page: 1
  year: 2023
  ident: 2025.04.25.650658v1.1
  article-title: Sensing local field potentials with a directional and scalable depth electrode array
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/acb230
– volume: 116
  start-page: 827
  issue: 4
  year: 2005
  end-page: 841
  ident: 2025.04.25.650658v1.18
  article-title: Origins of the somatic N20 and high-frequency oscillations evoked by trigeminal stimulation in the piglets
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2004.10.010
– volume: 72
  start-page: 847
  issue: 5
  year: 2011
  end-page: 858
  ident: 2025.04.25.650658v1.19
  article-title: How local is the local field potential?
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.029
– year: 2024
  ident: 2025.04.25.650658v1.21
  article-title: Recording Quality Is Systematically Related to Electrode Impedance
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.202303401
– volume: 18
  start-page: 14
  issue: 6
  year: 2001
  end-page: 30
  ident: 2025.04.25.650658v1.2
  article-title: Electromagnetic brain mapping
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/79.962275
– year: 2024
  ident: 2025.04.25.650658v1.30
  article-title: The state of clinical trials of implantable brain–computer interfaces
  publication-title: Nature Reviews Bioengineering
  doi: 10.1038/s44222-024-00239-5
– volume: 3
  start-page: 3
  year: 2021
  ident: 2025.04.25.650658v1.5
  article-title: Electrocorticography and stereo EEG provide distinct measures of brain connectivity: implications for network models
  publication-title: Brain Communications
  doi: 10.1093/braincomms/fcab156
– volume: 58
  start-page: 921
  issue: 6
  year: 2017
  end-page: 932
  ident: 2025.04.25.650658v1.43
  article-title: Accuracy of intracranial electrode placement for stereoencephalography: A systematic review and meta-analysis
  publication-title: In Epilepsia
  doi: 10.1111/epi.13713
– year: 2018
  ident: 2025.04.25.650658v1.44
  article-title: Open3D: A Modern Library for 3D Data Processing
  publication-title: Arxiv
– volume: 32
  start-page: 193
  issue: 2
  year: 2019
  end-page: 214
  ident: 2025.04.25.650658v1.27
  article-title: Multi-Scale Neural Sources of EEG: Genuine
  publication-title: Equivalent, and Representative. A Tutorial Review. Brain Topography
  doi: 10.1007/s10548-019-00701-3
– ident: 2025.04.25.650658v1.6
  doi: 10.7554/eLife.44494.001
– volume: 197
  start-page: 716
  year: 2019
  end-page: 741
  ident: 2025.04.25.650658v1.29
  article-title: Cortical layers: Cyto-, myelo-, receptor-and synaptic architecture in human cortical areas
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.08.035
– volume: 111
  start-page: 49
  year: 2015
  end-page: 58
  ident: 2025.04.25.650658v1.25
  article-title: Invariance in current dipole moment density across brain structures and species: Physiological constraint for neuroimaging
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.02.003
– year: 2024
  ident: 2025.04.25.650658v1.38
  article-title: The speech neuroprosthesis
  publication-title: In Nature Reviews Neuroscience. Springer Nature
  doi: 10.1038/s41583-024-00819-9
– volume: 31
  start-page: 192
  issue: 2
  year: 2018
  end-page: 197
  ident: 2025.04.25.650658v1.12
  article-title: The current place of epilepsy surgery
  publication-title: In Current Opinion in Neurology
  doi: 10.1097/WCO.0000000000000528
– volume: 91
  start-page: 697
  issue: 4
  year: 1999
  end-page: 705
  ident: 2025.04.25.650658v1.14
  article-title: Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients
  publication-title: Journal of Neurosurgery
  doi: 10.3171/jns.1999.91.4.0697
– volume: 27
  start-page: 547
  issue: 3
  year: 2024
  end-page: 560
  ident: 2025.04.25.650658v1.24
  article-title: A ubiquitous spectrolaminar motif of local field potential power across the primate cortex
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-023-01554-7
– volume: 38
  start-page: 974
  issue: 2
  year: 2017
  end-page: 986
  ident: 2025.04.25.650658v1.20
  article-title: In-vivo measurements of human brain tissue conductivity using focal electrical current injection through intracerebral multicontact electrodes
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23431
– volume: 3
  start-page: 16066
  issue: 1
  year: 2017
  ident: 2025.04.25.650658v1.34
  article-title: State-of-the-art MEMS and microsystem tools for brain research
  publication-title: Microsystems & Nanoengineering
  doi: 10.1038/micronano.2016.66
– volume: 58
  start-page: 1131
  issue: 7
  year: 2017
  end-page: 1147
  ident: 2025.04.25.650658v1.4
  article-title: Defining epileptogenic networks: Contribution of SEEG and signal analysis
  publication-title: In Epilepsia
  doi: 10.1111/epi.13791
– volume: 76
  start-page: 2099
  issue: 5
  year: 2016
  end-page: 2122
  ident: 2025.04.25.650658v1.9
  article-title: Sparse sensor placement optimization for classification
  publication-title: SIAM Journal on Applied Mathematics
  doi: 10.1137/15M1036713
– volume: 9
  start-page: 286
  issue: 1
  year: 2022
  ident: 2025.04.25.650658v1.16
  article-title: A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping
  publication-title: Scientific Data
  doi: 10.1038/s41597-022-01413-3
– volume: 267
  year: 2023
  ident: 2025.04.25.650658v1.23
  article-title: Brainstorm-DUNEuro: An integrated and user-friendly Finite Element Method for modeling electromagnetic brain activity
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119851
– volume: 225
  year: 2021
  ident: 2025.04.25.650658v1.26
  article-title: Biophysically detailed forward modeling of the neural origin of EEG and MEG signals
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117467
– volume: 42
  start-page: 978
  issue: 4
  year: 2021
  end-page: 992
  ident: 2025.04.25.650658v1.31
  article-title: A comprehensive study on electroencephalography and magnetoencephalography sensitivity to cortical and subcortical sources
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.25272
– volume: 8
  start-page: 129
  issue: 2
  year: 2002
  end-page: 142
  ident: 2025.04.25.650658v1.36
  article-title: BrainSuite: An Automated Cortical Surface Identification Tool
  publication-title: Medical Image Analysis
– ident: 2025.04.25.650658v1.7
  publication-title: Cortical Surface Extraction Tutorial
– volume: 32
  start-page: 1371
  issue: 10
  year: 2017
  end-page: 1375
  ident: 2025.04.25.650658v1.33
  article-title: Directional leads for deep brain stimulation: Opportunities and challenges
  publication-title: Movement Disorders
  doi: 10.1002/mds.27096
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  end-page: 423
  ident: 2025.04.25.650658v1.35
  article-title: A Mathematical Theory of Communication
  publication-title: Bell System Technical Journal
– volume: 13
  start-page: 856
  issue: 5
  year: 2001
  end-page: 876
  ident: 2025.04.25.650658v1.37
  article-title: Magnetic Resonance Image Tissue Classification Using a Partial Volume Model
  publication-title: NeuroImage
– volume: 50
  start-page: 92
  year: 2018
  end-page: 100
  ident: 2025.04.25.650658v1.39
  article-title: Challenges and opportunities for large-scale electrophysiology with Neuropixels probes
  publication-title: In Current Opinion in Neurobiology
  doi: 10.1016/j.conb.2018.01.009
– year: 2021
  ident: 2025.04.25.650658v1.15
– volume: 163
  start-page: 456
  issue: 2
  year: 2015
  end-page: 492
  ident: 2025.04.25.650658v1.22
  article-title: Reconstruction and Simulation of Neocortical Microcircuitry
  publication-title: Cell
  doi: 10.1016/j.cell.2015.09.029
– volume: 97
  start-page: 11050
  issue: 20
  year: 2000
  end-page: 11055
  ident: 2025.04.25.650658v1.13
  article-title: Measuring the thickness of the human cerebral cortex from magnetic resonance images
  publication-title: Proc. Natl. Acad. Sci. USA
SSID ssj0002961374
Score 1.9230645
SecondaryResourceType preprint
Snippet Recent neurosurgery advancements include improved stereotactic targeting and increased electrode contacts. This study introduces a subject-specific, in silico...
SourceID unpaywall
pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Neuroscience
Title Optimizing electrode placement and information capacity for local field potentials in cortex
URI https://www.ncbi.nlm.nih.gov/pubmed/40832273
https://www.proquest.com/docview/3241317978
https://www.biorxiv.org/content/10.1101/2025.04.25.650658
https://pubmed.ncbi.nlm.nih.gov/PMC12363811
https://www.biorxiv.org/content/biorxiv/early/2025/04/28/2025.04.25.650658.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6Ifrmt_NjRPBNKkmbrs2rsjEE5xAHexBKmqQ4mN2Ym27-9d61tWxsD77kIbn043LJ3eWO3xFyE2oDVkHiOlq4whHGwDnoC-4ErkEwTJ54GXbnU6fR7onHvt9fKvWFaZXxYDSZD76yOD4mbMPpm29uxtFX9xGbFFqwLUB9bpMqiJjAbK5W_668XnEl6KlAFHHMjTPB4i3etMm6XE-S3J2lY7X4VsPhkgZq7ZNqV43t5IBs2fSQ7OQlJBdH5O0Z9vzH4Ac0EC1K2hhLs0wrvPejKjW0AEfFJaAalKMGy5tCF80UGc2S2Oh4hBxAaQR6qjEHd35Meq3m60PbKSomODEPUeS5khY8QslCyzzha1_6OgGjxrjaDZUC5yj0tdQiCEzDmAYMmkQyo3UgNCIjnpBKOkrtGaHSJsJarmLwd4RKpFQBYwpadGDiRNXIdcG9aJzjYkTI4YiJCNqcw0Dzx9cIpBZDESq1o9ln5GE4D4QhAJrTnM_lYwTDUybwaiRcWYGSABGxV0fSwXuGjI1QMmCC8Bq5LRernJa5O4yvf-b5P37lguxhH94mc_eSVKaTmb0Cc2Qa10n1vtnpvtQzAfwFVBjbyg
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVYhMqNnbIaiRtKZSdOE58RVdk5UKkHpMixHVGppFEXaPl6ZpIQUbUHLj7E4yzjiefNePRMyGWoDaCCxHW0cIUjjIF10BfcCVyDZJg88XLuzsenZrsj7rp-t0y4jcqyyrg3GE57n_k-PhZsw-pb_NyMY6zuIzcptIAtwH02ME29StbBzgRaeKvbqHIsrgRnFYhyM3PpcIC95eOWQczFSsnaJM3U7Ev1-3_cUGuLrL-ozA63yYpNd8hGcY7kbJe8PcOP_9H7BjdEy3NtjKV5uRUm_6hKDS0ZUnEeqAYPqQF-U7hEc29G80o2mg1QDWiSIE81FuJO90indfN63XbKYxOcmIdo91xJC2GhZKFlnvC1L32dALIxrnZDpSBCCn0ttQgC0zSmCZ0mkcxoHQiN9Ij7ZC0dpPaQUGkTYS1XMQQ9QiVSqoAxBS1GMXGi6uSi1F6UFeQYEWo4YiKCttAwyPzqNQLTxf0IldrBZBR5uKcHFhGAzEGh5-o2guFSE3h1Es7NQCWAtNjzPWnvPafHRj4ZwCG8Tq6qyaqG5TEP44uvefSPTzkntfbr40P0cPt0f0w2sR_Ty9w9IWvj4cSeAj4Zx2e5Ef4ATJve_g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT4QwFG5c4nJzd1xr4s0waaEM9KxO3J2Dk8zBhJS2RJIRyOio46_3PUAyRg9eeqCPAq-vfStfCTkOtQGrIHEdLVzhCGNgH_QFdwLXIBgmT7wSu_P2rnPRF1cDfzD1LwyWVcZpPvpI38o8PhZsw-5bLW7G0Vf3EZsUWrAtQH22MUzdLkwyS-ZB1gQ6YN1Bu4mzuBIUViDqhOafQ4DpWz_yLzPzd7Xk0jgr1ORdDYdTqqi7QuZ7qrCjVTJjszWyUJ0lOVknj_ew-J_TT1BFtD7bxlhallxhAJCqzNAaJRXngmrQkhpMcAqXaKnRaFnNRoscWYFiCfRUYzHuxwbpd88fTi-c-ugEJ-Yhyj5X0oJrKFlomSd87UtfJ2DdGFe7oVLgJYW-lloEgekY04FOk0hmtA6ERojETTKX5ZndJlTaRFjLVQyOj1CJlCpgTEGLnkycqBY5qrkXFRVARoQcjpiIoK04DDTffI1AfDEnoTKbj18iD_N6IBUB0GxVfG6GEQy3m8BrkfDHDDQECI39sydLn0qIbMSUAVuEt8hJM1nNbaXfw_jv19z5x6ccksXeWTe6uby73iXL2I0RZu7ukbnX0djug4nyGh-UMvgFkkDgDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+electrode+placement+and+information+capacity+for+local+field+potentials+in+cortex&rft.jtitle=bioRxiv&rft.au=Willis%2C+Jace+A&rft.au=Wright%2C+Christopher+E&rft.au=Zhu%2C+Ruoqian&rft.au=Ruan%2C+Yilan&rft.date=2025-08-12&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.04.25.650658&rft_id=info%3Apmid%2F40832273&rft.externalDocID=40832273
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon