Accuracy of dipole source reconstruction in the 3-layer BEM model against the 5-layer BEM-FMM model
To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the...
Saved in:
Published in | bioRxiv |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article Paper |
Language | English |
Published |
United States
Cold Spring Harbor Laboratory
21.05.2024
|
Edition | 1.1 |
Subjects | |
Online Access | Get full text |
ISSN | 2692-8205 2692-8205 |
DOI | 10.1101/2024.05.17.594750 |
Cover
Abstract | To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without
(AMR) methods.
We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the
(BEM) with
(FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox.
The average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation).
The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model.
Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions. |
---|---|
AbstractList | To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without adaptive mesh refinement (AMR) methods.ObjectiveTo compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without adaptive mesh refinement (AMR) methods.We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the boundary element method (BEM) with fast multipole method (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox.MethodsWe generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the boundary element method (BEM) with fast multipole method (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox.The average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation).ResultsThe average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation).The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model.ConclusionsThe low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model.Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions.SignificanceImproving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions. To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without adaptive mesh refinement (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the boundary element method (BEM) with fast multipole method (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox. The average position error (across all tested dipoles, subjects, and models) is ∼4 mm, with a standard deviation of ∼2 mm. The orientation error is ∼20° on average, with a standard deviation of ∼15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ∼8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation). The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model. Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions. To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with and without (AMR) methods. We generate simulated noiseless 256-channel EEG data from 5-layer (7-compartment) meshes of 15 subjects from the Connectome Young Adult dataset. For each subject, we test four dipole positions, three sets of conductivity values, and two types of head segmentation. We use the (BEM) with (FMM) acceleration, with or without (AMR), for forward modeling. Dipole fitting is carried out with the FieldTrip MATLAB toolbox. The average position error (across all tested dipoles, subjects, and models) is ~4 mm, with a standard deviation of ~2 mm. The orientation error is ~20° on average, with a standard deviation of ~15°. Without AMR, the numerical inaccuracies produce a larger disagreement between the 3- and 5-layer models, with an average position error of ~8 mm (6 mm standard deviation), and an orientation error of 28° (28° standard deviation). The low-resolution 3-layer models provide excellent accuracy in dipole localization. On the other hand, dipole orientation is retrieved less accurately. Therefore, certain applications may require more realistic models for practical source reconstruction. AMR is a critical component for improving the accuracy of forward EEG computations using a high-resolution 5-layer volume conduction model. Improving EEG source reconstruction accuracy is important for several clinical applications, including epilepsy and other seizure-inducing conditions. |
Author | Weise, Konstantin Lai, Peiyao Wartman, William A Knösche, Thomas R Nuñez Ponasso, Guillermo Maess, Burkhard McSweeney, Ryan C Noetscher, Gregory M Haueisen, Jens Raij, Tommi Makaroff, Sergey N |
Author_xml | – sequence: 1 givenname: Guillermo orcidid: 0000-0002-2938-6782 surname: Nuñez Ponasso fullname: Nuñez Ponasso, Guillermo organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA – sequence: 2 givenname: Ryan C surname: McSweeney fullname: McSweeney, Ryan C organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA – sequence: 3 givenname: William A surname: Wartman fullname: Wartman, William A organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA – sequence: 4 givenname: Peiyao surname: Lai fullname: Lai, Peiyao organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA – sequence: 5 givenname: Jens surname: Haueisen fullname: Haueisen, Jens organization: Technische Universität Ilmenau, Ilmenau, Germany – sequence: 6 givenname: Burkhard surname: Maess fullname: Maess, Burkhard organization: Max Plank Insititute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 7 givenname: Thomas R surname: Knösche fullname: Knösche, Thomas R organization: Max Plank Insititute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 8 givenname: Konstantin surname: Weise fullname: Weise, Konstantin organization: Max Plank Insititute for Human Cognitive and Brain Sciences, Leipzig, Germany – sequence: 9 givenname: Gregory M orcidid: 0000-0001-9786-7206 surname: Noetscher fullname: Noetscher, Gregory M organization: Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA – sequence: 10 givenname: Tommi surname: Raij fullname: Raij, Tommi organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA – sequence: 11 givenname: Sergey N surname: Makaroff fullname: Makaroff, Sergey N organization: Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38826206$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkL1OwzAYRS1UREvpA7AgjywJn_8SZyxVC0itWGCOHNsBoyQudoPo21NooUz3SvfoDuccDTrfWYQuCaSEALmhQHkKIiV5KgqeCzhBI5oVNJEUxOBfH6JJjG8AQIuMsJyfoSGTkmYUshHSU637oPQW-xobt_aNxdH3QVscrPZd3IReb5zvsOvw5tViljRqawO-na9w641tsHpRbsf9rOK4JovVgbhAp7Vqop0ccoyeF_On2X2yfLx7mE2XSUUYhYToqoZaZbpmQksrcquVllRykDVUhhOqrGTCGKkKYFltFOGGCsF5URW5oWyMrve_lfPh032U6-BaFbblt6oSREnycq_qiK6Df-9t3JSti9o2jeqs72PJIOOEk520HXp1QPuqtebv9Nch-wJzd3Lz |
Cites_doi | 10.1016/s0006-3495(64)86783-7 10.1002/hbm.25721 10.1016/0955-7997(94)90044-2 10.13099/VIP21000-04-1 10.1109/TBME.2018.2813261 10.1016/j.neuroimage.2012.01.021 10.1007/s10827-009-0205-z 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136 10.1007/978-3-030-74918-7 10.1097/WNP.0b013e318038fb3e 10.1088/0031-9155/32/1/004 10.1016/S0013-4694(96)95698-9 10.1016/S0006-3495(67)86598-6 10.1016/j.jneumeth.2003.10.009 10.3389/fnins.2019.00531 10.1016/j.brs.2022.04.009 10.1088/2057-1976/ab4c76 10.1109/10.995679 10.1016/0021-9991(85)90002-6 10.1016/j.neuroimage.2014.06.040 10.3389/fnhum.2024.1335212 10.1016/S0006-3495(67)86571-8 10.1007/s11831-014-9114-z 10.1109/ISBI.2011.5872526 10.1109/TBME.2004.827925 10.1097/WNP.0b013e31803ece13 10.1103/RevModPhys.65.413 10.1186/1475-925X-2-14 10.1109/ICCV.1995.466848 10.1016/j.neuroimage.2010.02.014 10.1007/s10548-012-0274-6 10.1007/978-3-030-21293-3_1 10.1371/journal.pone.0121741 10.1016/j.neuroimage.2015.01.033 10.1137/22M1514040 10.1155/2011/879716 10.1016/j.neuroimage.2018.03.001 10.1016/j.neuroimage.2013.10.027 10.1155/2011/156869 10.1109/TMI.2004.837363 10.1016/0021-9991(87)90140-9 10.1016/j.neuroimage.2012.02.018 10.1088/1361-6560/ad2638 10.3389/fneur.2014.00031 |
ContentType | Journal Article Paper |
Copyright | 2024, Posted by Cold Spring Harbor Laboratory |
Copyright_xml | – notice: 2024, Posted by Cold Spring Harbor Laboratory |
DBID | NPM 7X8 FX. |
DOI | 10.1101/2024.05.17.594750 |
DatabaseName | PubMed MEDLINE - Academic bioRxiv |
DatabaseTitle | PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2692-8205 |
Edition | 1.1 |
ExternalDocumentID | 2024.05.17.594750v1 38826206 |
Genre | Journal Article Preprint |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS126337 – fundername: NIMH NIH HHS grantid: R01 MH130490 – fundername: NIBIB NIH HHS grantid: R01 EB035484 |
GroupedDBID | 8FE 8FH AFKRA ALMA_UNASSIGNED_HOLDINGS BBNVY BENPR BHPHI CCPQU HCIFZ LK8 M7P NPM NQS PHGZM PHGZT PIMPY PQGLB PROAC RHI 7X8 PUEGO FX. |
ID | FETCH-LOGICAL-b1320-1cbf0fa6cf35c8e57ecac828408f0bd412ae835dd8a9036fda14d255449b97d23 |
IEDL.DBID | FX. |
ISSN | 2692-8205 |
IngestDate | Tue Jan 07 18:49:43 EST 2025 Fri Sep 05 06:37:53 EDT 2025 Mon Jul 21 05:51:32 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Keywords | EEG source analysis electroencephalography (EEG) fast multipole method (FMM) adaptative mesh refinement (AMR) EEG dipole reconstruction head modeling boundary element method (BEM) |
Language | English |
License | This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-b1320-1cbf0fa6cf35c8e57ecac828408f0bd412ae835dd8a9036fda14d255449b97d23 |
Notes | ObjectType-Working Paper/Pre-Print-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Competing Interest Statement: The authors have declared no competing interest. |
ORCID | 0000-0001-9786-7206 0000-0002-2938-6782 |
OpenAccessLink | https://www.biorxiv.org/content/10.1101/2024.05.17.594750 |
PMID | 38826206 |
PQID | 3064141000 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | biorxiv_primary_2024_05_17_594750 proquest_miscellaneous_3064141000 pubmed_primary_38826206 |
PublicationCentury | 2000 |
PublicationDate | 2024-May-21 20240521 |
PublicationDateYYYYMMDD | 2024-05-21 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-May-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | bioRxiv |
PublicationTitleAlternate | bioRxiv |
PublicationYear | 2024 |
Publisher | Cold Spring Harbor Laboratory |
Publisher_xml | – name: Cold Spring Harbor Laboratory |
References | 39593731 - Bioengineering (Basel). 2024 Oct 26;11(11):1071. doi: 10.3390/bioengineering11111071 Olivi, Papadopoulo, Clerc (2024.05.17.594750v1.29) 2011 Oostenveld (2024.05.17.594750v1.30) 2011; 2011 Knösche, Haueisen (2024.05.17.594750v1.25) 2022 Gabriel (2024.05.17.594750v1.14) 1996 Saturnino (2024.05.17.594750v1.38) 2019 Sarvas (2024.05.17.594750v1.37) 1987; 32 Wagner (2024.05.17.594750v1.48) 2004; 51 Bangera (2024.05.17.594750v1.3) 2010; 29 Hämäläinen (2024.05.17.594750v1.21) 1993; 65 Tadel (2024.05.17.594750v1.42) 2011 Vorwerk, Cho (2024.05.17.594750v1.45) 2014 Whittingstall (2024.05.17.594750v1.51) 2003; 2 Pittau (2024.05.17.594750v1.34) 2014; 5 Gramfort (2024.05.17.594750v1.18) 2014; 86 Gelernter, Swihart (2024.05.17.594750v1.15) 1964; 4 Partheymüller, Białecki, Kuhn (2024.05.17.594750v1.32) 1994; 14 Fiedler (2024.05.17.594750v1.11) 2022; 43 Geselowitz (2024.05.17.594750v1.16) 1967; 7 Phillips (2024.05.17.594750v1.33) 2001 Barnard, Duck, Lynn (2024.05.17.594750v1.4) 1967; 7 Kazhdan, Hoppe (2024.05.17.594750v1.24) 2013; 32 Vorwerk, Aydin (2024.05.17.594750v1.46) 2019; 13 Askham (2024.05.17.594750v1.2) 2024 Sushnikova (2024.05.17.594750v1.41) 2023 Ponasso (2024.05.17.594750v1.35) 2023 Zeynep, Makeig (2024.05.17.594750v1.1) 2013; 26 Hasgall (2024.05.17.594750v1.22) 2022 Fischl (2024.05.17.594750v1.12) 2012; 62 Beatson, Greengard (2024.05.17.594750v1.5) 1997 Feischl (2024.05.17.594750v1.10) 2015; 22 Schimpf, Ramon, Haueisen (2024.05.17.594750v1.40) 2002; 49 Makarov (2024.05.17.594750v1.27) 2018; 65 Rokhlin (2024.05.17.594750v1.36) 1985; 60 Buchner (2024.05.17.594750v1.6) 1997; 102 Cignoni (2024.05.17.594750v1.7) 2008 Ebersole, Hawes-Ebersole (2024.05.17.594750v1.9) 2007; 24 Fuchs, Wagner, Kastner (2024.05.17.594750v1.13) 2007; 24 Graichen (2024.05.17.594750v1.17) 2015 Scherg (2024.05.17.594750v1.39) 1990; 6 Htet (2024.05.17.594750v1.23) 2019; 5 Wartman (2024.05.17.594750v1.49) 2024; 69 Opitz (2024.05.17.594750v1.31) 2015; 109 Nielsen (2024.05.17.594750v1.28) 2018; 174 Taubin (2024.05.17.594750v1.43) 1995 Kybic (2024.05.17.594750v1.26) 2005; 24 Vorwerk, Wolters, Baumgarten (2024.05.17.594750v1.47) 2024; 18 Delorme, Makeig (2024.05.17.594750v1.8) 2004 Van Essen (2024.05.17.594750v1.44) 2012; 62 Weise (2024.05.17.594750v1.50) 2022; 15 Greengard, Vladimir (2024.05.17.594750v1.19) 1987; 73 Güllmar, Haueisen, Reichenbach (2024.05.17.594750v1.20) 2010; 51 |
References_xml | – reference: 39593731 - Bioengineering (Basel). 2024 Oct 26;11(11):1071. doi: 10.3390/bioengineering11111071 – volume: 4 start-page: 285 year: 1964 end-page: 301 ident: 2024.05.17.594750v1.15 article-title: A Mathematical-Physical Model of the Genesis of the Electrocardiogram publication-title: In: Biophys. J doi: 10.1016/s0006-3495(64)86783-7 – volume: 43 year: 2022 ident: 2024.05.17.594750v1.11 article-title: A high-density 256-channel cap for dry electroencephalography publication-title: In: Human Brain Mapp doi: 10.1002/hbm.25721 – volume: 14 issue: 3 year: 1994 ident: 2024.05.17.594750v1.32 article-title: Self-adapting algorithm for evaluation of weakly singular integrals arising in the boundary element method publication-title: In: Engineering Analysis with Boundary Elements doi: 10.1016/0955-7997(94)90044-2 – year: 2022 ident: 2024.05.17.594750v1.22 publication-title: IT’IS Database for thermal and electromagnetic parameters of biological tissues doi: 10.13099/VIP21000-04-1 – volume: 65 start-page: 2675 year: 2018 end-page: 2683 ident: 2024.05.17.594750v1.27 article-title: A Quasi-Static Boundary Element Approach With Fast Multi-pole Acceleration for High-Resolution Bioelectromagnetic Models publication-title: In: IEEE. Trans. Biomed. Eng doi: 10.1109/TBME.2018.2813261 – volume: 62 start-page: 774 issue: 2 year: 2012 end-page: 781 ident: 2024.05.17.594750v1.12 article-title: FreeSurfer publication-title: In: NeuroImage doi: 10.1016/j.neuroimage.2012.01.021 – volume: 29 start-page: 371 year: 2010 end-page: 387 ident: 2024.05.17.594750v1.3 article-title: Experimental validation of the influence of white matter anisotropy on the intracranial EEG forward solution publication-title: In: J. Comput. Neurosci doi: 10.1007/s10827-009-0205-z – year: 2008 ident: 2024.05.17.594750v1.7 publication-title: In: Eurographics Italian Chapter Conference doi: 10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136 – year: 2022 ident: 2024.05.17.594750v1.25 publication-title: Textbook for Electro-and Magnetoencephalography doi: 10.1007/978-3-030-74918-7 – volume: 6 start-page: 25 issue: 40-69 year: 1990 ident: 2024.05.17.594750v1.39 article-title: Fundamentals of dipole source potential analysis publication-title: In: Adv. Audiol – volume: 24 year: 2007 ident: 2024.05.17.594750v1.13 article-title: Development of Volume Conductor and Source Models to Localize Epileptic Foci publication-title: In: J. Clin. Neurophysiol doi: 10.1097/WNP.0b013e318038fb3e – volume: 32 year: 1987 ident: 2024.05.17.594750v1.37 article-title: Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem publication-title: In: Phys. Med. Biol doi: 10.1088/0031-9155/32/1/004 – volume: 102 start-page: 267 year: 1997 end-page: 278 ident: 2024.05.17.594750v1.6 article-title: Inverse localization of electric dipole current sources in finite element models of the human head publication-title: In: Electroen-cephalogr. clin. neurophysiol doi: 10.1016/S0013-4694(96)95698-9 – volume: 7 start-page: 443 year: 1967 end-page: 462 ident: 2024.05.17.594750v1.4 article-title: The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations publication-title: In: Biophys. J doi: 10.1016/S0006-3495(67)86598-6 – year: 2004 ident: 2024.05.17.594750v1.8 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: In: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 13 year: 2019 ident: 2024.05.17.594750v1.46 article-title: Influence of Head Tissue Conductivity Uncertainties on EEG Dipole Reconstruction publication-title: In: Front. Neurosci doi: 10.3389/fnins.2019.00531 – volume: 15 start-page: 654 year: 2022 end-page: 663 ident: 2024.05.17.594750v1.50 article-title: The effect of meninges on the electric fields in TES and TMS. Numerical modeling with adaptive mesh refinement publication-title: In: Brain Stimul doi: 10.1016/j.brs.2022.04.009 – year: 2024 ident: 2024.05.17.594750v1.2 publication-title: FMM3D: A fast multipole method library for three-dimensional problems – volume: 5 year: 2019 ident: 2024.05.17.594750v1.23 article-title: Collection of CAD human head models for electromagnetic simulations and their applications publication-title: In: Biomed. Phys. Eng. Express doi: 10.1088/2057-1976/ab4c76 – volume: 49 year: 2002 ident: 2024.05.17.594750v1.40 article-title: Dipole models for the EEG and MEG publication-title: In: IEEE Trans. Biomed. Eng doi: 10.1109/10.995679 – volume: 60 year: 1985 ident: 2024.05.17.594750v1.36 article-title: Rapid solution of integral equations of classical potential theory publication-title: In: Comput. Phys doi: 10.1016/0021-9991(85)90002-6 – year: 2014 ident: 2024.05.17.594750v1.45 article-title: A guideline for head volume conductor modeling in EEG and MEG publication-title: In: Neuroimage doi: 10.1016/j.neuroimage.2014.06.040 – volume: 18 year: 2024 ident: 2024.05.17.594750v1.47 article-title: Global sensitivity of EEG source analysis to tissue conductivity uncertainties publication-title: In: Front. Hum. Neurosci doi: 10.3389/fnhum.2024.1335212 – volume: 7 start-page: 1 issue: 1 year: 1967 end-page: 11 ident: 2024.05.17.594750v1.16 article-title: On Bioelectric Potentials in an Inhomogeneous Volume Conductor publication-title: In: Biophys J doi: 10.1016/S0006-3495(67)86571-8 – volume: 22 year: 2015 ident: 2024.05.17.594750v1.10 article-title: Adaptive Boundary Element Methods publication-title: In: Arch. Computat. Methods Eng doi: 10.1007/s11831-014-9114-z – year: 2011 ident: 2024.05.17.594750v1.29 article-title: Handling white-matter anisotropy in BEM for the EEG forward problem publication-title: In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro doi: 10.1109/ISBI.2011.5872526 – volume: 51 start-page: 1586 issue: 9 year: 2004 end-page: 1598 ident: 2024.05.17.594750v1.48 article-title: Three-dimensional head model Simulation of transcranial magnetic stimulation publication-title: In: IEEE Transact. Biomed. Eng doi: 10.1109/TBME.2004.827925 – volume: 24 year: 2007 ident: 2024.05.17.594750v1.9 article-title: Clinical Application of Dipole Models in the Localization of Epileptiform Activity publication-title: In: J. Clin. Neurophysiol doi: 10.1097/WNP.0b013e31803ece13 – volume: 65 start-page: 413 year: 1993 end-page: 497 ident: 2024.05.17.594750v1.21 article-title: Magnetoen-cephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain publication-title: In: Rev. Mod. Phys doi: 10.1103/RevModPhys.65.413 – volume: 2 year: 2003 ident: 2024.05.17.594750v1.51 article-title: Effects of dipole position, orientation and noise on the accuracy of EEG source localization publication-title: In: Biomed. Eng. Online doi: 10.1186/1475-925X-2-14 – start-page: 852 year: 1995 end-page: 857 ident: 2024.05.17.594750v1.43 article-title: Curve and surface smoothing without shrinkage publication-title: In: Proceedings of IEEE International Conference on Computer Vision doi: 10.1109/ICCV.1995.466848 – year: 1997 ident: 2024.05.17.594750v1.5 publication-title: A short course on fast multipole methods – volume: 51 start-page: 145 year: 2010 end-page: 163 ident: 2024.05.17.594750v1.20 article-title: Source analysis of EEG data is an important tool in scientific and clinical applications. This is the first study on EEG source analysis using the BEM. BEM can utilize true point-dipole sources, as opposed to past studies using FEM, which can only use approximate point-dipole sources publication-title: In: NeuroImage doi: 10.1016/j.neuroimage.2010.02.014 – volume: 26 year: 2013 ident: 2024.05.17.594750v1.1 article-title: Effects of Forward Model Errors on EEG Source Localization publication-title: In: Brain Topogr doi: 10.1007/s10548-012-0274-6 – year: 2001 ident: 2024.05.17.594750v1.33 article-title: Source localisation in EEG: Combining anatomical and functional constraints publication-title: PhD thesis. Université de Liège – year: 2019 ident: 2024.05.17.594750v1.38 publication-title: In: Brain and Human Body Modeling: Computational Human Modeling at EMBC 2018 doi: 10.1007/978-3-030-21293-3_1 – year: 2015 ident: 2024.05.17.594750v1.17 article-title: SPHARA - A Generalized Spatial Fourier Analysis for Multi-Sensor Systems with Non-Uniformly Arranged Sensors: Application to EEG publication-title: In: PLOS ONE doi: 10.1371/journal.pone.0121741 – volume: 109 start-page: 140 year: 2015 end-page: 150 ident: 2024.05.17.594750v1.31 article-title: Determinants of the electric field during transcranial direct current stimulation publication-title: In: NeuroImage doi: 10.1016/j.neuroimage.2015.01.033 – year: 2023 ident: 2024.05.17.594750v1.41 article-title: FMM-LU: A Fast Direct Solver for Multiscale Boundary Integral Equations in Three Dimensions publication-title: In: Multiscale Model. Simul doi: 10.1137/22M1514040 – year: 2011 ident: 2024.05.17.594750v1.42 article-title: Brainstorm: a user-friendly application for MEG/EEG analysis publication-title: In: Comput. Intell. Neurosci doi: 10.1155/2011/879716 – volume: 32 start-page: 29 issue: 3 year: 2013 ident: 2024.05.17.594750v1.24 article-title: Screened Poisson surface reconstruction publication-title: In: ACM Transactions on Graphics (TOG) – volume: 174 start-page: 587 year: 2018 end-page: 598 ident: 2024.05.17.594750v1.28 article-title: Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art publication-title: In: NeuroImage doi: 10.1016/j.neuroimage.2018.03.001 – volume: 86 start-page: 446 year: 2014 end-page: 460 ident: 2024.05.17.594750v1.18 article-title: MNE software for processing MEG and EEG data publication-title: In: NeuroImage doi: 10.1016/j.neuroimage.2013.10.027 – volume: 2011 year: 2011 ident: 2024.05.17.594750v1.30 article-title: FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data publication-title: In: Comput. Intell. Neurosci doi: 10.1155/2011/156869 – volume: 24 start-page: 12 issue: 1 year: 2005 end-page: 28 ident: 2024.05.17.594750v1.26 article-title: A common formalism for the Integral formulations of the forward EEG problem publication-title: In: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2004.837363 – volume: 73 start-page: 325 year: 1987 end-page: 348 ident: 2024.05.17.594750v1.19 article-title: A fast algorithm for particle simulations publication-title: In: J. Comp. Phys doi: 10.1016/0021-9991(87)90140-9 – volume: 62 start-page: 2222 issue: 4 year: 2012 end-page: 2231 ident: 2024.05.17.594750v1.44 article-title: The Human Connectome Project: A data acquisition perspective publication-title: In: NeuroImage doi: 10.1016/j.neuroimage.2012.02.018 – volume: 69 start-page: 055030 year: 2024 ident: 2024.05.17.594750v1.49 article-title: An adaptive h-refinement method for the boundary element fast multipole method for quasi-static electromagnetic modeling publication-title: In: Phys. Med. Biol doi: 10.1088/1361-6560/ad2638 – volume: 5 year: 2014 ident: 2024.05.17.594750v1.34 article-title: The Role of Functional Neuroimaging in Pre-Surgical Epilepsy Evaluation publication-title: In: Front. Neurol doi: 10.3389/fneur.2014.00031 – year: 2023 ident: 2024.05.17.594750v1.35 article-title: A survey on integral equations for bioelectric modeling publication-title: preprint – year: 1996 ident: 2024.05.17.594750v1.14 publication-title: In: N.AL/OE-TR-1996-0037, Occupational and environmental health directorate, Radiofrequency Radiation Division |
SSID | ssj0002961374 |
Score | 1.8753935 |
SecondaryResourceType | preprint |
Snippet | To compare cortical dipole fitting spatial accuracy between the widely used yet highly simplified 3-layer and modern more realistic 5-layer BEM-FMM models with... |
SourceID | biorxiv proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
SubjectTerms | Bioinformatics |
Title | Accuracy of dipole source reconstruction in the 3-layer BEM model against the 5-layer BEM-FMM model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38826206 https://www.proquest.com/docview/3064141000 https://www.biorxiv.org/content/10.1101/2024.05.17.594750 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EInjz_S4reE3ZZzY5WmkpQksRC72FzT4kUJJSrdh_72wSqwcFr9lJFiaTzPfNzM4gdGcshzeraJQyo4Cg5DJKfc4jSmOXgPtjWoXTyONJPJqJx7mc_xj1Fcoq86JafRTvdR4_FGzD37f5uAkNXF2EVptU9WQqVGDrHTAxGaY2DOe9bXiFpeCnlGjzmL_eCYi33elvdFl7meEB6kz10q0O0Y4rj9BeMyZyc4zMvTHrlTYbXHlsi2W1cLgJuuOaz257wOKixADoMI8WGqA07g_GuB51g_WLLkCuXpXfq9Fw3EqcoNlw8PwwitrhCFFen3qmJvfE69h4Lk3ipHJGG6BPgiSe5FZQph2gK2sTnYKX8lZTYYE_CJHmqbKMn6LdsirdOcLMW2N4IglnXlBiQ69iR0I0AqA3Y_YC3baKypZNC4wsKDMjMqMqa5QJMl8qzMBAQ9ZBl65av2aB4oRiUgIyZ41ut4_hgO9jRuLLf-xwhfbDtZC5Z_Qa7YJq3Q0Agre8izr9wWT61K1N4BNihK5E |
linkProvider | Cold Spring Harbor Laboratory Press |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgFYIb-w5G4prKdpztCIioQFNxaKXeLMcLilQlVUsR_XvGSSgXkDjPJJZexpk3i8cI3Srtw5eNqJcwFUGAkgdeYnPfozQ0Mbg_JiN3Gjkbhv0xf54EkzbhtmjbKvOimn8WH3Ud3zVsw9-32dyEulidu1GbNOoFCQd313Np6k3UBTvjrqUrnfTWORaWgLOKeFvM_PVxoL3tcn9TzNrVpLuo-ypnZr6HNky5j7aauyJXB0jdKbWcS7XClcW6mFVTg5vMO66D2vUgWFyUGFgd9r2pBD6N7x8zXN93g-WbLECvlgY_Ui_NWo1DNE4fRw99r70hwcvro89U5ZZYGSrrByo2QWSUVBBDcRJbkmtOmTRAsbSOZQKuympJuYYggvMkTyLN_CPUKavSnCDMrFbKjwPiM8sp0W5gsSEuJQH8mzF9im5aoMSsmYMhHJiCBIJGogETdL4hFGClrvQgS1MtF8LFOa6jlIDOcYPt-jU-kPyQkfDsHytco-3-KBuIwdPw5RztOLkr5TN6gToAs7kEhvCeX9Vm8AXKSrGB |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELWgFYgb-w5G4prKduwsR7aoLK16oFJvkeMFRaqSqFBE_55xEgoHkDjPyJYm48ybHaFLpX34siH1YqZCcFAy4cU28z1KAxOB-WMydN3Ig2HQH_OHiZj86IVxZZVZXs4-8vc6j-8KtuHv2zxuQp2vzt2oTRr2RMzB3PVcmLpXabuKuqBr3Gl2Mukt4ywsBoMV8jah-esRAH3bK_-GmbW5STZRdyQrM9tCK6bYRmvNvsjFDlJXSs1nUi1wabHOq3JqcBN9x7VjuxwGi_MCA7LDvjeVgKnx9d0A1ztvsHyROfDVVPFN9ZJBy7GLxsnd803fa7ckeFnd_kxVZomVgbK-UJERoVFSgR_FSWRJpjll0gDM0jqSMZgrqyXlGhwJzuMsDjXz91CnKAtzgDCzWik_EsRnllOi3dBiQ1xYAjA4Y_oQXbSCSqtmFkbqhJkSkdIwbYQJPF8iTEFTXfpBFqacv6bO13FVpQR49hvZLo_xAegHjARH_7jhHK2PbpP06X74eIw2HNll8xk9QR2QsjkFkPCWndVa8AmKkrKS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accuracy+of+dipole+source+reconstruction+in+the+3-layer+BEM+model+against+the+5-layer+BEM-FMM+model&rft.jtitle=bioRxiv&rft.au=Nu%C3%B1ez+Ponasso%2C+Guillermo&rft.au=McSweeney%2C+Ryan+C&rft.au=Wartman%2C+William+A&rft.au=Lai%2C+Peiyao&rft.date=2024-05-21&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2024.05.17.594750&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |