Accuracy of dipole source reconstruction in the 3-layer BEM model against the 5-layer BEM-FMM model

To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Nuñez Ponasso, Guillermo, McSweeney, Ryan C, Wartman, William A, Lai, Peiyao, Haueisen, Jens, Maess, Burkhard, Knösche, Thomas R, Weise, Konstantin, Noetscher, Gregory M, Raij, Tommi, Makaroff, Sergey N
Format Journal Article Paper
LanguageEnglish
Published United States Cold Spring Harbor Laboratory 21.05.2024
Edition1.1
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2024.05.17.594750

Cover

Abstract To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the (BEM) with (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox. The average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation). The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model. Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions.
AbstractList To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without adaptive mesh refinement (AMR) methods.ObjectiveTo compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without adaptive mesh refinement (AMR) methods.We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the boundary element method (BEM) with fast multipole method (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox.MethodsWe generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the boundary element method (BEM) with fast multipole method (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox.The average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation).ResultsThe average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation).The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model.ConclusionsThe low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model.Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions.SignificanceImproving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions.
To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without adaptive mesh refinement (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the boundary element method (BEM) with fast multipole method (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox. The average position error (across all tested dipoles, subjects, and models) is ∼4 mm, with a standard deviation of ∼2 mm. The orientation error is ∼20° on average, with a standard deviation of ∼15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ∼8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation). The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model. Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions.
To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the (BEM) with (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox. The average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation). The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model. Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions.
Author Weise, Konstantin
Lai, Peiyao
Wartman, William A
Knösche, Thomas R
Nuñez Ponasso, Guillermo
Maess, Burkhard
McSweeney, Ryan C
Noetscher, Gregory M
Haueisen, Jens
Raij, Tommi
Makaroff, Sergey N
Author_xml – sequence: 1
  givenname: Guillermo
  orcidid: 0000-0002-2938-6782
  surname: Nuñez Ponasso
  fullname: Nuñez Ponasso, Guillermo
  organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 2
  givenname: Ryan C
  surname: McSweeney
  fullname: McSweeney, Ryan C
  organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 3
  givenname: William A
  surname: Wartman
  fullname: Wartman, William A
  organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 4
  givenname: Peiyao
  surname: Lai
  fullname: Lai, Peiyao
  organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 5
  givenname: Jens
  surname: Haueisen
  fullname: Haueisen, Jens
  organization: Technische Universität Ilmenau, Ilmenau, Germany
– sequence: 6
  givenname: Burkhard
  surname: Maess
  fullname: Maess, Burkhard
  organization: Max Plank Insititute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 7
  givenname: Thomas R
  surname: Knösche
  fullname: Knösche, Thomas R
  organization: Max Plank Insititute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 8
  givenname: Konstantin
  surname: Weise
  fullname: Weise, Konstantin
  organization: Max Plank Insititute for Human Cognitive and Brain Sciences, Leipzig, Germany
– sequence: 9
  givenname: Gregory M
  orcidid: 0000-0001-9786-7206
  surname: Noetscher
  fullname: Noetscher, Gregory M
  organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
– sequence: 10
  givenname: Tommi
  surname: Raij
  fullname: Raij, Tommi
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
– sequence: 11
  givenname: Sergey N
  surname: Makaroff
  fullname: Makaroff, Sergey N
  organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38826206$$D View this record in MEDLINE/PubMed
BookMark eNpNkL1OwzAYRS1UREvpA7AgjywJn_8SZyxVC0itWGCOHNsBoyQudoPo21NooUz3SvfoDuccDTrfWYQuCaSEALmhQHkKIiV5KgqeCzhBI5oVNJEUxOBfH6JJjG8AQIuMsJyfoSGTkmYUshHSU637oPQW-xobt_aNxdH3QVscrPZd3IReb5zvsOvw5tViljRqawO-na9w641tsHpRbsf9rOK4JovVgbhAp7Vqop0ccoyeF_On2X2yfLx7mE2XSUUYhYToqoZaZbpmQksrcquVllRykDVUhhOqrGTCGKkKYFltFOGGCsF5URW5oWyMrve_lfPh032U6-BaFbblt6oSREnycq_qiK6Df-9t3JSti9o2jeqs72PJIOOEk520HXp1QPuqtebv9Nch-wJzd3Lz
Cites_doi 10.1016/s0006-3495(64)86783-7
10.1002/hbm.25721
10.1016/0955-7997(94)90044-2
10.13099/VIP21000-04-1
10.1109/TBME.2018.2813261
10.1016/j.neuroimage.2012.01.021
10.1007/s10827-009-0205-z
10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
10.1007/978-3-030-74918-7
10.1097/WNP.0b013e318038fb3e
10.1088/0031-9155/32/1/004
10.1016/S0013-4694(96)95698-9
10.1016/S0006-3495(67)86598-6
10.1016/j.jneumeth.2003.10.009
10.3389/fnins.2019.00531
10.1016/j.brs.2022.04.009
10.1088/2057-1976/ab4c76
10.1109/10.995679
10.1016/0021-9991(85)90002-6
10.1016/j.neuroimage.2014.06.040
10.3389/fnhum.2024.1335212
10.1016/S0006-3495(67)86571-8
10.1007/s11831-014-9114-z
10.1109/ISBI.2011.5872526
10.1109/TBME.2004.827925
10.1097/WNP.0b013e31803ece13
10.1103/RevModPhys.65.413
10.1186/1475-925X-2-14
10.1109/ICCV.1995.466848
10.1016/j.neuroimage.2010.02.014
10.1007/s10548-012-0274-6
10.1007/978-3-030-21293-3_1
10.1371/journal.pone.0121741
10.1016/j.neuroimage.2015.01.033
10.1137/22M1514040
10.1155/2011/879716
10.1016/j.neuroimage.2018.03.001
10.1016/j.neuroimage.2013.10.027
10.1155/2011/156869
10.1109/TMI.2004.837363
10.1016/0021-9991(87)90140-9
10.1016/j.neuroimage.2012.02.018
10.1088/1361-6560/ad2638
10.3389/fneur.2014.00031
ContentType Journal Article
Paper
Copyright 2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID NPM
7X8
FX.
DOI 10.1101/2024.05.17.594750
DatabaseName PubMed
MEDLINE - Academic
bioRxiv
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.1
ExternalDocumentID 2024.05.17.594750v1
38826206
Genre Journal Article
Preprint
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS126337
– fundername: NIMH NIH HHS
  grantid: R01 MH130490
– fundername: NIBIB NIH HHS
  grantid: R01 EB035484
GroupedDBID 8FE
8FH
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CCPQU
HCIFZ
LK8
M7P
NPM
NQS
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RHI
7X8
PUEGO
FX.
ID FETCH-LOGICAL-b1320-1cbf0fa6cf35c8e57ecac828408f0bd412ae835dd8a9036fda14d255449b97d23
IEDL.DBID FX.
ISSN 2692-8205
IngestDate Tue Jan 07 18:49:43 EST 2025
Fri Sep 05 06:37:53 EDT 2025
Mon Jul 21 05:51:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords EEG source analysis
electroencephalography (EEG)
fast multipole method (FMM)
adaptative mesh refinement (AMR)
EEG dipole reconstruction
head modeling
boundary element method (BEM)
Language English
License This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1320-1cbf0fa6cf35c8e57ecac828408f0bd412ae835dd8a9036fda14d255449b97d23
Notes ObjectType-Working Paper/Pre-Print-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-9786-7206
0000-0002-2938-6782
OpenAccessLink https://www.biorxiv.org/content/10.1101/2024.05.17.594750
PMID 38826206
PQID 3064141000
PQPubID 23479
PageCount 15
ParticipantIDs biorxiv_primary_2024_05_17_594750
proquest_miscellaneous_3064141000
pubmed_primary_38826206
PublicationCentury 2000
PublicationDate 2024-May-21
20240521
PublicationDateYYYYMMDD 2024-05-21
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-May-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle bioRxiv
PublicationTitleAlternate bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory
References 39593731 - Bioengineering (Basel). 2024 Oct 26;11(11):1071. doi: 10.3390/bioengineering11111071
Olivi, Papadopoulo, Clerc (2024.05.17.594750v1.29) 2011
Oostenveld (2024.05.17.594750v1.30) 2011; 2011
Knösche, Haueisen (2024.05.17.594750v1.25) 2022
Gabriel (2024.05.17.594750v1.14) 1996
Saturnino (2024.05.17.594750v1.38) 2019
Sarvas (2024.05.17.594750v1.37) 1987; 32
Wagner (2024.05.17.594750v1.48) 2004; 51
Bangera (2024.05.17.594750v1.3) 2010; 29
Hämäläinen (2024.05.17.594750v1.21) 1993; 65
Tadel (2024.05.17.594750v1.42) 2011
Vorwerk, Cho (2024.05.17.594750v1.45) 2014
Whittingstall (2024.05.17.594750v1.51) 2003; 2
Pittau (2024.05.17.594750v1.34) 2014; 5
Gramfort (2024.05.17.594750v1.18) 2014; 86
Gelernter, Swihart (2024.05.17.594750v1.15) 1964; 4
Partheymüller, Białecki, Kuhn (2024.05.17.594750v1.32) 1994; 14
Fiedler (2024.05.17.594750v1.11) 2022; 43
Geselowitz (2024.05.17.594750v1.16) 1967; 7
Phillips (2024.05.17.594750v1.33) 2001
Barnard, Duck, Lynn (2024.05.17.594750v1.4) 1967; 7
Kazhdan, Hoppe (2024.05.17.594750v1.24) 2013; 32
Vorwerk, Aydin (2024.05.17.594750v1.46) 2019; 13
Askham (2024.05.17.594750v1.2) 2024
Sushnikova (2024.05.17.594750v1.41) 2023
Ponasso (2024.05.17.594750v1.35) 2023
Zeynep, Makeig (2024.05.17.594750v1.1) 2013; 26
Hasgall (2024.05.17.594750v1.22) 2022
Fischl (2024.05.17.594750v1.12) 2012; 62
Beatson, Greengard (2024.05.17.594750v1.5) 1997
Feischl (2024.05.17.594750v1.10) 2015; 22
Schimpf, Ramon, Haueisen (2024.05.17.594750v1.40) 2002; 49
Makarov (2024.05.17.594750v1.27) 2018; 65
Rokhlin (2024.05.17.594750v1.36) 1985; 60
Buchner (2024.05.17.594750v1.6) 1997; 102
Cignoni (2024.05.17.594750v1.7) 2008
Ebersole, Hawes-Ebersole (2024.05.17.594750v1.9) 2007; 24
Fuchs, Wagner, Kastner (2024.05.17.594750v1.13) 2007; 24
Graichen (2024.05.17.594750v1.17) 2015
Scherg (2024.05.17.594750v1.39) 1990; 6
Htet (2024.05.17.594750v1.23) 2019; 5
Wartman (2024.05.17.594750v1.49) 2024; 69
Opitz (2024.05.17.594750v1.31) 2015; 109
Nielsen (2024.05.17.594750v1.28) 2018; 174
Taubin (2024.05.17.594750v1.43) 1995
Kybic (2024.05.17.594750v1.26) 2005; 24
Vorwerk, Wolters, Baumgarten (2024.05.17.594750v1.47) 2024; 18
Delorme, Makeig (2024.05.17.594750v1.8) 2004
Van Essen (2024.05.17.594750v1.44) 2012; 62
Weise (2024.05.17.594750v1.50) 2022; 15
Greengard, Vladimir (2024.05.17.594750v1.19) 1987; 73
Güllmar, Haueisen, Reichenbach (2024.05.17.594750v1.20) 2010; 51
References_xml – reference: 39593731 - Bioengineering (Basel). 2024 Oct 26;11(11):1071. doi: 10.3390/bioengineering11111071
– volume: 4
  start-page: 285
  year: 1964
  end-page: 301
  ident: 2024.05.17.594750v1.15
  article-title: A Mathematical-Physical Model of the Genesis of the Electrocardiogram
  publication-title: In: Biophys. J
  doi: 10.1016/s0006-3495(64)86783-7
– volume: 43
  year: 2022
  ident: 2024.05.17.594750v1.11
  article-title: A high-density 256-channel cap for dry electroencephalography
  publication-title: In: Human Brain Mapp
  doi: 10.1002/hbm.25721
– volume: 14
  issue: 3
  year: 1994
  ident: 2024.05.17.594750v1.32
  article-title: Self-adapting algorithm for evaluation of weakly singular integrals arising in the boundary element method
  publication-title: In: Engineering Analysis with Boundary Elements
  doi: 10.1016/0955-7997(94)90044-2
– year: 2022
  ident: 2024.05.17.594750v1.22
  publication-title: IT’IS Database for thermal and electromagnetic parameters of biological tissues
  doi: 10.13099/VIP21000-04-1
– volume: 65
  start-page: 2675
  year: 2018
  end-page: 2683
  ident: 2024.05.17.594750v1.27
  article-title: A Quasi-Static Boundary Element Approach With Fast Multi-pole Acceleration for High-Resolution Bioelectromagnetic Models
  publication-title: In: IEEE. Trans. Biomed. Eng
  doi: 10.1109/TBME.2018.2813261
– volume: 62
  start-page: 774
  issue: 2
  year: 2012
  end-page: 781
  ident: 2024.05.17.594750v1.12
  article-title: FreeSurfer
  publication-title: In: NeuroImage
  doi: 10.1016/j.neuroimage.2012.01.021
– volume: 29
  start-page: 371
  year: 2010
  end-page: 387
  ident: 2024.05.17.594750v1.3
  article-title: Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution
  publication-title: In: J. Comput. Neurosci
  doi: 10.1007/s10827-009-0205-z
– year: 2008
  ident: 2024.05.17.594750v1.7
  publication-title: In: Eurographics Italian Chapter Conference
  doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
– year: 2022
  ident: 2024.05.17.594750v1.25
  publication-title: Textbook for Electro-and Magnetoencephalography
  doi: 10.1007/978-3-030-74918-7
– volume: 6
  start-page: 25
  issue: 40-69
  year: 1990
  ident: 2024.05.17.594750v1.39
  article-title: Fundamentals of dipole source potential analysis
  publication-title: In: Adv. Audiol
– volume: 24
  year: 2007
  ident: 2024.05.17.594750v1.13
  article-title: Development of Volume Conductor and Source Models to Localize Epileptic Foci
  publication-title: In: J. Clin. Neurophysiol
  doi: 10.1097/WNP.0b013e318038fb3e
– volume: 32
  year: 1987
  ident: 2024.05.17.594750v1.37
  article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem
  publication-title: In: Phys. Med. Biol
  doi: 10.1088/0031-9155/32/1/004
– volume: 102
  start-page: 267
  year: 1997
  end-page: 278
  ident: 2024.05.17.594750v1.6
  article-title: Inverse localization of electric dipole current sources in finite element models of the human head
  publication-title: In: Electroen-cephalogr. clin. neurophysiol
  doi: 10.1016/S0013-4694(96)95698-9
– volume: 7
  start-page: 443
  year: 1967
  end-page: 462
  ident: 2024.05.17.594750v1.4
  article-title: The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations
  publication-title: In: Biophys. J
  doi: 10.1016/S0006-3495(67)86598-6
– year: 2004
  ident: 2024.05.17.594750v1.8
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: In: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 13
  year: 2019
  ident: 2024.05.17.594750v1.46
  article-title: Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction
  publication-title: In: Front. Neurosci
  doi: 10.3389/fnins.2019.00531
– volume: 15
  start-page: 654
  year: 2022
  end-page: 663
  ident: 2024.05.17.594750v1.50
  article-title: The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement
  publication-title: In: Brain Stimul
  doi: 10.1016/j.brs.2022.04.009
– year: 2024
  ident: 2024.05.17.594750v1.2
  publication-title: FMM3D: A fast multipole method library for three-dimensional problems
– volume: 5
  year: 2019
  ident: 2024.05.17.594750v1.23
  article-title: Collection of CAD human head models for electromagnetic simulations and their applications
  publication-title: In: Biomed. Phys. Eng. Express
  doi: 10.1088/2057-1976/ab4c76
– volume: 49
  year: 2002
  ident: 2024.05.17.594750v1.40
  article-title: Dipole models for the EEG and MEG
  publication-title: In: IEEE Trans. Biomed. Eng
  doi: 10.1109/10.995679
– volume: 60
  year: 1985
  ident: 2024.05.17.594750v1.36
  article-title: Rapid solution of integral equations of classical potential theory
  publication-title: In: Comput. Phys
  doi: 10.1016/0021-9991(85)90002-6
– year: 2014
  ident: 2024.05.17.594750v1.45
  article-title: A guideline for head volume conductor modeling in EEG and MEG
  publication-title: In: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.040
– volume: 18
  year: 2024
  ident: 2024.05.17.594750v1.47
  article-title: Global sensitivity of EEG source analysis to tissue conductivity uncertainties
  publication-title: In: Front. Hum. Neurosci
  doi: 10.3389/fnhum.2024.1335212
– volume: 7
  start-page: 1
  issue: 1
  year: 1967
  end-page: 11
  ident: 2024.05.17.594750v1.16
  article-title: On Bioelectric Potentials in an Inhomogeneous Volume Conductor
  publication-title: In: Biophys J
  doi: 10.1016/S0006-3495(67)86571-8
– volume: 22
  year: 2015
  ident: 2024.05.17.594750v1.10
  article-title: Adaptive Boundary Element Methods
  publication-title: In: Arch. Computat. Methods Eng
  doi: 10.1007/s11831-014-9114-z
– year: 2011
  ident: 2024.05.17.594750v1.29
  article-title: Handling white-matter anisotropy in BEM for the EEG forward problem
  publication-title: In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro
  doi: 10.1109/ISBI.2011.5872526
– volume: 51
  start-page: 1586
  issue: 9
  year: 2004
  end-page: 1598
  ident: 2024.05.17.594750v1.48
  article-title: Three-dimensional head model Simulation of transcranial magnetic stimulation
  publication-title: In: IEEE Transact. Biomed. Eng
  doi: 10.1109/TBME.2004.827925
– volume: 24
  year: 2007
  ident: 2024.05.17.594750v1.9
  article-title: Clinical Application of Dipole Models in the Localization of Epileptiform Activity
  publication-title: In: J. Clin. Neurophysiol
  doi: 10.1097/WNP.0b013e31803ece13
– volume: 65
  start-page: 413
  year: 1993
  end-page: 497
  ident: 2024.05.17.594750v1.21
  article-title: Magnetoen-cephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain
  publication-title: In: Rev. Mod. Phys
  doi: 10.1103/RevModPhys.65.413
– volume: 2
  year: 2003
  ident: 2024.05.17.594750v1.51
  article-title: Effects of dipole position, orientation and noise on the accuracy of EEG source localization
  publication-title: In: Biomed. Eng. Online
  doi: 10.1186/1475-925X-2-14
– start-page: 852
  year: 1995
  end-page: 857
  ident: 2024.05.17.594750v1.43
  article-title: Curve and surface smoothing without shrinkage
  publication-title: In: Proceedings of IEEE International Conference on Computer Vision
  doi: 10.1109/ICCV.1995.466848
– year: 1997
  ident: 2024.05.17.594750v1.5
  publication-title: A short course on fast multipole methods
– volume: 51
  start-page: 145
  year: 2010
  end-page: 163
  ident: 2024.05.17.594750v1.20
  article-title: Source analysis of EEG data is an important tool in scientific and clinical applications. This is the first study on EEG source analysis using the BEM. BEM can utilize true point-dipole sources, as opposed to past studies using FEM, which can only use approximate point-dipole sources
  publication-title: In: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.014
– volume: 26
  year: 2013
  ident: 2024.05.17.594750v1.1
  article-title: Effects of Forward Model Errors on EEG Source Localization
  publication-title: In: Brain Topogr
  doi: 10.1007/s10548-012-0274-6
– year: 2001
  ident: 2024.05.17.594750v1.33
  article-title: Source localisation in EEG: Combining anatomical and functional constraints
  publication-title: PhD thesis. Université de Liège
– year: 2019
  ident: 2024.05.17.594750v1.38
  publication-title: In: Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018
  doi: 10.1007/978-3-030-21293-3_1
– year: 2015
  ident: 2024.05.17.594750v1.17
  article-title: SPHARA - A Generalized Spatial Fourier Analysis for Multi-Sensor Systems with Non-Uniformly Arranged Sensors: Application to EEG
  publication-title: In: PLOS ONE
  doi: 10.1371/journal.pone.0121741
– volume: 109
  start-page: 140
  year: 2015
  end-page: 150
  ident: 2024.05.17.594750v1.31
  article-title: Determinants of the electric field during transcranial direct current stimulation
  publication-title: In: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.033
– year: 2023
  ident: 2024.05.17.594750v1.41
  article-title: FMM-LU: A Fast Direct Solver for Multiscale Boundary Integral Equations in Three Dimensions
  publication-title: In: Multiscale Model. Simul
  doi: 10.1137/22M1514040
– year: 2011
  ident: 2024.05.17.594750v1.42
  article-title: Brainstorm: a user-friendly application for MEG/EEG analysis
  publication-title: In: Comput. Intell. Neurosci
  doi: 10.1155/2011/879716
– volume: 32
  start-page: 29
  issue: 3
  year: 2013
  ident: 2024.05.17.594750v1.24
  article-title: Screened Poisson surface reconstruction
  publication-title: In: ACM Transactions on Graphics (TOG)
– volume: 174
  start-page: 587
  year: 2018
  end-page: 598
  ident: 2024.05.17.594750v1.28
  article-title: Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art
  publication-title: In: NeuroImage
  doi: 10.1016/j.neuroimage.2018.03.001
– volume: 86
  start-page: 446
  year: 2014
  end-page: 460
  ident: 2024.05.17.594750v1.18
  article-title: MNE software for processing MEG and EEG data
  publication-title: In: NeuroImage
  doi: 10.1016/j.neuroimage.2013.10.027
– volume: 2011
  year: 2011
  ident: 2024.05.17.594750v1.30
  article-title: FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data
  publication-title: In: Comput. Intell. Neurosci
  doi: 10.1155/2011/156869
– volume: 24
  start-page: 12
  issue: 1
  year: 2005
  end-page: 28
  ident: 2024.05.17.594750v1.26
  article-title: A common formalism for the Integral formulations of the forward EEG problem
  publication-title: In: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2004.837363
– volume: 73
  start-page: 325
  year: 1987
  end-page: 348
  ident: 2024.05.17.594750v1.19
  article-title: A fast algorithm for particle simulations
  publication-title: In: J. Comp. Phys
  doi: 10.1016/0021-9991(87)90140-9
– volume: 62
  start-page: 2222
  issue: 4
  year: 2012
  end-page: 2231
  ident: 2024.05.17.594750v1.44
  article-title: The Human Connectome Project: A data acquisition perspective
  publication-title: In: NeuroImage
  doi: 10.1016/j.neuroimage.2012.02.018
– volume: 69
  start-page: 055030
  year: 2024
  ident: 2024.05.17.594750v1.49
  article-title: An adaptive h-refinement method for the boundary element fast multipole method for quasi-static electromagnetic modeling
  publication-title: In: Phys. Med. Biol
  doi: 10.1088/1361-6560/ad2638
– volume: 5
  year: 2014
  ident: 2024.05.17.594750v1.34
  article-title: The Role of Functional Neuroimaging in Pre-Surgical Epilepsy Evaluation
  publication-title: In: Front. Neurol
  doi: 10.3389/fneur.2014.00031
– year: 2023
  ident: 2024.05.17.594750v1.35
  article-title: A survey on integral equations for bioelectric modeling
  publication-title: preprint
– year: 1996
  ident: 2024.05.17.594750v1.14
  publication-title: In: N.AL/OE-TR-1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division
SSID ssj0002961374
Score 1.8753935
SecondaryResourceType preprint
Snippet To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with...
SourceID biorxiv
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Bioinformatics
Title Accuracy of dipole source reconstruction in the 3-layer BEM model against the 5-layer BEM-FMM model
URI https://www.ncbi.nlm.nih.gov/pubmed/38826206
https://www.proquest.com/docview/3064141000
https://www.biorxiv.org/content/10.1101/2024.05.17.594750
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EInjz_S4reE3ZZzY5WmkpQksRC72FzT4kUJJSrdh_72wSqwcFr9lJFiaTzPfNzM4gdGcshzeraJQyo4Cg5DJKfc4jSmOXgPtjWoXTyONJPJqJx7mc_xj1Fcoq86JafRTvdR4_FGzD37f5uAkNXF2EVptU9WQqVGDrHTAxGaY2DOe9bXiFpeCnlGjzmL_eCYi33elvdFl7meEB6kz10q0O0Y4rj9BeMyZyc4zMvTHrlTYbXHlsi2W1cLgJuuOaz257wOKixADoMI8WGqA07g_GuB51g_WLLkCuXpXfq9Fw3EqcoNlw8PwwitrhCFFen3qmJvfE69h4Lk3ipHJGG6BPgiSe5FZQph2gK2sTnYKX8lZTYYE_CJHmqbKMn6LdsirdOcLMW2N4IglnXlBiQ69iR0I0AqA3Y_YC3baKypZNC4wsKDMjMqMqa5QJMl8qzMBAQ9ZBl65av2aB4oRiUgIyZ41ut4_hgO9jRuLLf-xwhfbDtZC5Z_Qa7YJq3Q0Agre8izr9wWT61K1N4BNihK5E
linkProvider Cold Spring Harbor Laboratory Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgFYIb-w5G4prKdpztCIioQFNxaKXeLMcLilQlVUsR_XvGSSgXkDjPJJZexpk3i8cI3Srtw5eNqJcwFUGAkgdeYnPfozQ0Mbg_JiN3Gjkbhv0xf54EkzbhtmjbKvOimn8WH3Ud3zVsw9-32dyEulidu1GbNOoFCQd313Np6k3UBTvjrqUrnfTWORaWgLOKeFvM_PVxoL3tcn9TzNrVpLuo-ypnZr6HNky5j7aauyJXB0jdKbWcS7XClcW6mFVTg5vMO66D2vUgWFyUGFgd9r2pBD6N7x8zXN93g-WbLECvlgY_Ui_NWo1DNE4fRw99r70hwcvro89U5ZZYGSrrByo2QWSUVBBDcRJbkmtOmTRAsbSOZQKuympJuYYggvMkTyLN_CPUKavSnCDMrFbKjwPiM8sp0W5gsSEuJQH8mzF9im5aoMSsmYMhHJiCBIJGogETdL4hFGClrvQgS1MtF8LFOa6jlIDOcYPt-jU-kPyQkfDsHytco-3-KBuIwdPw5RztOLkr5TN6gToAs7kEhvCeX9Vm8AXKSrGB
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgFYgb-w5G4prKduwsR7aoLK16oFJvkeMFRaqSqFBE_55xEgoHkDjPyJYm48ybHaFLpX34siH1YqZCcFAy4cU28z1KAxOB-WMydN3Ig2HQH_OHiZj86IVxZZVZXs4-8vc6j-8KtuHv2zxuQp2vzt2oTRr2RMzB3PVcmLpXabuKuqBr3Gl2Mukt4ywsBoMV8jah-esRAH3bK_-GmbW5STZRdyQrM9tCK6bYRmvNvsjFDlJXSs1nUi1wabHOq3JqcBN9x7VjuxwGi_MCA7LDvjeVgKnx9d0A1ztvsHyROfDVVPFN9ZJBy7GLxsnd803fa7ckeFnd_kxVZomVgbK-UJERoVFSgR_FSWRJpjll0gDM0jqSMZgrqyXlGhwJzuMsDjXz91CnKAtzgDCzWik_EsRnllOi3dBiQ1xYAjA4Y_oQXbSCSqtmFkbqhJkSkdIwbYQJPF8iTEFTXfpBFqacv6bO13FVpQR49hvZLo_xAegHjARH_7jhHK2PbpP06X74eIw2HNll8xk9QR2QsjkFkPCWndVa8AmKkrKS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+dipole+source+reconstruction+in+the+3-layer+BEM+model+against+the+5-layer+BEM-FMM+model&rft.jtitle=bioRxiv&rft.au=Nu%C3%B1ez+Ponasso%2C+Guillermo&rft.au=McSweeney%2C+Ryan+C&rft.au=Wartman%2C+William+A&rft.au=Lai%2C+Peiyao&rft.date=2024-05-21&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.05.17.594750&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon