Visualization of Time-Oriented Data

This is an open access book. Time is an exceptional dimension with high relevance in medicine, engineering, business, science, biography, history, planning, or project management. Understanding time-oriented data via visual representations enables us to learn from the past in order to predict, plan,...

Full description

Saved in:
Bibliographic Details
Published inHuman-computer interaction series
Main Authors Aigner, Wolfgang, Miksch, Silvia, Schumann, Heidrun, Tominski, Christian
Format eBook
LanguageEnglish
Published London Springer Nature 2023
Springer London, Limited
Edition2
SeriesHuman–Computer Interaction Series
Subjects
Online AccessGet full text
ISBN9781447175278
1447175263
9781447175261
1447175271
ISSN1571-5035
2524-4477
DOI10.1007/978-1-4471-7527-8

Cover

Table of Contents:
  • Intro -- Foreword -- Preface -- About the Authors -- Acknowledgements -- Contents -- Chapter 1 Introduction -- 1.1 Introduction to Visualization -- 1.2 Application Example: Health Record Visualization -- 1.3 Book Outline -- References -- Chapter 2 Historical Background -- 2.1 Classic Ways of Graphing Time -- 2.2 Time in Visual Storytelling &amp -- Arts -- 2.3 Summary -- References -- Chapter 3 Time &amp -- Time-Oriented Data -- 3.1 Modeling Time -- 3.1.1 Design Aspects -- 3.1.2 Granularities &amp -- Time Primitives -- 3.2 Characterizing Data -- 3.3 Relating Data &amp -- Time -- 3.4 Considering Data Quality -- 3.5 Summary -- References -- Chapter 4 Crafting Visualizations of Time-Oriented Data -- 4.1 Characterization of the Visualization Problem -- 4.1.1 What? - Time &amp -- Data -- 4.1.2 Why? - User Tasks -- 4.1.3 How? - Visual Representation -- 4.2 Visualization Design Examples -- 4.2.1 Data Level -- 4.2.2 Task Level -- 4.2.3 Presentation Level -- 4.3 Summary -- References -- Chapter 5 Involving the Human via Interaction -- 5.1 Motivation &amp -- User Intents -- 5.2 Interaction Fundamentals -- 5.2.1 Conceptual Background -- 5.2.2 User Interface -- 5.3 Basic Interaction with Time-Oriented Data -- 5.3.1 Navigation in Time -- 5.3.2 Direct Manipulation -- 5.3.3 Brushing &amp -- Linking -- 5.3.4 Dynamic Queries -- 5.4 Advanced Interaction Methods -- 5.4.1 Interactive Lenses -- 5.4.2 Interactive Visual Comparison -- 5.4.3 Guiding the User -- 5.4.4 Integrating Interaction and Automation via Events -- 5.4.5 Interaction Beyond Mouse and Keyboard -- 5.5 Summary -- References -- Chapter 6 Computational Analysis Support -- 6.1 Temporal Analysis Tasks -- 6.2 Principles of Temporal Data Abstraction -- 6.3 Classification via Segmentation and Labeling -- 6.3.1 Data Classification in Medical Contexts -- 6.3.2 Segmentation and Labeling of Multivariate Time Series
  • 6.3.3 Linking Temporal and Visual Abstraction -- 6.4 Clustering Time Series -- 6.5 Principal Component Analysis for Time-Oriented Data -- 6.5.1 Basic Method -- 6.5.2 Gaining Insight into Climate Data with PCA -- 6.5.3 Determining Relevant Components in Census Data -- 6.6 Summary -- References -- Chapter 7 Guiding the Selection of Visualization Techniques -- 7.1 Structuring the Space of Solutions -- 7.2 The TimeViz Browser -- 7.3 Overview of Visualization Techniques -- 7.4 Guided Search for Visualization Techniques -- 7.4.1 Example Scenarios -- 7.4.2 Towards a Multi-Faceted Selection Process -- 7.5 Summary -- References -- Chapter 8 Conclusion -- 8.1 Book Summary -- 8.2 Practical Concerns -- 8.3 From Visualization to Visual Analytics -- 8.4 Future Research Opportunities -- References -- Appendix A Survey of Visualization Techniques -- A.1 List of Techniques -- A.2 Techniques for Abstract Time-Oriented Data -- A.3 Techniques Supporting a Spatial Frame of Reference -- Appendix B Examples of Data Quality Issues -- B.1 Single-Source Problems -- B.1.1 Missing Data -- B.1.2 Duplicate Data -- B.1.3 Implausible Data -- B.1.4 Outdated Data -- B.1.5 Wrong Data -- B.1.6 Ambiguous Data -- B2 Multi-Source Problems -- B.2.1 Heterogeneous Syntaxes -- B.2.2 Heterogeneous Semantics -- B.2.3 References -- B.3 Summary -- References -- Index