BulkLMM: Real-time genome scans for multiple quantitative traits using linear mixed models

Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Yu, Zifan, Farage, Gregory, Williams, Robert W, Broman, Karl W, Sen, Śaunak
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 21.12.2023
Cold Spring Harbor Laboratory
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2023.12.20.572698

Cover

Abstract Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.
AbstractList Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.
Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our soft-ware implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.
Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.
Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/senresearch/BulkLMM.jl
Author Yu, Zifan
Broman, Karl W
Farage, Gregory
Williams, Robert W
Sen, Śaunak
Author_xml – sequence: 1
  givenname: Zifan
  orcidid: 0009-0007-0293-4113
  surname: Yu
  fullname: Yu, Zifan
  organization: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
– sequence: 2
  givenname: Gregory
  orcidid: 0000-0003-4268-9507
  surname: Farage
  fullname: Farage, Gregory
  organization: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
– sequence: 3
  givenname: Robert W
  orcidid: 0000-0001-8924-4447
  surname: Williams
  fullname: Williams, Robert W
  organization: Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
– sequence: 4
  givenname: Karl W
  orcidid: 0000-0002-4914-6671
  surname: Broman
  fullname: Broman, Karl W
  organization: Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA
– sequence: 5
  givenname: Śaunak
  orcidid: 0000-0003-4519-6361
  surname: Sen
  fullname: Sen, Śaunak
  organization: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38187625$$D View this record in MEDLINE/PubMed
BookMark eNp9kbtOxDAQRS0E4v0BNMgSDU0Wj-0kDh0gXtIiJAQNTeQkE2RwnCWOF_h7DAsIUVDdKc6dx50Nsux6h4TsAJsAMDjgjIsJ8AlnkzTnWaGWyHoUnijO0uVf9RrZ9v6RMcaLDEQuV8maUKDyjKfr5P442Kfp1dUhvUFtk9F0SB_Q9VF8rZ2nbT_QLtjRzCzS56DdaEY9mjnScdBm9DR44x6oNQ51JM0rNrTrG7R-i6y02nrc_tJNcnd2entykUyvzy9PjqZJBRlTCTAhZSMy2WpIW1npulA6l5JxQA1ZK-OiKNJKZbKJQJ1XUBcsxVRVVSuQiU3CF32Dm-m3F21tORtMp4e3Elj5kVX5kVUJPGq5yCqa9hemyvTDq5n_WP5BZ0P_HNCPZWd8jdZqh33wJS8AlMxFXkR07w_62IfBxesjxaRMofikdr-oUHXY_Iz-_op4B9YPjD0
ContentType Journal Article
Paper
Copyright 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023, Posted by Cold Spring Harbor Laboratory
DBID NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
FX.
UNPAY
DOI 10.1101/2023.12.20.572698
DatabaseName PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
bioRxiv
Unpaywall
DatabaseTitle PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 10.1101/2023.12.20.572698
2023.12.20.572698v1
38187625
Genre Preprint
Working Paper/Pre-Print
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: P30 DA044223
– fundername: NIGMS NIH HHS
  grantid: R01 GM123489
– fundername: NIGMS NIH HHS
  grantid: R01 GM070683
GroupedDBID NPM
8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
7X8
PUEGO
FX.
UNPAY
ID FETCH-LOGICAL-b1608-10344d364fa15f4bac98a744021ea16f4762e35b864d15fc7b1c905e58bbf3e03
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Thu Aug 28 11:27:44 EDT 2025
Tue Jan 07 18:58:32 EST 2025
Fri Sep 05 10:24:25 EDT 2025
Fri Jul 25 09:18:26 EDT 2025
Wed Feb 19 02:10:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords Julia
Linear Mixed Models
Genome Scan
Parallel
Computing
Parallel Computing
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1608-10344d364fa15f4bac98a744021ea16f4762e35b864d15fc7b1c905e58bbf3e03
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0002-4914-6671
0009-0007-0293-4113
0000-0003-4268-9507
0000-0003-4519-6361
0000-0001-8924-4447
OpenAccessLink https://www.proquest.com/docview/2904451979?pq-origsite=%requestingapplication%&accountid=15518
PMID 38187625
PQID 2904451979
PQPubID 2050091
PageCount 10
ParticipantIDs unpaywall_primary_10_1101_2023_12_20_572698
biorxiv_primary_2023_12_20_572698
proquest_miscellaneous_2911847379
proquest_journals_2904451979
pubmed_primary_38187625
PublicationCentury 2000
PublicationDate 2023-Dec-21
20231221
PublicationDateYYYYMMDD 2023-12-21
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-Dec-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2023
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Kang, Sul, Service, Zaitlen, Kong (2023.12.20.572698v1.8) 2010; 42
Galindo Garre, Vermunt (2023.12.20.572698v1.6) 2006; 33
Zhou, Stephens (2023.12.20.572698v1.18) 2012; 44
Ashbrook, Arends, Prins, Mulligan, Roy (2023.12.20.572698v1.2) 2021; 12
Kang, Zaitlen, Wade, Kirby, Heckerman (2023.12.20.572698v1.9) 2008; 178
Brent (2023.12.20.572698v1.4) 1971; 14
Shabalin (2023.12.20.572698v1.14) 2012; 28
Kim, Farage, Lovell, Mckay, Juenger (2023.12.20.572698v1.10) 2020
Runcie, Crawford (2023.12.20.572698v1.13) 2019; 15
Abney (2023.12.20.572698v1.1) 2015; 39
Sloan, Arends, Broman, Centeno, Furlotte (2023.12.20.572698v1.15) 2016; 1
Trotter, Kim, Farage, Prins, Williams (2023.12.20.572698v1.17) 2021; 11
Li, Zhu (2023.12.20.572698v1.11) 2013; 7
Bezanson, Edelman, Karpinski, Shah (2023.12.20.572698v1.3) 2017; 59
Broman, Gatti, Simecek, Furlotte, Prins (2023.12.20.572698v1.5) 2019; 211
Gelman, Carlin, Stern, Dunson, Vehtari (2023.12.20.572698v1.7) 2013
Lippert, Listgarten, Liu, Kadie, Davidson (2023.12.20.572698v1.12) 2011; 8
Taylor-Weiner, Aguet, Haradhvala, Gosai, Anand (2023.12.20.572698v1.16) 2019; 20
References_xml – volume: 33
  start-page: 43
  year: 2006
  end-page: 59
  ident: 2023.12.20.572698v1.6
  article-title: Avoiding Boundary Estimates in Latent Class Analysis by Bayesian Posterior Mode Estimation
  publication-title: Behaviormetrika
– volume: 15
  start-page: e1007978
  year: 2019
  ident: 2023.12.20.572698v1.13
  article-title: Fast and flexible linear mixed models for genome-wide genet-ics
  publication-title: PLOS Genetics
– volume: 39
  start-page: 249
  year: 2015
  end-page: 258
  ident: 2023.12.20.572698v1.1
  article-title: Permutation Testing in the Presence of Polygenic Variation
  publication-title: Genetic Epidemiology
– volume: 11
  start-page: jkab254
  year: 2021
  ident: 2023.12.20.572698v1.17
  article-title: Speeding up eQTL scans in the BXD population using GPUs
  publication-title: G3 Genes|Genomes|Genetics
– year: 2020
  ident: 2023.12.20.572698v1.10
  article-title: Flexible multivariate linear mixed models for structured multiple traits. preprint
  publication-title: Genetics
– volume: 59
  start-page: 65
  year: 2017
  end-page: 98
  ident: 2023.12.20.572698v1.3
  article-title: Julia: A Fresh Approach to Numerical Computing
  publication-title: SIAM Review
– volume: 14
  start-page: 422
  year: 1971
  end-page: 425
  ident: 2023.12.20.572698v1.4
  article-title: An algorithm with guaranteed convergence for finding a zero of a function
  publication-title: The Computer Journal
– volume: 20
  start-page: 228
  year: 2019
  ident: 2023.12.20.572698v1.16
  article-title: Scaling computational genomics to millions of individuals with GPUs
  publication-title: Genome Biology
– volume: 42
  start-page: 348
  year: 2010
  end-page: 354
  ident: 2023.12.20.572698v1.8
  article-title: Variance component model to account for sample structure in genome-wide association studies
  publication-title: Nature Genetics
– volume: 8
  start-page: 833
  year: 2011
  end-page: 835
  ident: 2023.12.20.572698v1.12
  article-title: FaST linear mixed models for genome-wide association studies
  publication-title: Nature Methods
– volume: 211
  start-page: 495
  year: 2019
  end-page: 502
  ident: 2023.12.20.572698v1.5
  article-title: R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations
  publication-title: Genetics
– volume: 1
  start-page: 25
  year: 2016
  ident: 2023.12.20.572698v1.15
  article-title: GeneNetwork: framework for web-based genetics
  publication-title: The Journal of Open Source Software
– volume: 178
  start-page: 1709
  year: 2008
  end-page: 1723
  ident: 2023.12.20.572698v1.9
  article-title: Efficient Control of Population Structure in Model Organism Association Mapping
  publication-title: Genetics
– volume: 12
  start-page: 235
  year: 2021
  end-page: 247
  ident: 2023.12.20.572698v1.2
  article-title: A platform for experimental precision medicine: The extended BXD mouse family
  publication-title: Cell Systems
– volume: 44
  start-page: 821
  year: 2012
  end-page: 824
  ident: 2023.12.20.572698v1.18
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nature Genetics
– year: 2013
  ident: 2023.12.20.572698v1.7
  publication-title: Bayesian Data Analysis
– volume: 7
  start-page: 27
  year: 2013
  end-page: 33
  ident: 2023.12.20.572698v1.11
  article-title: Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies
  publication-title: The Open Bioinformatics Journal
– volume: 28
  start-page: 1353
  year: 2012
  end-page: 1358
  ident: 2023.12.20.572698v1.14
  article-title: Matrix eQTL: ultra fast eQTL analysis via large matrix operations
  publication-title: Bioinformatics
SSID ssj0002961374
Score 1.8593274
SecondaryResourceType preprint
Snippet Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using...
SourceID unpaywall
biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Bioinformatics
Genomes
Phenotyping
Proteomes
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eiPrk7XoRwTep5GwaHxUXERURhcWXkrZZWVy663br8e-daWsR9MGnQDNtksn1TfJ1hpAjJ6zOImYDb5QLlM9kAJIuYDZLpTCGcV8RZG_Dy0d11dO9H6G-kFaZDEaTj8FbdY-PhG1YfevJzTja6hLP7wQ70UaENpol8zDEFLK5ur2T9nhFWNinjGruMf98ExBvU9Jf6HKZLJb52H2-u-Hwx47TXSHzd27sJ6tkxudrZKEOGfm5Tp7OyuHL9c3NKb0HiBdgaHiKflYhKUBLBQUQSr9ZgvS1dHn1FxmsaRSjQUwLikz3Z4ro0oHk4MNntAqHU2yQx-7Fw_ll0MRHCBIeVl5ZpVKZDFXfcd1XiUtt5NDhn-De8bCvYKHzUidRqDIQSE3CU8u011GS9KVncpPM5aPcbxPqIhmazKhIi1Q5ZSLloAdTr3lmtDCsQw4bXcXj2gtGjPqMuYA0rvXZIXvfWoybiVDEwjJ0gWaNhU-02TCE8V7C5X5UogxYOcpIlNmqtd-WgoACmqE75LjtjjazMmAY_12VnX9Ud5cs4TOkpgi-R-amk9LvA8CYJgfVUPoCE2DHTA
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge0AcCojXVgUZiRtKNn7FMbeCqCpEK4RYqXCJ7NhBq66y2yYppb--M4l3hSgXJE6J4kn8GjufPeNvCHltuVG-yEwStLSJDF4kIGmTzPhKcK0zFgYH2ZP8aC4_nqrTeLKujW6VbrG6uFpcDnZ8dNiG2XcWn80C0v7iil3MGJ9xNtzihh7PUqV5booU963Tta_vkp0crU4TsjM_-XzwLdo0QQdvvwToN-bwN6R5n9zrm7X99dMul7_9fQ4fkG5T7tHp5CztO5dW139QOv7nij0kuxGt0oNRvR6RO6F5TL6_65dnn46P39IvgDITjE5PkeoVLi10VEsBB9ONoyI9720zHGSDaZViQIqupehs_4MiwLUgubgKng4RedonZH744ev7oySGaEgcywdiWCGlF7msLVO1dLYyhUXOQc6CZXktYa4NQrkilx4EKu1YZTIVVOFcLUImnpJJs2rCc0JtIXLttSwUr6SVupAWlKgKinmtuM6m5FVsq3I9EnGU2EQl43Atxyaakv1N55VxLLYlNxmysBlt4BPbZBhFaBqxTVj1KAMLLakFyjwbO32bC2IaqIaakjdbLdgmDmuojN0uyt4_Se-TSXfRhxcAcDr3MirsDb0S96Y
  priority: 102
  providerName: Unpaywall
Title BulkLMM: Real-time genome scans for multiple quantitative traits using linear mixed models
URI https://www.ncbi.nlm.nih.gov/pubmed/38187625
https://www.proquest.com/docview/2904451979
https://www.proquest.com/docview/2911847379
https://www.biorxiv.org/content/10.1101/2023.12.20.572698
https://www.biorxiv.org/content/biorxiv/early/2023/12/21/2023.12.20.572698.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2692-8205
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002961374
  issn: 2692-8205
  databaseCode: BENPR
  dateStart: 20131107
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe2Vgh44nMUxmQk3lCGP-MYCSGGVk2IRtVEpcJL5MQuqqjSrmlg---5S5OABOIlkeJL4pyd88_n8_0IeemE1T5hNgpGuUgFLyOQdBGzvpDCGMZDEyCbxhcz9XGu5wck7fbCYFhlZxMbQ-3XBfrIXwvLMJeWNfbd5ipC1ihcXe0oNFxLreDfNinGDslQIKvygAzPztPpZe91ERaGryY1s4gtmALBdLvUCV0THQESnYOCnWoDAgmA4ny53l4vf_wLgN4lt-ty425-utXqj0FpfI8Mp24TtvfJQSgfkFt7Vsmbh-TrWb36_mkyeUMvAQVGyB5PMRUrnCpQZEUBp9IukJBe1a5sNpqB2aNIGLGrKAbDf6MIQB1ILq-Dpw1jTvWIzMbnnz9cRC2FQpTzuEncKpXyMlYLx_VC5a6wicOcgIIHx-OFAlsYpM6TWHkQKEzOC8t00EmeL2Rg8jEZlOsyPCHUJTI23qhEi0I5ZRLloJGLoLk3Whg2Ii9aXWWbfaKMDPWZcQHnbK_PETnutJi1_0qV_W5ZeERfDL0cly5cGdY1ysBESBmJMkd77fdvQcwBn6FH5FXfHH1hM8dh_O-qPP1_VZ6RO3gLBq4IfkwGu20dngP82OUnbZ86IYfj-Skc0-kErs3S6fsvvwAQ8NeR
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGKjR44puOAUaCJxTwZxwjTUiDTR1rq2napImX4MQuqlalXdOw9Z_jb-MuTQoSiLc95cEXxznfnX8-n-8Iee2E1T5hNgpGuUgFLyOgdBGzPpfCGMZDHSA7jHtn6su5Pt8gP9u7MBhW2drE2lD7aY4-8vfCMsylZY39OLuMsGoUnq62JTRcU1rB79YpxpqLHUdheQVbuHL38DPM9xshDvZPP_WipspAlPG4zm0qlfIyViPH9UhlLreJw7R5ggfH45ECcxGkzpJYeSDITcZzy3TQSZaNZGAS-r1FOgA7JGhVZ29_eHyy9vIIC8tlnQpaxBZMj2C6OVoFVUDHg0RnpGDvtAGCBEB4Np7Or8c__gV475Ktqpi55ZWbTP5YBA_ukc6xm4X5fbIRigfk9qqK5fIh-bpXTS76g8EHegKoM8Jq9RRTv8KjhIkrKeBi2gYu0svKFfXFNjCzFAtULEqKwfffKQJeB5Tj6-BpXaGnfETOboSZj8lmMS3CU0JdImPjjUq0yJVTJlEOhCoPmnujhWFd8qrhVTpbJeZIkZ8pF_BMV_zskp2Wi2mjm2X6W5Kgi3UzaBUelbgiTCukgY2XMhJpnqy4v_4KYhz4Dd0lb9fTsW6s91SM_z2U7f8P5SXZ6p0O-mn_cHj0jNzB1zFoRvAdsrmYV-E5QJ9F9qKRL0q-3bRI_wJPCA-m
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BKyiceLNQwEjcUFZ-xjFHHqsCbVUhKq24RE7soBWr7HazgfbfM5OkUSV64OTDjPwYj-1v7PEMwBsvnQkZd0m02ic6BpUgp0-4C6WS1nIROwfZ4_TgVH-Zm_mVvzDkVlksVpvzxe_uHZ8ctnH37Rc3F2SrK7q_k3xqrExdNqVr6uk6VDdhF3VNkwE2m0_Hexbp8MCyenjQvLYKhL5Dk9fBzLuw19Zrf_HHL5dXjp7ZPdg98eu4uQ83Yv0AbvW5Iy8ewo_37fLX4dHRO_YNsV5COeIZBVzFokFxNQzRKLt0F2Rnra-772S4uTFKC7FtGLm8_2QEMz1yLs5jYF1enOYRnM4-ff9wkAyJEpJCpF14VqV1UKmuvDCVLnzpMk-R_6SIXqSVxh0vKlNkqQ7IUNpClI6baLKiqFTk6jHs1Ks6PgXmM5XaYHVmZKm9tpn2OJVlNCJYIy2fwOtBVvm6D4eRkzxzIbHMe3lOYP9SivmwIppcOk6x0Jx1WMVIRl2mBwpfx1VLPGjuaKuI50kv_bEVQhY4DDOBt-N0jMTOkuHi3648-4_uvoLbJx9n-eHn46_P4Q6RyV1Fin3Y2W7a-AJBx7Z42WnVX8syzSs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge0AcCojXVgUZiRtKNn7FMbeCqCpEK4RYqXCJ7NhBq66y2yYppb--M4l3hSgXJE6J4kn8GjufPeNvCHltuVG-yEwStLSJDF4kIGmTzPhKcK0zFgYH2ZP8aC4_nqrTeLKujW6VbrG6uFpcDnZ8dNiG2XcWn80C0v7iil3MGJ9xNtzihh7PUqV5booU963Tta_vkp0crU4TsjM_-XzwLdo0QQdvvwToN-bwN6R5n9zrm7X99dMul7_9fQ4fkG5T7tHp5CztO5dW139QOv7nij0kuxGt0oNRvR6RO6F5TL6_65dnn46P39IvgDITjE5PkeoVLi10VEsBB9ONoyI9720zHGSDaZViQIqupehs_4MiwLUgubgKng4RedonZH744ev7oySGaEgcywdiWCGlF7msLVO1dLYyhUXOQc6CZXktYa4NQrkilx4EKu1YZTIVVOFcLUImnpJJs2rCc0JtIXLttSwUr6SVupAWlKgKinmtuM6m5FVsq3I9EnGU2EQl43Atxyaakv1N55VxLLYlNxmysBlt4BPbZBhFaBqxTVj1KAMLLakFyjwbO32bC2IaqIaakjdbLdgmDmuojN0uyt4_Se-TSXfRhxcAcDr3MirsDb0S96Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BulkLMM%3A+Real-time+genome+scans+for+multiple+quantitative+traits+using+linear+mixed+models&rft.jtitle=bioRxiv&rft.au=Yu%2C+Zifan&rft.au=Farage%2C+Gregory&rft.au=Williams%2C+Robert+W&rft.au=Broman%2C+Karl+W&rft.date=2023-12-21&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.12.20.572698&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon