Allosteric Modulation of MIF-2 Structure, Catalysis, and Biological Signaling via Cysteine Residues and a Small Molecule, Ebselen

The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Widjaja, Vinnie, D'Orazio, Sirena M, Das, Pragnya, Takada, Xander, Rajendran, Divya T, Shi, Yuanjun, Varghese, Iz, Lam, Yannie, Wang, Jimin, Batista, Victor S, Bhandari, Vineet, Lisi, George P
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory 19.05.2025
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2025.05.15.654344

Cover

Abstract The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-2 have shown them to possess N-to-C-terminal allosteric crosstalk, but despite the similarity of this "allosteric pathway," its regulation of MIF and MIF-2 is not identical. Thus, structure alone does not preserve the precise allosteric mechanism and additional residues that modulate MIF and MIF-2 allosteric function must be characterized. Cysteines have been identified as allosteric switches for the same biochemical functions of MIF and small molecules targeting its N-terminal enzymatic site have affected the structure of three proximal cysteines. Ebselen is a compound that forms covalent selenylsulfide bonds with MIF cysteines and is hypothesized to destabilize and dissociate the MIF trimer into monomers. Ebselen-bound MIF also displays little-to-no catalysis or biological signaling. However, it is unclear whether Ebselen similarly affects the MIF-2 paralog, despite MIF-2 containing two related cysteines (MIF contains three). We used mutagenesis, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and biochemistry to investigate the mechanism of Ebselen as an allosteric modulator of MIF-2 via its cysteines. Our findings suggest that Ebselen partially disrupts the MIF-2 homotrimer, though the overall population of such a structure is <35%, even on the timescale of many hours. Ebselen does attenuate the biological functions of MIF-2 and solution structural biology captures the conformational transitions preceding the destabilized MIF-2 trimer. The nearly identical MIF and MIF-2 structures have been recently shown to contain an N-to-C-terminal crosstalk between non-overlapping functional sites and . Small molecule inhibitors designed as therapeutics for the MIF superfamily have primarily targeted the N-terminal active site, while very few allosteric molecules have been reported. Ebselen, however, destabilizes MIF by covalently modifying its distal Cys80 residue and disrupting its obligate trimeric assembly. This unique mechanism has never been evaluated in the MIF-2 paralog, and this study reports the structural, dynamic, and functional impact of Ebselen on MIF-2. We define the essential structural hallmarks preceding trimer dissociation and reveal that Ebselen inhibits MIF-2 function before trimer disruption, leading to destabilized monomer-monomer interfaces that slowly degrade the quaternary assembly.
AbstractList The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-2 have shown them to possess N-to-C-terminal allosteric crosstalk, but despite the similarity of this “allosteric pathway,” its regulation of MIF and MIF-2 is not identical. Thus, structure alone does not preserve the precise allosteric mechanism and additional residues that modulate MIF and MIF-2 allosteric function must be characterized. Cysteines have been identified as allosteric switches for the same biochemical functions of MIF and small molecules targeting its N-terminal enzymatic site have affected the structure of three proximal cysteines. Ebselen is a compound that forms covalent selenylsulfide bonds with MIF cysteines and is hypothesized to destabilize and dissociate the MIF trimer into monomers. Ebselen-bound MIF also displays little-to-no catalysis or biological signaling. However, it is unclear whether Ebselen similarly affects the MIF-2 paralog, despite MIF-2 containing two related cysteines (MIF contains three). We used mutagenesis, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, in vitro and in vivo biochemistry to investigate the mechanism of Ebselen as an allosteric modulator of MIF-2 via its cysteines. Our findings suggest that Ebselen partially disrupts the MIF-2 homotrimer, though the overall population of such a structure is <35%, even on the timescale of many hours. Ebselen does attenuate the biological functions of MIF-2 and solution structural biology captures the conformational transitions preceding the destabilized MIF-2 trimer.
The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-2 have shown them to possess N-to-C-terminal allosteric crosstalk, but despite the similarity of this "allosteric pathway," its regulation of MIF and MIF-2 is not identical. Thus, structure alone does not preserve the precise allosteric mechanism and additional residues that modulate MIF and MIF-2 allosteric function must be characterized. Cysteines have been identified as allosteric switches for the same biochemical functions of MIF and small molecules targeting its N-terminal enzymatic site have affected the structure of three proximal cysteines. Ebselen is a compound that forms covalent selenylsulfide bonds with MIF cysteines and is hypothesized to destabilize and dissociate the MIF trimer into monomers. Ebselen-bound MIF also displays little-to-no catalysis or biological signaling. However, it is unclear whether Ebselen similarly affects the MIF-2 paralog, despite MIF-2 containing two related cysteines (MIF contains three). We used mutagenesis, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, and biochemistry to investigate the mechanism of Ebselen as an allosteric modulator of MIF-2 via its cysteines. Our findings suggest that Ebselen partially disrupts the MIF-2 homotrimer, though the overall population of such a structure is <35%, even on the timescale of many hours. Ebselen does attenuate the biological functions of MIF-2 and solution structural biology captures the conformational transitions preceding the destabilized MIF-2 trimer. The nearly identical MIF and MIF-2 structures have been recently shown to contain an N-to-C-terminal crosstalk between non-overlapping functional sites and . Small molecule inhibitors designed as therapeutics for the MIF superfamily have primarily targeted the N-terminal active site, while very few allosteric molecules have been reported. Ebselen, however, destabilizes MIF by covalently modifying its distal Cys80 residue and disrupting its obligate trimeric assembly. This unique mechanism has never been evaluated in the MIF-2 paralog, and this study reports the structural, dynamic, and functional impact of Ebselen on MIF-2. We define the essential structural hallmarks preceding trimer dissociation and reveal that Ebselen inhibits MIF-2 function before trimer disruption, leading to destabilized monomer-monomer interfaces that slowly degrade the quaternary assembly.
The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-2 have shown them to possess N-to-C-terminal allosteric crosstalk, but despite the similarity of this “allosteric pathway,” its regulation of MIF and MIF-2 is not identical. Thus, structure alone does not preserve the precise allosteric mechanism and additional residues that modulate MIF and MIF-2 allosteric function must be characterized. Cysteines have been identified as allosteric switches for the same biochemical functions of MIF and small molecules targeting its N-terminal enzymatic site have affected the structure of three proximal cysteines. Ebselen is a compound that forms covalent selenylsulfide bonds with MIF cysteines and is hypothesized to destabilize and dissociate the MIF trimer into monomers. Ebselen-bound MIF also displays little-to-no catalysis or biological signaling. However, it is unclear whether Ebselen similarly affects the MIF-2 paralog, despite MIF-2 containing two related cysteines (MIF contains three). We used mutagenesis, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, in vitro and in vivo biochemistry to investigate the mechanism of Ebselen as an allosteric modulator of MIF-2 via its cysteines. Our findings suggest that Ebselen partially disrupts the MIF-2 homotrimer, though the overall population of such a structure is <35%, even on the timescale of many hours. Ebselen does attenuate the biological functions of MIF-2 and solution structural biology captures the conformational transitions preceding the destabilized MIF-2 trimer. The nearly identical MIF and MIF-2 structures have been recently shown to contain an N-to-C-terminal crosstalk between non-overlapping functional sites in vitro and in vivo. Small molecule inhibitors designed as therapeutics for the MIF superfamily have primarily targeted the N-terminal active site, while very few allosteric molecules have been reported. Ebselen, however, destabilizes MIF by covalently modifying its distal Cys80 residue and disrupting its obligate trimeric assembly. This unique mechanism has never been evaluated in the MIF-2 paralog, and this study reports the structural, dynamic, and functional impact of Ebselen on MIF-2. We define the essential structural hallmarks preceding trimer dissociation and reveal that Ebselen inhibits MIF-2 function before trimer disruption, leading to destabilized monomer-monomer interfaces that slowly degrade the quaternary assembly.
The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-2 have shown them to possess N-to-C-terminal allosteric crosstalk, but despite the similarity of this "allosteric pathway," its regulation of MIF and MIF-2 is not identical. Thus, structure alone does not preserve the precise allosteric mechanism and additional residues that modulate MIF and MIF-2 allosteric function must be characterized. Cysteines have been identified as allosteric switches for the same biochemical functions of MIF and small molecules targeting its N-terminal enzymatic site have affected the structure of three proximal cysteines. Ebselen is a compound that forms covalent selenylsulfide bonds with MIF cysteines and is hypothesized to destabilize and dissociate the MIF trimer into monomers. Ebselen-bound MIF also displays little-to-no catalysis or biological signaling. However, it is unclear whether Ebselen similarly affects the MIF-2 paralog, despite MIF-2 containing two related cysteines (MIF contains three). We used mutagenesis, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, in vitro and in vivo biochemistry to investigate the mechanism of Ebselen as an allosteric modulator of MIF-2 via its cysteines. Our findings suggest that Ebselen partially disrupts the MIF-2 homotrimer, though the overall population of such a structure is <35%, even on the timescale of many hours. Ebselen does attenuate the biological functions of MIF-2 and solution structural biology captures the conformational transitions preceding the destabilized MIF-2 trimer.The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical tertiary and quaternary structures that contribute to their overlapping enzymatic and signaling activities. Recent investigations of MIF and MIF-2 have shown them to possess N-to-C-terminal allosteric crosstalk, but despite the similarity of this "allosteric pathway," its regulation of MIF and MIF-2 is not identical. Thus, structure alone does not preserve the precise allosteric mechanism and additional residues that modulate MIF and MIF-2 allosteric function must be characterized. Cysteines have been identified as allosteric switches for the same biochemical functions of MIF and small molecules targeting its N-terminal enzymatic site have affected the structure of three proximal cysteines. Ebselen is a compound that forms covalent selenylsulfide bonds with MIF cysteines and is hypothesized to destabilize and dissociate the MIF trimer into monomers. Ebselen-bound MIF also displays little-to-no catalysis or biological signaling. However, it is unclear whether Ebselen similarly affects the MIF-2 paralog, despite MIF-2 containing two related cysteines (MIF contains three). We used mutagenesis, nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations, in vitro and in vivo biochemistry to investigate the mechanism of Ebselen as an allosteric modulator of MIF-2 via its cysteines. Our findings suggest that Ebselen partially disrupts the MIF-2 homotrimer, though the overall population of such a structure is <35%, even on the timescale of many hours. Ebselen does attenuate the biological functions of MIF-2 and solution structural biology captures the conformational transitions preceding the destabilized MIF-2 trimer.The nearly identical MIF and MIF-2 structures have been recently shown to contain an N-to-C-terminal crosstalk between non-overlapping functional sites in vitro and in vivo . Small molecule inhibitors designed as therapeutics for the MIF superfamily have primarily targeted the N-terminal active site, while very few allosteric molecules have been reported. Ebselen, however, destabilizes MIF by covalently modifying its distal Cys80 residue and disrupting its obligate trimeric assembly. This unique mechanism has never been evaluated in the MIF-2 paralog, and this study reports the structural, dynamic, and functional impact of Ebselen on MIF-2. We define the essential structural hallmarks preceding trimer dissociation and reveal that Ebselen inhibits MIF-2 function before trimer disruption, leading to destabilized monomer-monomer interfaces that slowly degrade the quaternary assembly.Significance StatementThe nearly identical MIF and MIF-2 structures have been recently shown to contain an N-to-C-terminal crosstalk between non-overlapping functional sites in vitro and in vivo . Small molecule inhibitors designed as therapeutics for the MIF superfamily have primarily targeted the N-terminal active site, while very few allosteric molecules have been reported. Ebselen, however, destabilizes MIF by covalently modifying its distal Cys80 residue and disrupting its obligate trimeric assembly. This unique mechanism has never been evaluated in the MIF-2 paralog, and this study reports the structural, dynamic, and functional impact of Ebselen on MIF-2. We define the essential structural hallmarks preceding trimer dissociation and reveal that Ebselen inhibits MIF-2 function before trimer disruption, leading to destabilized monomer-monomer interfaces that slowly degrade the quaternary assembly.
Author D'Orazio, Sirena M
Lisi, George P
Takada, Xander
Lam, Yannie
Wang, Jimin
Das, Pragnya
Shi, Yuanjun
Varghese, Iz
Batista, Victor S
Widjaja, Vinnie
Bhandari, Vineet
Rajendran, Divya T
Author_xml – sequence: 1
  givenname: Vinnie
  surname: Widjaja
  fullname: Widjaja, Vinnie
– sequence: 2
  givenname: Sirena M
  surname: D'Orazio
  fullname: D'Orazio, Sirena M
– sequence: 3
  givenname: Pragnya
  surname: Das
  fullname: Das, Pragnya
– sequence: 4
  givenname: Xander
  surname: Takada
  fullname: Takada, Xander
– sequence: 5
  givenname: Divya T
  surname: Rajendran
  fullname: Rajendran, Divya T
– sequence: 6
  givenname: Yuanjun
  surname: Shi
  fullname: Shi, Yuanjun
– sequence: 7
  givenname: Iz
  surname: Varghese
  fullname: Varghese, Iz
– sequence: 8
  givenname: Yannie
  surname: Lam
  fullname: Lam, Yannie
– sequence: 9
  givenname: Jimin
  surname: Wang
  fullname: Wang, Jimin
– sequence: 10
  givenname: Victor S
  surname: Batista
  fullname: Batista, Victor S
– sequence: 11
  givenname: Vineet
  surname: Bhandari
  fullname: Bhandari, Vineet
– sequence: 12
  givenname: George P
  orcidid: 0000-0001-8878-5655
  surname: Lisi
  fullname: Lisi, George P
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40475628$$D View this record in MEDLINE/PubMed
BookMark eNptkU1v1DAQhi1URD_oD-CCfOTQLDP-SJwTaldtqdQKiYWz5TjOYuS1lzhZ2GP_ebNsKUXiNCPNvM_MvHNMDmKKjpA3CDNEwPcMmJyBnKGclVJwIV6QI1bWrFAM5MGz_JCc5vwdAFhdIq_EK3IoQFSyZOqI3J-HkPLgem_pXWrHYAafIk0dvbu5KhhdDP1oh7F3Z3RuBhO22eczamJLL3wKaemtCXThl9EEH5d04w2dbyeej45-dtm3o8u_2w1drEwI05Dg7Bgm3mWTXXDxNXnZmZDd6WM8IV-vLr_MPxa3n65v5ue3RYNKiaLCyrm6Q-BKdtDyqpOoKiaktQ5UK62EDmXjjFV103RQy07WTAEgFwYbxU8I23PHuDbbn9Muet37lem3GkHvLNU7SzVIjVLvLZ1EH_ai9disXGtdHHrzV5iM1_9Wov-ml2mjkSGvK1ZPhHd7QuNT_8tvnrT_G_bYuu7Tj8m3Qa98ti4EE10as-YMS15KyXbHvH2-1xP0z2P5Aw2ppKM
ContentType Journal Article
Paper
Copyright 2025, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2025, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
5PM
UNPAY
DOI 10.1101/2025.05.15.654344
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
PubMed Central (Full Participant titles)
Unpaywall
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 10.1101/2025.05.15.654344
PMC12139729
2025.05.15.654344v1
40475628
Genre Journal Article
Preprint
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
5PM
UNPAY
ID FETCH-LOGICAL-b1884-717ee9f10385f0d37f5187245cce08d5c50f15beac89bbf095f592800134a1b83
IEDL.DBID UNPAY
ISSN 2692-8205
IngestDate Sun Oct 26 03:56:55 EDT 2025
Tue Sep 30 17:02:23 EDT 2025
Sat May 24 15:44:47 EDT 2025
Fri Sep 05 15:58:07 EDT 2025
Sat Oct 25 02:01:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language English
License The copyright holder for this pre-print is the author. All rights reserved. The material may not be redistributed, re-used or adapted without the author's permission.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1884-717ee9f10385f0d37f5187245cce08d5c50f15beac89bbf095f592800134a1b83
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-8878-5655
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.biorxiv.org/content/biorxiv/early/2025/05/19/2025.05.15.654344.full.pdf
PMID 40475628
PQID 3216365528
PQPubID 23479
PageCount 27
ParticipantIDs unpaywall_primary_10_1101_2025_05_15_654344
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12139729
biorxiv_primary_2025_05_15_654344
proquest_miscellaneous_3216365528
pubmed_primary_40475628
PublicationCentury 2000
PublicationDate 2025-May-19
20250519
PublicationDateYYYYMMDD 2025-05-19
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-May-19
  day: 19
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2025
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References 41099614 - Protein Sci. 2025 Nov;34(11):e70344. doi: 10.1002/pro.70344.
Zhao, Holmgren (2025.05.15.654344v1.30) 2002; 277
Olsson, Søndergaard, Rostkowski, Jensen (2025.05.15.654344v1.53) 2011; 7
Grzesiek, Stahl, Wingfield, Bax (2025.05.15.654344v1.44) 1996; 35
Winn, Ballard, Cowtan, Dodson, Emsley, Evans (2025.05.15.654344v1.58) 2011; 67
Cooke, Armstrong, Donnelly (2025.05.15.654344v1.19) 2009; 35
Schneider (2025.05.15.654344v1.59) 2009; 23
Parkins, Chen, Rangel, Singh, Xue, Lisi (2025.05.15.654344v1.13) 2023
Hopkins, Le Grand, Walker, Roitberg (2025.05.15.654344v1.57) 2015; 11
Su, Jergic, Ozawa, Burns, Dixon, Otting (2025.05.15.654344v1.16) 2007; 38
Tilstam, Pantouris, Corman, Andreoli, Mahboubi, Davis (2025.05.15.654344v1.38) 2019; 294
Zhu, Xia, Nicholson, Sze (2025.05.15.654344v1.45) 2000; 143
DeLano (2025.05.15.654344v1.60) 2002; 40
Parkins, Skeens, McCallum, Lisi, Pantouris (2025.05.15.654344v1.20) 2021; 120
Tilstam, Schulte, Holowka, Kim, Nouws, Sauler (2025.05.15.654344v1.11) 2021; 131
Fan, Rajasekaran, Syed, Leng, Loria, Bhandari (2025.05.15.654344v1.12) 2013; 110
Merk, Mitchell, Endres, Bucala (2025.05.15.654344v1.1) 2012; 59
Case, Aktulga, Belfon, Cerutti, Cisneros, Cruzeiro (2025.05.15.654344v1.50) 2023; 63
Coleman, Rendon, Zhao, Qian, Bucala, Xin (2025.05.15.654344v1.27) 2008; 181
Chen, Reiss, Shah, Manjula, Allen, Murphy (2025.05.15.654344v1.2) 2021; 297
Pantouris, Syed, Fan, Rajasekaran, Cho, Rosenberg (2025.05.15.654344v1.33) 2015; 22
Landgraf, Alsegiani, Alaqel, Thanna, Shah, Sucheck (2025.05.15.654344v1.29) 2020; 11
Case, Aktulga, Belfon, Ben-Shalom, Berryman, Brozell, Cerutti, Cheatham, Cisneros, Cruzeiro, Darden, Forouzesh, Ghazimirsaeed, Giambaşu, Giese, Gilson, Gohlke, Goetz, Harris, Huang, Izadi, Izmailov, Kasavajhala, Kaymak, Kolossváry, Kovalenko, Kurtzman, Lee, Li, Li, Lin, Liu, Luchko, Luo, Machado, Manathunga, Merz, Miao, Mikhailovskii, Monard, Nguyen, O’Hearn, Onufriev, Pan, Pantano, Rahnamoun, Roe, Roitberg, Sagui, Schott-Verdugo, Shajan, Shen, Simmerling, Skrynnikov, Smith, Swails, Walker, Wang, Wang, Wu, Xiong, Xue, York, Zhao, Zhu, Kollman (2025.05.15.654344v1.51) 2025
Kay, Torchia, Bax (2025.05.15.654344v1.46) 1989; 28
Skeens, Gadzuk-Shea, Shah, Bhandari, Schweppe, Berlow (2025.05.15.654344v1.26) 2022; 30
De Brauwer, Jacobs, Nieman, Bruggeman, Drent (2025.05.15.654344v1.22) 2002; 24
Parkins, Das, Prahaladan, Rangel, Xue, Sankaran (2025.05.15.654344v1.23) 2023; 31
Cho, Crichlow, Vermeire, Leng, Du, Hodsdon (2025.05.15.654344v1.7) 2010; 107
Wand, Sharp (2025.05.15.654344v1.15) 2018; 47
Zhao, Masayasu, Holmgren (2025.05.15.654344v1.31) 2002; 99
Capper, Wright, Barbieri, Luchinat, Mercatelli, McAlary (2025.05.15.654344v1.32) 2018; 9
Winner, Meier, Zierow, Rendon, Crichlow, Riggs (2025.05.15.654344v1.6) 2008; 68
Xiao, Osipyan, Song, Chen, Schut, van Merkerk (2025.05.15.654344v1.40) 2022; 65
Al-Abed, Dabideen, Aljabari, Valster, Messmer, Ochani (2025.05.15.654344v1.39) 2005; 280
Lee, Tonelli, Markley (2025.05.15.654344v1.43) 2015; 31
Jorgensen, Tirado-Rives (2025.05.15.654344v1.54) 1988; 110
De Lorenzi, Masserdotti, Bertoncello, Tranquillo (2025.05.15.654344v1.21) 2009; 38
Pantouris, Bucala, Lolis (2025.05.15.654344v1.34) 2018; 57
Pettersen, Goddard, Huang, Couch, Greenblatt, Meng (2025.05.15.654344v1.48) 2004; 25
Zhao, Hu, Yang, Zhong, Liu, Wang (2025.05.15.654344v1.17) 2022; 13
Trott, Olson (2025.05.15.654344v1.47) 2010; 31
Chen, Widjaja, Kyro, Allen, Das, Prahaladan (2025.05.15.654344v1.3) 2023; 299
Sajko, Skeens, Schinagl, Ferhat, Mirkina, Mayer (2025.05.15.654344v1.37) 2024; 75
Klein (2025.05.15.654344v1.55) 1983; 79
2025.05.15.654344v1.52
Trivedi-Parmar, Jorgensen (2025.05.15.654344v1.5) 2018; 61
Thiele, Bernhagen (2025.05.15.654344v1.36) 2005; 7
Skeens, Pantouris, Shah, Manjula, Ombrello, Maluf (2025.05.15.654344v1.25) 2022; 9
Feng, Li, Sun, Li, Yuan, Guan (2025.05.15.654344v1.28) 2020; 12
Shi, Leng, Wang, Wang, Du, Li (2025.05.15.654344v1.41) 2006; 25
Lange, Lakomek, Farès, Schröder, Walter, Becker (2025.05.15.654344v1.9) 2008; 320
Shakhnovich (2025.05.15.654344v1.10) 2006; 106
Lisi, Loria (2025.05.15.654344v1.14) 2016; 116
Schinagl, Thiele, Douillard, Völkel, Kenner, Kazemi (2025.05.15.654344v1.35) 2016; 7
Malde, Zuo, Breeze, Stroet, Poger, Nair (2025.05.15.654344v1.49) 2011; 7
Purslow, Khatiwada, Bayro, Venditti (2025.05.15.654344v1.18) 2020; 7
Delaglio, Grzesiek, Vuister, Zhu, Pfeifer, Bax (2025.05.15.654344v1.42) 1995; 6
Lubetsky, Dios, Han, Aljabari, Ruzsicska, Mitchell (2025.05.15.654344v1.4) 2002; 277
Ouertatani-Sakouhi, El-Turk, Fauvet, Cho, Pinar Karpinar, Le Roy (2025.05.15.654344v1.8) 2010; 285
Leng, Metz, Fang, Xu, Donnelly, Baugh (2025.05.15.654344v1.61) 2003; 197
Schinagl, Kerschbaumer, Sabarth, Douillard, Scholz, Voelkel (2025.05.15.654344v1.24) 2018; 57
Phillips, Braun, Wang, Gumbart, Tajkhorshid, Villa (2025.05.15.654344v1.56) 2005; 26
References_xml – reference: 41099614 - Protein Sci. 2025 Nov;34(11):e70344. doi: 10.1002/pro.70344.
– volume: 75
  start-page: 103264
  year: 2024
  ident: 2025.05.15.654344v1.37
  article-title: Redox-dependent plasticity of oxMIF facilitates its interaction with CD74 and therapeutic antibodies
  publication-title: Redox Biol
– volume: 79
  start-page: 926
  year: 1983
  end-page: 36
  ident: 2025.05.15.654344v1.55
  article-title: Comparison of simple potential functions for simulating liquid wate
  publication-title: J Chem Phys
– volume: 106
  start-page: 1559
  issue: 5
  year: 2006
  end-page: 88
  ident: 2025.05.15.654344v1.10
  article-title: Protein folding thermodynamics and dynamics: where physics, chemistry, and biology meet
  publication-title: Chem Rev
– volume: 31
  start-page: 1325
  issue: 8
  year: 2015
  end-page: 7
  ident: 2025.05.15.654344v1.43
  article-title: NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy
  publication-title: Bioinformatics
– volume: 120
  start-page: 3893
  issue: 18
  year: 2021
  end-page: 900
  ident: 2025.05.15.654344v1.20
  article-title: The N-terminus of MIF regulates the dynamic profile of residues involved in CD74 activation
  publication-title: Biophys J
– volume: 23
  start-page: 121
  issue: 2
  year: 2009
  end-page: 32
  ident: 2025.05.15.654344v1.59
  article-title: ProLif: An interactive software tool for protein-ligand interaction analysis
  publication-title: J Comput Aided Mol Des
– volume: 99
  start-page: 8579
  issue: 13
  year: 2002
  end-page: 84
  ident: 2025.05.15.654344v1.31
  article-title: Ebselen: a substrate for human thioredoxin reductase strongly stimulating its hydroperoxide reductase activity and a superfast thioredoxin oxidant
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 1781
  issue: 16
  year: 2005
  end-page: 802
  ident: 2025.05.15.654344v1.56
  article-title: Scalable molecular dynamics with NAMD
  publication-title: J Comput Chem
– volume: 59
  start-page: 10
  issue: 1
  year: 2012
  end-page: 7
  ident: 2025.05.15.654344v1.1
  article-title: D-dopachrome tautomerase (D-DT or MIF-2): doubling the MIF cytokine family
  publication-title: Cytokine
– volume: 280
  start-page: 36541
  issue: 44
  year: 2005
  end-page: 4
  ident: 2025.05.15.654344v1.39
  article-title: ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis
  publication-title: J Biol Chem
– year: 2023
  ident: 2025.05.15.654344v1.13
  article-title: Ligand-induced conformational changes enable intersubunit communications in D-dopachrome tautomerase
  publication-title: Biophys J
– volume: 47
  start-page: 41
  year: 2018
  end-page: 61
  ident: 2025.05.15.654344v1.15
  article-title: Measuring Entropy in Molecular Recognition by Proteins
  publication-title: Annu Rev Biophys
– volume: 24
  start-page: 337
  issue: 6
  year: 2002
  end-page: 41
  ident: 2025.05.15.654344v1.22
  article-title: Bronchoalveolar lavage fluid differential cell count. How many cells should be counted?
  publication-title: Anal Quant Cytol Histol
– volume: 297
  start-page: 101061
  issue: 3
  year: 2021
  ident: 2025.05.15.654344v1.2
  article-title: A structurally preserved allosteric site in the MIF superfamily affects enzymatic activity and CD74 activation in D-dopachrome tautomerase
  publication-title: J Biol Chem
– volume: 68
  start-page: 7253
  issue: 18
  year: 2008
  end-page: 7
  ident: 2025.05.15.654344v1.6
  article-title: A novel, macrophage migration inhibitory factor suicide substrate inhibits motility and growth of lung cancer cells
  publication-title: Cancer Res
– volume: 61
  start-page: 8104
  issue: 18
  year: 2018
  end-page: 19
  ident: 2025.05.15.654344v1.5
  article-title: Advances and Insights for Small Molecule Inhibition of Macrophage Migration Inhibitory Factor
  publication-title: J Med Chem
– volume: 7
  start-page: 525
  issue: 2
  year: 2011
  end-page: 37
  ident: 2025.05.15.654344v1.53
  article-title: PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions
  publication-title: J Chem Theory Comput
– volume: 28
  start-page: 8972
  issue: 23
  year: 1989
  end-page: 9
  ident: 2025.05.15.654344v1.46
  article-title: Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease
  publication-title: Biochemistry
– ident: 2025.05.15.654344v1.52
– volume: 9
  start-page: 1693
  issue: 1
  year: 2018
  ident: 2025.05.15.654344v1.32
  article-title: The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation
  publication-title: Nat Commun
– volume: 320
  start-page: 1471
  issue: 5882
  year: 2008
  end-page: 5
  ident: 2025.05.15.654344v1.9
  article-title: Recognition dynamics up to microseconds revealed from an RDC-derived ubiquitin ensemble in solution
  publication-title: Science
– volume: 110
  start-page: 1657
  issue: 6
  year: 1988
  end-page: 66
  ident: 2025.05.15.654344v1.54
  article-title: The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin
  publication-title: J Am Chem Soc
– volume: 67
  start-page: 235
  issue: 4
  year: 2011
  end-page: 42
  ident: 2025.05.15.654344v1.58
  article-title: Overview of the CCP4 suite and current developments
  publication-title: Acta Crystallogr D Biol Crystallogr
– volume: 7
  start-page: 9
  year: 2020
  ident: 2025.05.15.654344v1.18
  article-title: NMR Methods for Structural Characterization of Protein-Protein Complexes
  publication-title: Front Mol Biosci
– volume: 38
  start-page: 65
  issue: 1
  year: 2007
  end-page: 72
  ident: 2025.05.15.654344v1.16
  article-title: Measurement of dissociation constants of high-molecular weight protein-protein complexes by transferred 15N-relaxation
  publication-title: J Biomol NMR
– volume: 107
  start-page: 11313
  issue: 25
  year: 2010
  end-page: 8
  ident: 2025.05.15.654344v1.7
  article-title: Allosteric inhibition of macrophage migration inhibitory factor revealed by ibudilast
  publication-title: Proc Natl Acad Sci U S A
– volume: 25
  start-page: 1605
  issue: 13
  year: 2004
  end-page: 12
  ident: 2025.05.15.654344v1.48
  article-title: UCSF Chimera--a visualization system for exploratory research and analysis
  publication-title: J Comput Chem
– volume: 277
  start-page: 24976
  issue: 28
  year: 2002
  end-page: 82
  ident: 2025.05.15.654344v1.4
  article-title: The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents
  publication-title: J Biol Chem
– volume: 181
  start-page: 2330
  issue: 4
  year: 2008
  end-page: 7
  ident: 2025.05.15.654344v1.27
  article-title: Cooperative regulation of non-small cell lung carcinoma angiogenic potential by macrophage migration inhibitory factor and its homolog, D-dopachrome tautomerase
  publication-title: J Immunol
– volume: 116
  start-page: 6323
  issue: 11
  year: 2016
  end-page: 69
  ident: 2025.05.15.654344v1.14
  article-title: Solution NMR Spectroscopy for the Study of Enzyme Allostery
  publication-title: Chem Rev
– volume: 30
  start-page: 840
  issue: 6
  year: 2022
  end-page: 50.e6
  ident: 2025.05.15.654344v1.26
  article-title: Redox-dependent structure and dynamics of macrophage migration inhibitory factor reveal sites of latent allostery
  publication-title: Structure
– volume: 299
  start-page: 104729
  issue: 6
  year: 2023
  ident: 2025.05.15.654344v1.3
  article-title: Mapping N-to C-terminal allosteric coupling through disruption of a putative CD74 activation site in D-dopachrome tautomerase
  publication-title: J Biol Chem
– volume: 63
  start-page: 6183
  issue: 20
  year: 2023
  end-page: 91
  ident: 2025.05.15.654344v1.50
  article-title: AmberTools
  publication-title: Journal of Chemical Information and Modeling
– volume: 110
  start-page: 10994
  issue: 27
  year: 2013
  end-page: 9
  ident: 2025.05.15.654344v1.12
  article-title: MIF intersubunit disulfide mutant antagonist supports activation of CD74 by endogenous MIF trimer at physiologic concentrations
  publication-title: Proc Natl Acad Sci U S A
– volume: 13
  start-page: 7071
  issue: 1
  year: 2022
  ident: 2025.05.15.654344v1.17
  article-title: A redox switch regulates the assembly and anti-CRISPR activity of AcrIIC1
  publication-title: Nat Commun
– volume: 35
  start-page: 10256
  issue: 32
  year: 1996
  end-page: 61
  ident: 2025.05.15.654344v1.44
  article-title: The CD4 determinant for downregulation by HIV-1 Nef directly binds to Nef. Mapping of the Nef binding surface by NMR
  publication-title: Biochemistry
– volume: 6
  start-page: 277
  issue: 3
  year: 1995
  end-page: 93
  ident: 2025.05.15.654344v1.42
  article-title: NMRPipe: a multidimensional spectral processing system based on UNIX pipes
  publication-title: J Biomol NMR
– volume: 143
  start-page: 423
  issue: 2
  year: 2000
  end-page: 6
  ident: 2025.05.15.654344v1.45
  article-title: Protein dynamics measurements by TROSY-based NMR experiments
  publication-title: J Magn Reson
– volume: 31
  start-page: 455
  issue: 2
  year: 2010
  end-page: 61
  ident: 2025.05.15.654344v1.47
  article-title: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading
  publication-title: J Comput Chem
– volume: 294
  start-page: 18522
  issue: 49
  year: 2019
  end-page: 31
  ident: 2025.05.15.654344v1.38
  article-title: A selective small-molecule inhibitor of macrophage migration inhibitory factor-2 (MIF-2), a MIF cytokine superfamily member, inhibits MIF-2 biological activity
  publication-title: J Biol Chem
– volume: 11
  start-page: 1864
  issue: 4
  year: 2015
  end-page: 74
  ident: 2025.05.15.654344v1.57
  article-title: Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning
  publication-title: J Chem Theory Comput
– volume: 12
  start-page: 6921
  year: 2020
  end-page: 34
  ident: 2025.05.15.654344v1.28
  article-title: Discovery of Ebselen as an Inhibitor of 6PGD for Suppressing Tumor Growth
  publication-title: Cancer Manag Res
– volume: 57
  start-page: 3599
  issue: 26
  year: 2018
  end-page: 605
  ident: 2025.05.15.654344v1.34
  article-title: Structural Plasticity in the C-Terminal Region of Macrophage Migration Inhibitory Factor-2 Is Associated with an Induced Fit Mechanism for a Selective Inhibitor
  publication-title: Biochemistry
– volume: 197
  start-page: 1467
  issue: 11
  year: 2003
  end-page: 76
  ident: 2025.05.15.654344v1.61
  article-title: MIF signal transduction initiated by binding to CD74
  publication-title: J Exp Med
– volume: 38
  start-page: 532
  issue: 4
  year: 2009
  end-page: 6
  ident: 2025.05.15.654344v1.21
  article-title: Differential cell counts in canine cytocentrifuged bronchoalveolar lavage fluid: a study on reliable enumeration of each cell type
  publication-title: Vet Clin Pathol
– volume: 65
  start-page: 2059
  issue: 3
  year: 2022
  end-page: 77
  ident: 2025.05.15.654344v1.40
  article-title: Thieno[2,3-d]pyrimidine-2,4(1H,3H)-dione Derivative Inhibits d-Dopachrome Tautomerase Activity and Suppresses the Proliferation of Non-Small Cell Lung Cancer Cells
  publication-title: J Med Chem
– volume: 7
  start-page: 73486
  issue: 45
  year: 2016
  end-page: 96
  ident: 2025.05.15.654344v1.35
  article-title: Oxidized macrophage migration inhibitory factor is a potential new tissue marker and drug target in cancer
  publication-title: Oncotarget
– volume: 277
  start-page: 39456
  issue: 42
  year: 2002
  end-page: 62
  ident: 2025.05.15.654344v1.30
  article-title: A novel antioxidant mechanism of ebselen involving ebselen diselenide, a substrate of mammalian thioredoxin and thioredoxin reductase
  publication-title: J Biol Chem
– volume: 11
  start-page: 3008
  issue: 19
  year: 2020
  end-page: 16
  ident: 2025.05.15.654344v1.29
  article-title: Neuroprotective and Anti-neuroinflammatory Properties of Ebselen Derivatives and Their Potential to Inhibit Neurodegeneration
  publication-title: ACS Chem Neurosci
– volume: 25
  start-page: 595
  issue: 4
  year: 2006
  end-page: 606
  ident: 2025.05.15.654344v1.41
  article-title: CD44 is the signaling component of the macrophage migration inhibitory factor-CD74 receptor complex
  publication-title: Immunity
– volume: 285
  start-page: 26581
  issue: 34
  year: 2010
  end-page: 98
  ident: 2025.05.15.654344v1.8
  article-title: Identification and characterization of novel classes of macrophage migration inhibitory factor (MIF) inhibitors with distinct mechanisms of action
  publication-title: J Biol Chem
– volume: 57
  start-page: 1523
  issue: 9
  year: 2018
  end-page: 32
  ident: 2025.05.15.654344v1.24
  article-title: Role of the Cysteine 81 Residue of Macrophage Migration Inhibitory Factor as a Molecular Redox Switch
  publication-title: Biochemistry
– volume: 7
  start-page: 4026
  issue: 12
  year: 2011
  end-page: 37
  ident: 2025.05.15.654344v1.49
  article-title: An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0
  publication-title: J Chem Theory Comput
– volume: 131
  issue: 23
  year: 2021
  ident: 2025.05.15.654344v1.11
  article-title: MIF but not MIF-2 recruits inflammatory macrophages in an experimental polymicrobial sepsis model
  publication-title: J Clin Invest
– volume: 7
  start-page: 1234
  issue: 9-10
  year: 2005
  end-page: 48
  ident: 2025.05.15.654344v1.36
  article-title: Link between macrophage migration inhibitory factor and cellular redox regulation
  publication-title: Antioxid Redox Signal
– volume: 35
  start-page: 165
  issue: 2
  year: 2009
  end-page: 8
  ident: 2025.05.15.654344v1.19
  article-title: Macrophage migration inhibitory factor (MIF), enzymatic activity and the inflammatory response
  publication-title: Biofactors
– volume: 9
  start-page: 783669
  year: 2022
  ident: 2025.05.15.654344v1.25
  article-title: A Cysteine Variant at an Allosteric Site Alters MIF Dynamics and Biological Function in Homo- and Heterotrimeric Assemblies
  publication-title: Front Mol Biosci
– volume: 22
  start-page: 1197
  issue: 9
  year: 2015
  end-page: 205
  ident: 2025.05.15.654344v1.33
  article-title: An Analysis of MIF Structural Features that Control Functional Activation of CD74
  publication-title: Chem Biol
– volume: 31
  start-page: 355
  issue: 3
  year: 2023
  end-page: 67.e4
  ident: 2025.05.15.654344v1.23
  article-title: 2,5-Pyridinedicarboxylic acid is a bioactive and highly selective inhibitor of D-dopachrome tautomerase
  publication-title: Structure
– year: 2025
  ident: 2025.05.15.654344v1.51
  publication-title: AMBER
– volume: 40
  start-page: 82
  year: 2002
  end-page: 9
  ident: 2025.05.15.654344v1.60
  article-title: PyMOL: An open-source molecular graphics tool
  publication-title: CCP4 Newsletter on Protein Crystallography
SSID ssj0002961374
Score 1.9121965
SecondaryResourceType preprint
Snippet The macrophage migration inhibitory factor (MIF) family of cytokines comprised of the MIF and D-dopachrome tautomerase (or MIF-2) paralogs share identical...
SourceID unpaywall
pubmedcentral
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Biophysics
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagFYIbb5aXjMSNprIde20f0aqrgrQIsVTaW2Qndom0OKul29Ij_5wZJ0St2gPX-BHHn2N_Y4-_IeQ9K2MZau2KJlpTSNvYwjnOiyBdiCKqyPINucWX6fGJ_LxSqyuhvtCt0rfd9nd7ns_x0WEbZt_-52YcbXWFUptcHeZbkfIu2dewxKM313x1OG6vCAvrlJbDOeatJYHxDm-6jV3edJK8v0sbd3nh1usrK9D8Idn_6jZh-4jcCekxudeHkLx8Qv58XK_xngZMZ3TRNUMwLtpFuvg0LwRdZn3Y3TYc0Bnu1KAAyQF1qaF9FYgRXbanyMfTKT1vHZ2huDOQT_otwFCF5ubsji5_QqPgJTmeLtR35DFSU3pKTuZH32fHxRBWofDcGPS-1CHYiMroAEVT6qi40UKqug7MNKpWLHLlYUY21nsAS0VlhUGyKB33pnxG9lKXwgtCmXEyagFGpPHSxmhrWOrcVMTa6rIW5YS8G7q42vTiGRXCUDFVcVX1MECef51fwdDG8wqXQrf7VZUCyOJUKWEm5HkPxliNZFIDdYMUcw2mMQPKZl9PSe2PLJ-NInYWbIoJ-TAiOhbLNhHjN5v58j8-5RV5gM_QuYDb12QPEA5vgLOc-bd5dP4F_Sfl2g
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
Title Allosteric Modulation of MIF-2 Structure, Catalysis, and Biological Signaling via Cysteine Residues and a Small Molecule, Ebselen
URI https://www.ncbi.nlm.nih.gov/pubmed/40475628
https://www.proquest.com/docview/3216365528
https://www.biorxiv.org/content/10.1101/2025.05.15.654344
https://pubmed.ncbi.nlm.nih.gov/PMC12139729
https://www.biorxiv.org/content/biorxiv/early/2025/05/19/2025.05.15.654344.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbY9sCJBfEqWiojcWOTxond2MdStVqQWq22VCqnyE7sJaIk1W67PG78c2YSb8VSLkjcosSPeDy2v7HH3xDyOkpcYvNUB4VTMuCqUIHWjAWWa-tiJ1zU3JCbzYdnS_5-JVb-Zt21d6s0ZX31rbxpzvHRYRtm34F_N7BI-4sWuxhEYsBU84jcm0yEzTVJHuK-dbgp3BHpDgUA9A7pLufno4_-TBN08DAToF9fw9-Q5qHD5P1dtdHfv-r1-rfVaHpMtrftaJ1QPoe7rQnzH39QPP7nhj4kDzx6paNW3R6Re7Z6TH6O1mu8KgIzKp3VhY8HRmtHZ--mQUwXDUXt7sqe0jFuFiEHyinVVUHbQJioJnRRXqJJUF3Sm1LTMfJLA_6lFxZGC0ipSa7p4gvIAippQvpCeRODwaKqJ2Q5nXwYnwU-skNgmJToAJpaqxySs4M2FEnqBJNpzEWe20gWIheRY8LAoiCVMaAvwgkVS8SrXDMjk6ekU9WVfU5oJDV3aQx2rDRcOadyWG31MHa5SpM8TnrklRdptmn5OzKUZBaJjImslSSkue3zDEYXHpnoyta76yyJAa8OhYhljzxrdWBfDI94CugRvsg72rFPgMzdd79U5aeGwRt59BSYNT3yZq9I-2yNWRaxw9988U-pT0gHute-BMy0NX3SfTuZn1_0ydF0Ffb9iPgFkRcY2g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaUAW3vrv05Uq9laxix17bx2rFamlZVHVB2ltkJzaNtDirhaXlyD9nJkmjIjj0Gj_i-JvYM-PxN4R8TrOQ-ULZpAxGJ8KUJrGWscQL6wMPMqTNDbnZ8Wh6Kr4t5KJzuF10YZWuqtd_qqvmHB8DtmH1bX_ulKGtLpFqk8lhcytSDNFN_ZhsK9jnUcIni2HvY4EnLFOiO8x8sDmovd3rHlIx70dK7mziyl7_tsvlP9vQ5CnZ_mFXfv2MPPLxOXnS5pG8fkFuvi6XeFkD1jQ6q8suIxetA50dThJO5w1J7Gbt9-kY3TXIQrJPbSxp2wUCRefVGSrl8YxeVZaOkeEZNFD604O8wnCb6pbOz2FQ8JImqS70d-AwXVN8SU4nByfjadLlVkgc0xpDMJX3JiA9OuBRZipIphUXsih8qktZyDQw6WBZ1sY5QEwGabhGjVFY5nT2imzFOvo3hKbaiqA4WJLaCROCKWC_syMeCqOygmcD8qmb4nzVMmjkCEOeypzJvIUB6vyd_BzkGw8tbPT15iLPOGiMIym5HpDXLRh9NyIVCvQ3KNF3YOorIHf23ZJY_Wo4tJHJzoBhMSBfekT7Zo1hlLL7w9z7j0_5SHamJ7Oj_Ojw-PtbsovlGG3AzDuyBWj796DEXLoPjaTeAqeS6qg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagFY9beS8UMBI3mpXt2Gv7WG0btcBWFUulvUV2YpdIS7Ja2EKP_HNmkhC1ag-c7Uwcf45nxp75hpD3LI1pKLRLymhNIm1pE-c4T4J0IYqoImsz5GYnk6Mz-XGhFldyYTCs0lfN-nd10d7jY8A27L7dz804-uoKqTa5GrdZkXKMx9TjVRnvkm0Nuh4dsGwxHs5ZhAWFpWV_oXmrCDB9-1feZmbejJZ8sKlX7vKXWy6vqKJsh2yfulVYPyJ3Qv2Y3OtqSV4-IX_2l0tM2IB9jc6asq_KRZtIZ8dZIui8JYrdrMMeneKRDTKR7FFXl7QTgWDReXWOhnl9Ti8qR6fI8gxWKP0SYM3CcNvujs6_w6DgJW1hXZB36LFkU_2UnGWHX6dHSV9fIfHcGAzD1CHYiBTpgEmZ6qi40UKqogjMlKpQLHLlYWs21ntATUVlhUGrUTruTfqMbNVNHV4QyoyTUQvwJo2XNkZbgM5zExELq9NCpCPyrp_ifNWxaOQIQ85UzlXewQB9_k1-DmscLy5cHZrNjzwVYDVOlBJmRJ53YAxiJJMabDhoMddgGjogf_b1lrr61vJoI5udBediRD4MiA6Ptc4R4zeH-fI_PuUtuX96kOWfj08-vSIPsRkDDrjdJVsAdngNdsxP_6ZdqH8BG8HruQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELage-DEQ7yKABmJG5s0TuzGPlbVVgtSV4hSaTlFdmIv0Ran2m2Xx41_zozjrVjKBYlblPgRj8f2N_b4G0JeZ4UrbF3qpHFKJlw1KtGascRybV3uhMvCDbn5yfh4yd-ditN4s-4yulWatrv41l6Fc3x02IbZdxTfjSzS_qLFLkaZGDEVHpF7k4k0XJPkKe5bp-vG3SYHYwEAfUAOlifvJ5_imSbo4H4mQL-xhr8hzX2HyTtbv9bfv-rV6rfVaHaPbK7b0TuhnKfbjUnrH39QPP7nht4ndyN6pZNe3R6QW9Y_JD8nqxVeFYEZlc67JsYDo52j87ezJKeLQFG7vbCHdIqbRciBcki1b2gfCBPVhC7aMzQJ_Bm9ajWdIr804F_6wcJoASmF5JouvoAsoJIQ0hfKOzIYLMo_IsvZ0cfpcRIjOySGSYkOoKW1yiE5O2hDU5ROMFnmXNS1zWQjapE5JgwsClIZA_oinFC5RLzKNTOyeEwGvvP2KaGZ1NyVOdix0nDlnKphtdXj3NWqLOq8GJJXUaTVuufvqFCSVSYqJqpekpDmus8rGF14ZKK97baXVZEDXh0LkcshedLrwK4YnvES0CN8kTe0Y5cAmbtvfvHt58DgjTx6CsyaIXmzU6RdtmCWZWz_N5_9U-rnZADda18AZtqYl3EM_AJKkhZT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Allosteric+Modulation+of+MIF-2+Structure%2C+Catalysis%2C+and+Biological+Signaling+via+Cysteine+Residues+and+a+Small+Molecule%2C+Ebselen&rft.jtitle=bioRxiv&rft.au=Widjaja%2C+Vinnie&rft.au=D%E2%80%99Orazio%2C+Sirena+M.&rft.au=Das%2C+Pragnya&rft.au=Takada%2C+Xander&rft.date=2025-05-19&rft.pub=Cold+Spring+Harbor+Laboratory&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2025.05.15.654344&rft.externalDocID=PMC12139729
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon