BulkLMM: Real-time genome scans for multiple quantitative traits using linear mixed models
Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory Press
21.12.2023
Cold Spring Harbor Laboratory |
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2023.12.20.572698 |
Cover
Abstract | Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl. |
---|---|
AbstractList | Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl. Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our soft-ware implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl. Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl. Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using linear mixed models (LMMs). Computing the scans one by one on each trait is time consuming. We have developed new algorithms for performing genome scans on a large number of quantitative traits using LMMs, BulkLMM, that speeds up the computation by orders of magnitude compared to one trait at a time scans. On a mouse BXD Liver Proteome data with more than 35,000 traits and 7,000 markers, BulkLMM completed in a few seconds. We use vectorized, multi-threaded operations and regularization to improve optimization, and numerical approximations to speed up the computations. Our software implementation in the Julia programming language also provides permutation testing for LMMs and is available at https://github.com/senresearch/BulkLMM.jl.Competing Interest StatementThe authors have declared no competing interest.Footnotes* https://github.com/senresearch/BulkLMM.jl |
Author | Yu, Zifan Broman, Karl W Farage, Gregory Williams, Robert W Sen, Śaunak |
Author_xml | – sequence: 1 givenname: Zifan orcidid: 0009-0007-0293-4113 surname: Yu fullname: Yu, Zifan organization: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA – sequence: 2 givenname: Gregory orcidid: 0000-0003-4268-9507 surname: Farage fullname: Farage, Gregory organization: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA – sequence: 3 givenname: Robert W orcidid: 0000-0001-8924-4447 surname: Williams fullname: Williams, Robert W organization: Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA – sequence: 4 givenname: Karl W orcidid: 0000-0002-4914-6671 surname: Broman fullname: Broman, Karl W organization: Department of Biostatistics and Medical Informatics, University of Wisconsin - Madison, Madison, WI 53706, USA – sequence: 5 givenname: Śaunak orcidid: 0000-0003-4519-6361 surname: Sen fullname: Sen, Śaunak organization: Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38187625$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kbtOxDAQRS0E4v0BNMgSDU0Wj-0kDh0gXtIiJAQNTeQkE2RwnCWOF_h7DAsIUVDdKc6dx50Nsux6h4TsAJsAMDjgjIsJ8AlnkzTnWaGWyHoUnijO0uVf9RrZ9v6RMcaLDEQuV8maUKDyjKfr5P442Kfp1dUhvUFtk9F0SB_Q9VF8rZ2nbT_QLtjRzCzS56DdaEY9mjnScdBm9DR44x6oNQ51JM0rNrTrG7R-i6y02nrc_tJNcnd2entykUyvzy9PjqZJBRlTCTAhZSMy2WpIW1npulA6l5JxQA1ZK-OiKNJKZbKJQJ1XUBcsxVRVVSuQiU3CF32Dm-m3F21tORtMp4e3Elj5kVX5kVUJPGq5yCqa9hemyvTDq5n_WP5BZ0P_HNCPZWd8jdZqh33wJS8AlMxFXkR07w_62IfBxesjxaRMofikdr-oUHXY_Iz-_op4B9YPjD0 |
ContentType | Journal Article Paper |
Copyright | 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2023, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2023, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 FX. UNPAY |
DOI | 10.1101/2023.12.20.572698 |
DatabaseName | PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic bioRxiv Unpaywall |
DatabaseTitle | PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 10.1101/2023.12.20.572698 2023.12.20.572698v1 38187625 |
Genre | Preprint Working Paper/Pre-Print |
GrantInformation_xml | – fundername: NIDA NIH HHS grantid: P30 DA044223 – fundername: NIGMS NIH HHS grantid: R01 GM123489 – fundername: NIGMS NIH HHS grantid: R01 GM070683 |
GroupedDBID | NPM 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI 7X8 PUEGO FX. UNPAY |
ID | FETCH-LOGICAL-b1608-10344d364fa15f4bac98a744021ea16f4762e35b864d15fc7b1c905e58bbf3e03 |
IEDL.DBID | BENPR |
ISSN | 2692-8205 |
IngestDate | Thu Aug 28 11:27:44 EDT 2025 Tue Jan 07 18:58:32 EST 2025 Fri Sep 05 10:24:25 EDT 2025 Fri Jul 25 09:18:26 EDT 2025 Wed Feb 19 02:10:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | Julia Linear Mixed Models Genome Scan Parallel Computing Parallel Computing |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1608-10344d364fa15f4bac98a744021ea16f4762e35b864d15fc7b1c905e58bbf3e03 |
Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0002-4914-6671 0009-0007-0293-4113 0000-0003-4268-9507 0000-0003-4519-6361 0000-0001-8924-4447 |
OpenAccessLink | https://www.proquest.com/docview/2904451979?pq-origsite=%requestingapplication%&accountid=15518 |
PMID | 38187625 |
PQID | 2904451979 |
PQPubID | 2050091 |
PageCount | 10 |
ParticipantIDs | unpaywall_primary_10_1101_2023_12_20_572698 biorxiv_primary_2023_12_20_572698 proquest_miscellaneous_2911847379 proquest_journals_2904451979 pubmed_primary_38187625 |
PublicationCentury | 2000 |
PublicationDate | 2023-Dec-21 20231221 |
PublicationDateYYYYMMDD | 2023-12-21 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-Dec-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Cold Spring Harbor |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2023 |
Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
References | Kang, Sul, Service, Zaitlen, Kong (2023.12.20.572698v1.8) 2010; 42 Galindo Garre, Vermunt (2023.12.20.572698v1.6) 2006; 33 Zhou, Stephens (2023.12.20.572698v1.18) 2012; 44 Ashbrook, Arends, Prins, Mulligan, Roy (2023.12.20.572698v1.2) 2021; 12 Kang, Zaitlen, Wade, Kirby, Heckerman (2023.12.20.572698v1.9) 2008; 178 Brent (2023.12.20.572698v1.4) 1971; 14 Shabalin (2023.12.20.572698v1.14) 2012; 28 Kim, Farage, Lovell, Mckay, Juenger (2023.12.20.572698v1.10) 2020 Runcie, Crawford (2023.12.20.572698v1.13) 2019; 15 Abney (2023.12.20.572698v1.1) 2015; 39 Sloan, Arends, Broman, Centeno, Furlotte (2023.12.20.572698v1.15) 2016; 1 Trotter, Kim, Farage, Prins, Williams (2023.12.20.572698v1.17) 2021; 11 Li, Zhu (2023.12.20.572698v1.11) 2013; 7 Bezanson, Edelman, Karpinski, Shah (2023.12.20.572698v1.3) 2017; 59 Broman, Gatti, Simecek, Furlotte, Prins (2023.12.20.572698v1.5) 2019; 211 Gelman, Carlin, Stern, Dunson, Vehtari (2023.12.20.572698v1.7) 2013 Lippert, Listgarten, Liu, Kadie, Davidson (2023.12.20.572698v1.12) 2011; 8 Taylor-Weiner, Aguet, Haradhvala, Gosai, Anand (2023.12.20.572698v1.16) 2019; 20 |
References_xml | – volume: 33 start-page: 43 year: 2006 end-page: 59 ident: 2023.12.20.572698v1.6 article-title: Avoiding Boundary Estimates in Latent Class Analysis by Bayesian Posterior Mode Estimation publication-title: Behaviormetrika – volume: 15 start-page: e1007978 year: 2019 ident: 2023.12.20.572698v1.13 article-title: Fast and flexible linear mixed models for genome-wide genet-ics publication-title: PLOS Genetics – volume: 39 start-page: 249 year: 2015 end-page: 258 ident: 2023.12.20.572698v1.1 article-title: Permutation Testing in the Presence of Polygenic Variation publication-title: Genetic Epidemiology – volume: 11 start-page: jkab254 year: 2021 ident: 2023.12.20.572698v1.17 article-title: Speeding up eQTL scans in the BXD population using GPUs publication-title: G3 Genes|Genomes|Genetics – year: 2020 ident: 2023.12.20.572698v1.10 article-title: Flexible multivariate linear mixed models for structured multiple traits. preprint publication-title: Genetics – volume: 59 start-page: 65 year: 2017 end-page: 98 ident: 2023.12.20.572698v1.3 article-title: Julia: A Fresh Approach to Numerical Computing publication-title: SIAM Review – volume: 14 start-page: 422 year: 1971 end-page: 425 ident: 2023.12.20.572698v1.4 article-title: An algorithm with guaranteed convergence for finding a zero of a function publication-title: The Computer Journal – volume: 20 start-page: 228 year: 2019 ident: 2023.12.20.572698v1.16 article-title: Scaling computational genomics to millions of individuals with GPUs publication-title: Genome Biology – volume: 42 start-page: 348 year: 2010 end-page: 354 ident: 2023.12.20.572698v1.8 article-title: Variance component model to account for sample structure in genome-wide association studies publication-title: Nature Genetics – volume: 8 start-page: 833 year: 2011 end-page: 835 ident: 2023.12.20.572698v1.12 article-title: FaST linear mixed models for genome-wide association studies publication-title: Nature Methods – volume: 211 start-page: 495 year: 2019 end-page: 502 ident: 2023.12.20.572698v1.5 article-title: R/qtl2: Software for Mapping Quantitative Trait Loci with High-Dimensional Data and Multiparent Populations publication-title: Genetics – volume: 1 start-page: 25 year: 2016 ident: 2023.12.20.572698v1.15 article-title: GeneNetwork: framework for web-based genetics publication-title: The Journal of Open Source Software – volume: 178 start-page: 1709 year: 2008 end-page: 1723 ident: 2023.12.20.572698v1.9 article-title: Efficient Control of Population Structure in Model Organism Association Mapping publication-title: Genetics – volume: 12 start-page: 235 year: 2021 end-page: 247 ident: 2023.12.20.572698v1.2 article-title: A platform for experimental precision medicine: The extended BXD mouse family publication-title: Cell Systems – volume: 44 start-page: 821 year: 2012 end-page: 824 ident: 2023.12.20.572698v1.18 article-title: Genome-wide efficient mixed-model analysis for association studies publication-title: Nature Genetics – year: 2013 ident: 2023.12.20.572698v1.7 publication-title: Bayesian Data Analysis – volume: 7 start-page: 27 year: 2013 end-page: 33 ident: 2023.12.20.572698v1.11 article-title: Genetic Studies: The Linear Mixed Models in Genome-wide Association Studies publication-title: The Open Bioinformatics Journal – volume: 28 start-page: 1353 year: 2012 end-page: 1358 ident: 2023.12.20.572698v1.14 article-title: Matrix eQTL: ultra fast eQTL analysis via large matrix operations publication-title: Bioinformatics |
SSID | ssj0002961374 |
Score | 1.8593274 |
SecondaryResourceType | preprint |
Snippet | Genetic studies often collect data using high-throughput phenotyping. That has led to the need for fast genomewide scans for large number of traits using... |
SourceID | unpaywall biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Bioinformatics Genomes Phenotyping Proteomes |
SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8QwEA4eiPrk7XoRwTep5GwaHxUXERURhcWXkrZZWVy663br8e-daWsR9MGnQDNtksn1TfJ1hpAjJ6zOImYDb5QLlM9kAJIuYDZLpTCGcV8RZG_Dy0d11dO9H6G-kFaZDEaTj8FbdY-PhG1YfevJzTja6hLP7wQ70UaENpol8zDEFLK5ur2T9nhFWNinjGruMf98ExBvU9Jf6HKZLJb52H2-u-Hwx47TXSHzd27sJ6tkxudrZKEOGfm5Tp7OyuHL9c3NKb0HiBdgaHiKflYhKUBLBQUQSr9ZgvS1dHn1FxmsaRSjQUwLikz3Z4ro0oHk4MNntAqHU2yQx-7Fw_ll0MRHCBIeVl5ZpVKZDFXfcd1XiUtt5NDhn-De8bCvYKHzUidRqDIQSE3CU8u011GS9KVncpPM5aPcbxPqIhmazKhIi1Q5ZSLloAdTr3lmtDCsQw4bXcXj2gtGjPqMuYA0rvXZIXvfWoybiVDEwjJ0gWaNhU-02TCE8V7C5X5UogxYOcpIlNmqtd-WgoACmqE75LjtjjazMmAY_12VnX9Ud5cs4TOkpgi-R-amk9LvA8CYJgfVUPoCE2DHTA priority: 102 providerName: Cold Spring Harbor Laboratory Press – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge0AcCojXVgUZiRtKNn7FMbeCqCpEK4RYqXCJ7NhBq66y2yYppb--M4l3hSgXJE6J4kn8GjufPeNvCHltuVG-yEwStLSJDF4kIGmTzPhKcK0zFgYH2ZP8aC4_nqrTeLKujW6VbrG6uFpcDnZ8dNiG2XcWn80C0v7iil3MGJ9xNtzihh7PUqV5booU963Tta_vkp0crU4TsjM_-XzwLdo0QQdvvwToN-bwN6R5n9zrm7X99dMul7_9fQ4fkG5T7tHp5CztO5dW139QOv7nij0kuxGt0oNRvR6RO6F5TL6_65dnn46P39IvgDITjE5PkeoVLi10VEsBB9ONoyI9720zHGSDaZViQIqupehs_4MiwLUgubgKng4RedonZH744ev7oySGaEgcywdiWCGlF7msLVO1dLYyhUXOQc6CZXktYa4NQrkilx4EKu1YZTIVVOFcLUImnpJJs2rCc0JtIXLttSwUr6SVupAWlKgKinmtuM6m5FVsq3I9EnGU2EQl43Atxyaakv1N55VxLLYlNxmysBlt4BPbZBhFaBqxTVj1KAMLLakFyjwbO32bC2IaqIaakjdbLdgmDmuojN0uyt4_Se-TSXfRhxcAcDr3MirsDb0S96Y priority: 102 providerName: Unpaywall |
Title | BulkLMM: Real-time genome scans for multiple quantitative traits using linear mixed models |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38187625 https://www.proquest.com/docview/2904451979 https://www.proquest.com/docview/2911847379 https://www.biorxiv.org/content/10.1101/2023.12.20.572698 https://www.biorxiv.org/content/biorxiv/early/2023/12/21/2023.12.20.572698.full.pdf |
UnpaywallVersion | acceptedVersion |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2692-8205 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002961374 issn: 2692-8205 databaseCode: BENPR dateStart: 20131107 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELe2Vgh44nMUxmQk3lCGP-MYCSGGVk2IRtVEpcJL5MQuqqjSrmlg---5S5OABOIlkeJL4pyd88_n8_0IeemE1T5hNgpGuUgFLyOQdBGzvpDCGMZDEyCbxhcz9XGu5wck7fbCYFhlZxMbQ-3XBfrIXwvLMJeWNfbd5ipC1ihcXe0oNFxLreDfNinGDslQIKvygAzPztPpZe91ERaGryY1s4gtmALBdLvUCV0THQESnYOCnWoDAgmA4ny53l4vf_wLgN4lt-ty425-utXqj0FpfI8Mp24TtvfJQSgfkFt7Vsmbh-TrWb36_mkyeUMvAQVGyB5PMRUrnCpQZEUBp9IukJBe1a5sNpqB2aNIGLGrKAbDf6MIQB1ILq-Dpw1jTvWIzMbnnz9cRC2FQpTzuEncKpXyMlYLx_VC5a6wicOcgIIHx-OFAlsYpM6TWHkQKEzOC8t00EmeL2Rg8jEZlOsyPCHUJTI23qhEi0I5ZRLloJGLoLk3Whg2Ii9aXWWbfaKMDPWZcQHnbK_PETnutJi1_0qV_W5ZeERfDL0cly5cGdY1ysBESBmJMkd77fdvQcwBn6FH5FXfHH1hM8dh_O-qPP1_VZ6RO3gLBq4IfkwGu20dngP82OUnbZ86IYfj-Skc0-kErs3S6fsvvwAQ8NeR |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGKjR44puOAUaCJxTwZxwjTUiDTR1rq2napImX4MQuqlalXdOw9Z_jb-MuTQoSiLc95cEXxznfnX8-n-8Iee2E1T5hNgpGuUgFLyOgdBGzPpfCGMZDHSA7jHtn6su5Pt8gP9u7MBhW2drE2lD7aY4-8vfCMsylZY39OLuMsGoUnq62JTRcU1rB79YpxpqLHUdheQVbuHL38DPM9xshDvZPP_WipspAlPG4zm0qlfIyViPH9UhlLreJw7R5ggfH45ECcxGkzpJYeSDITcZzy3TQSZaNZGAS-r1FOgA7JGhVZ29_eHyy9vIIC8tlnQpaxBZMj2C6OVoFVUDHg0RnpGDvtAGCBEB4Np7Or8c__gV475Ktqpi55ZWbTP5YBA_ukc6xm4X5fbIRigfk9qqK5fIh-bpXTS76g8EHegKoM8Jq9RRTv8KjhIkrKeBi2gYu0svKFfXFNjCzFAtULEqKwfffKQJeB5Tj6-BpXaGnfETOboSZj8lmMS3CU0JdImPjjUq0yJVTJlEOhCoPmnujhWFd8qrhVTpbJeZIkZ8pF_BMV_zskp2Wi2mjm2X6W5Kgi3UzaBUelbgiTCukgY2XMhJpnqy4v_4KYhz4Dd0lb9fTsW6s91SM_z2U7f8P5SXZ6p0O-mn_cHj0jNzB1zFoRvAdsrmYV-E5QJ9F9qKRL0q-3bRI_wJPCA-m |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BKyiceLNQwEjcUFZ-xjFHHqsCbVUhKq24RE7soBWr7HazgfbfM5OkUSV64OTDjPwYj-1v7PEMwBsvnQkZd0m02ic6BpUgp0-4C6WS1nIROwfZ4_TgVH-Zm_mVvzDkVlksVpvzxe_uHZ8ctnH37Rc3F2SrK7q_k3xqrExdNqVr6uk6VDdhF3VNkwE2m0_Hexbp8MCyenjQvLYKhL5Dk9fBzLuw19Zrf_HHL5dXjp7ZPdg98eu4uQ83Yv0AbvW5Iy8ewo_37fLX4dHRO_YNsV5COeIZBVzFokFxNQzRKLt0F2Rnra-772S4uTFKC7FtGLm8_2QEMz1yLs5jYF1enOYRnM4-ff9wkAyJEpJCpF14VqV1UKmuvDCVLnzpMk-R_6SIXqSVxh0vKlNkqQ7IUNpClI6baLKiqFTk6jHs1Ks6PgXmM5XaYHVmZKm9tpn2OJVlNCJYIy2fwOtBVvm6D4eRkzxzIbHMe3lOYP9SivmwIppcOk6x0Jx1WMVIRl2mBwpfx1VLPGjuaKuI50kv_bEVQhY4DDOBt-N0jMTOkuHi3648-4_uvoLbJx9n-eHn46_P4Q6RyV1Fin3Y2W7a-AJBx7Z42WnVX8syzSs |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZge0AcCojXVgUZiRtKNn7FMbeCqCpEK4RYqXCJ7NhBq66y2yYppb--M4l3hSgXJE6J4kn8GjufPeNvCHltuVG-yEwStLSJDF4kIGmTzPhKcK0zFgYH2ZP8aC4_nqrTeLKujW6VbrG6uFpcDnZ8dNiG2XcWn80C0v7iil3MGJ9xNtzihh7PUqV5booU963Tta_vkp0crU4TsjM_-XzwLdo0QQdvvwToN-bwN6R5n9zrm7X99dMul7_9fQ4fkG5T7tHp5CztO5dW139QOv7nij0kuxGt0oNRvR6RO6F5TL6_65dnn46P39IvgDITjE5PkeoVLi10VEsBB9ONoyI9720zHGSDaZViQIqupehs_4MiwLUgubgKng4RedonZH744ev7oySGaEgcywdiWCGlF7msLVO1dLYyhUXOQc6CZXktYa4NQrkilx4EKu1YZTIVVOFcLUImnpJJs2rCc0JtIXLttSwUr6SVupAWlKgKinmtuM6m5FVsq3I9EnGU2EQl43Atxyaakv1N55VxLLYlNxmysBlt4BPbZBhFaBqxTVj1KAMLLakFyjwbO32bC2IaqIaakjdbLdgmDmuojN0uyt4_Se-TSXfRhxcAcDr3MirsDb0S96Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BulkLMM%3A+Real-time+genome+scans+for+multiple+quantitative+traits+using+linear+mixed+models&rft.jtitle=bioRxiv&rft.au=Yu%2C+Zifan&rft.au=Farage%2C+Gregory&rft.au=Williams%2C+Robert+W&rft.au=Broman%2C+Karl+W&rft.date=2023-12-21&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.12.20.572698&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |