Gradient boosted decision trees reveal nuances of auditory discrimination behaviour
Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes...
Saved in:
| Published in | bioRxiv |
|---|---|
| Main Authors | , , , |
| Format | Paper |
| Language | English |
| Published |
Cold Spring Harbor
Cold Spring Harbor Laboratory Press
28.02.2024
Cold Spring Harbor Laboratory |
| Edition | 1.3 |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2692-8205 2692-8205 |
| DOI | 10.1101/2023.06.16.545302 |
Cover
| Abstract | Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word's presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals' ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets' decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches.Competing Interest StatementThe authors have declared no competing interest.Footnotes* This version of the manuscript has been revised to further link false alarms to acoustic features of non-target sounds, and to provide a more reader-friendly explanation of the methods used. |
|---|---|
| AbstractList | Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word's presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals' ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets' decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches.Competing Interest StatementThe authors have declared no competing interest.Footnotes* This version of the manuscript has been revised to further link false alarms to acoustic features of non-target sounds, and to provide a more reader-friendly explanation of the methods used. Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word’s presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals’ ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets’ decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches. The sorts of listening challenges faced by real-world listeners are rarely captured by most laboratory-based auditory paradigms, particularly those testing animal models. However, many labs are attempting to utilize more realistic experiments, and more complicated behavioral paradigms require more sophisticated approaches to analyzing the resulting data. Here, we used a new behavioral paradigm to test the ability of ferret listeners to identify target speech sounds and assess their ability to generalize across changes in pitch. To make sense of the resulting dataset, we used machine learning algorithms to understand how trained ferrets perform this task. Gradient-boosted regression and decision trees are well-established machine learning methods that do not require users to predetermine interaction effects and are accompanied by visualization methods that allow insights to be gained into how multiple factors ultimately shape behavior. We compare the use of gradient-boosted models to more standard regression approaches and, by applying these methods, we demonstrate key features of ferrets’ performance on this task. Our results suggest that this machine learning approach is ideal for analyzing behavioral data in animal models. |
| Author | Lebert, Jules M Sollini, Joseph Bizley, Jennifer K Griffiths, Carla Seoyun |
| Author_xml | – sequence: 1 givenname: Carla surname: Griffiths middlename: Seoyun fullname: Griffiths, Carla Seoyun – sequence: 2 givenname: Jules surname: Lebert middlename: M fullname: Lebert, Jules M – sequence: 3 givenname: Joseph surname: Sollini fullname: Sollini, Joseph – sequence: 4 givenname: Jennifer surname: Bizley middlename: K fullname: Bizley, Jennifer K |
| BookMark | eNptkEFLxDAQhYOs4LruD_AW8OKldZK0aXOURVdhwYN6DmmTYJaarEm7uv_eLhXx4Glm4HvDe-8czXzwBqFLAjkhQG4oUJYDzwnPy6JkQE_QnHJBs5pCOfuzn6FlSlsAoIITVhVz9LyOSjvje9yEkHqjsTatSy543EdjEo5mb1SH_aB8O57BYjVo14d4wNqlNrp351V_5BvzpvYuDPECnVrVJbP8mQv0en_3snrINk_rx9XtJmsIFDQTDZCiJkw3zNaCVaC45kJwqARTVovW2tbUtrLWiKpuSKFLZYiwmjMBFW3ZAtHp7-B36vCpuk7uRj8qHiQBeWxGHpuRwCXhcmpmFF1PosaF-OX2v5L_0KsJ3cXwMZjUy-2Yzo-RJBWMcsbr0f43YQhxsQ |
| Cites_doi | 10.1152/jn.00884.2003 10.1121/1.4954378 10.1162/0899766054322964 10.1073/pnas.2221756120 10.1121/1.4941322 10.1016/j.anbehav.2009.06.029 10.48550/arXiv.2207.08815 10.1250/ast.27.349 10.1145/3556702.3556839 10.48550/arXiv.1907.10902 10.1073/pnas.1515380113 10.1016/j.anbehav.2008.01.026 10.1371/journal.pone.0078607 10.1097/00001756-199309150-00018 10.1037/0735-7036.111.1.3 10.1086/285553 10.1371/journal.pone.0085405 10.1109/ICCSE.2019.8845529 10.1073/pnas.1810766115 10.1007/0-387-28958-58 10.1038/s41593-021-01007-z 10.7554/eLife.78278 10.1098/rspb.2009.1788 10.1098/rstb.2011.0355 10.1121/1.4916690 10.1111/ejn.13794 10.1016/j.neuron.2020.12.004 10.1121/1.4768798 |
| ContentType | Paper |
| Copyright | 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2024, Posted by Cold Spring Harbor Laboratory |
| Copyright_xml | – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2024, Posted by Cold Spring Harbor Laboratory |
| DBID | 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS FX. UNPAY |
| DOI | 10.1101/2023.06.16.545302 |
| DatabaseName | ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China bioRxiv Unpaywall |
| DatabaseTitle | Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: FX. name: bioRxiv url: https://www.biorxiv.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2692-8205 |
| Edition | 1.3 |
| ExternalDocumentID | 10.1101/2023.06.16.545302 2023.06.16.545302v3 |
| Genre | Working Paper/Pre-Print |
| GroupedDBID | 8FE 8FH ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P NQS PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC RHI FX. UNPAY |
| ID | FETCH-LOGICAL-b1042-9b014813db3f89370a6d69960793afd9cffce8f7ffe978b14d5ae19fd639072c3 |
| IEDL.DBID | BENPR |
| ISSN | 2692-8205 |
| IngestDate | Sun Oct 26 03:05:42 EDT 2025 Tue Jan 07 18:52:39 EST 2025 Fri Jul 25 09:17:22 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | false |
| Keywords | pitch behavioral data analysis in neuroscience Shapley Additive Explanations ferret auditory scene analysis |
| Language | English |
| License | This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-b1042-9b014813db3f89370a6d69960793afd9cffce8f7ffe978b14d5ae19fd639072c3 |
| Notes | SourceType-Working Papers-1 ObjectType-Working Paper/Pre-Print-1 content type line 50 Competing Interest Statement: The authors have declared no competing interest. |
| ORCID | 0000-0001-7494-2293 0000-0002-1974-4291 0000-0001-6605-2362 0000-0001-7612-7823 |
| OpenAccessLink | https://www.proquest.com/docview/2932636881?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2932636881 |
| PQPubID | 2050091 |
| PageCount | 35 |
| ParticipantIDs | unpaywall_primary_10_1101_2023_06_16_545302 biorxiv_primary_2023_06_16_545302 proquest_journals_2932636881 |
| PublicationCentury | 2000 |
| PublicationDate | 20240228 |
| PublicationDateYYYYMMDD | 2024-02-28 |
| PublicationDate_xml | – month: 02 year: 2024 text: 20240228 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Cold Spring Harbor |
| PublicationPlace_xml | – name: Cold Spring Harbor |
| PublicationTitle | bioRxiv |
| PublicationYear | 2024 |
| Publisher | Cold Spring Harbor Laboratory Press Cold Spring Harbor Laboratory |
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press – name: Cold Spring Harbor Laboratory |
| References | Molnar (2023.06.16.545302v3.26) 2023 Darwin (2023.06.16.545302v3.9) 2005 Homma (2023.06.16.545302v3.17) 2016; 139 Kar (2023.06.16.545302v3.19) 2022; 11 Town (2023.06.16.545302v3.33) 2015; 137 Aulanko (2023.06.16.545302v3.3) 1993; 4 Bee, Klump (2023.06.16.545302v3.4) 2004; 92 Grinsztajn, Oyallon, Varoquaux (2023.06.16.545302v3.14) 2022 Kawahara (2023.06.16.545302v3.20) 2006; 27 (2023.06.16.545302v3.25) 2023 Luo (2023.06.16.545302v3.23) 2022; 2022 Lundberg, Lee (2023.06.16.545302v3.22) 2017; 30 Haykin (2023.06.16.545302v3.16) 2005; 17 Moore, Gockel (2023.06.16.545302v3.27) 2012; 367 Ashwood (2023.06.16.545302v3.2) 2022; 25 Charlton, Zhihe, Snyder (2023.06.16.545302v3.8) 2009; 78 Dolležal (2023.06.16.545302v3.11) 2020; 51 Machado, Karray, de Sousa (2023.06.16.545302v3.24) 2019 Bizley (2023.06.16.545302v3.6) 2013; 133 Osmanski, Wang (2023.06.16.545302v3.30) 2023; 120 Sumner (2023.06.16.545302v3.32) 2018; 115 Roy (2023.06.16.545302v3.31) 2021; 109 Hulse, MacDougall-Shackleton, Wisniewski (2023.06.16.545302v3.18) 1997; 111 Green, Swets (2023.06.16.545302v3.13) 1966 Dent (2023.06.16.545302v3.10) 2016; 139 Ke (2023.06.16.545302v3.21) 2017 Ohms (2023.06.16.545302v3.29) 2010; 277 Akiba (2023.06.16.545302v3.1) 2019 Bee, Riemersma (2023.06.16.545302v3.5) 2008; 76 Engineer (2023.06.16.545302v3.12) 2013; 8 Neilans (2023.06.16.545302v3.28) 2014; 9 Bregman, Patel, Gentner (2023.06.16.545302v3.7) 2016; 113 Hauser (2023.06.16.545302v3.15) 1993; 142 |
| References_xml | – year: 2023 ident: 2023.06.16.545302v3.26 publication-title: 8.5 Permutation Feature Importance — Interpretable Machine Learning – volume: 92 start-page: 1088 issue: 2 year: 2004 end-page: 1104 ident: 2023.06.16.545302v3.4 article-title: Primitive Auditory Stream Segregation: A Neurophysiological Study in the Songbird Forebrain publication-title: Journal of Neurophysiology doi: 10.1152/jn.00884.2003 – volume: 139 start-page: EL246 issue: 6 year: 2016 end-page: EL251 ident: 2023.06.16.545302v3.17 article-title: Mistuning detection performance of ferrets in a go/no-go task publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4954378 – volume: 17 start-page: 1875 issue: 9 year: 2005 end-page: 1902 ident: 2023.06.16.545302v3.16 article-title: The cocktail party problem publication-title: Neural Computation doi: 10.1162/0899766054322964 – volume: 120 start-page: e2221756120 issue: 24 year: 2023 ident: 2023.06.16.545302v3.30 article-title: Perceptual specializations for processing species-specific vocalizations in the common marmoset (Callithrix jacchus) publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.2221756120 – volume: 139 start-page: 674 issue: 2 year: 2016 end-page: 683 ident: 2023.06.16.545302v3.10 article-title: Cues for auditory stream segregation of birdsong in budgerigars and zebra finches: Effects of location, timing, amplitude, and frequency publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4941322 – volume: 78 start-page: 893 year: 2009 end-page: 898 ident: 2023.06.16.545302v3.8 article-title: The information content of giant panda, Ailuropoda melanoleuca, bleats: Acoustic cues to sex, age and size publication-title: Animal Behaviour doi: 10.1016/j.anbehav.2009.06.029 – start-page: arXiv:2207.08815 year: 2022 ident: 2023.06.16.545302v3.14 publication-title: Why do tree-based models still outperform deep learning on tabular data? doi: 10.48550/arXiv.2207.08815 – volume: 27 start-page: 349 issue: 6 year: 2006 end-page: 353 ident: 2023.06.16.545302v3.20 article-title: STRAIGHT, exploitation of the other aspect of VOCODER: Perceptually isomorphic decomposition of speech sounds publication-title: Acoustical Science and Technology doi: 10.1250/ast.27.349 – start-page: xi year: 1966 end-page: 455 ident: 2023.06.16.545302v3.13 publication-title: Signal detection theory and psychophysics – volume: 2022 start-page: 24 year: 2022 end-page: 28 ident: 2023.06.16.545302v3.23 article-title: LightGBM using Enhanced and De-biased Item Representation for Better Session-based Fashion Recommender Systems publication-title: Proceedings of the Recommender Systems Challenge doi: 10.1145/3556702.3556839 – start-page: arXiv:1907.10902 year: 2019 ident: 2023.06.16.545302v3.1 publication-title: Optuna: A Next-generation Hyperparameter Optimization Framework doi: 10.48550/arXiv.1907.10902 – volume: 113 start-page: 1666 issue: 6 year: 2016 end-page: 1671 ident: 2023.06.16.545302v3.7 article-title: Songbirds use spectral shape, not pitch, for sound pattern recognition publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1515380113 – volume: 76 start-page: 831 issue: 3 year: 2008 end-page: 843 ident: 2023.06.16.545302v3.5 article-title: Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs? publication-title: Animal Behaviour doi: 10.1016/j.anbehav.2008.01.026 – volume: 8 start-page: e78607 issue: 10 year: 2013 ident: 2023.06.16.545302v3.12 article-title: Similarity of cortical activity patterns predicts generalization behavior publication-title: PloS One doi: 10.1371/journal.pone.0078607 – volume: 4 start-page: 1356 issue: 12 year: 1993 end-page: 1358 ident: 2023.06.16.545302v3.3 article-title: Phonetic invariance in the human auditory cortex publication-title: Neuroreport doi: 10.1097/00001756-199309150-00018 – volume: 111 start-page: 3 issue: 1 year: 1997 end-page: 13 ident: 2023.06.16.545302v3.18 article-title: Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris) publication-title: Journal of Comparative Psychology (Washington, D.C.: 1983) doi: 10.1037/0735-7036.111.1.3 – volume: 142 start-page: 528 issue: 3 year: 1993 end-page: 542 ident: 2023.06.16.545302v3.15 article-title: The Evolution of Nonhuman Primate Vocalizations: Effects of Phylogeny, Body Weight, and Social Context publication-title: The American Naturalist doi: 10.1086/285553 – volume: 9 start-page: e85405 issue: 1 year: 2014 ident: 2023.06.16.545302v3.28 article-title: Discrimination of Ultrasonic Vocalizations by CBA/CaJ Mice (Mus musculus) Is Related to Spectrotemporal Dissimilarity of Vocalizations”. en publication-title: PLOS ONE doi: 10.1371/journal.pone.0085405 – start-page: 1111 year: 2019 end-page: 1116 ident: 2023.06.16.545302v3.24 article-title: LightGBM: an Effective Decision Tree Gradient Boosting Method to Predict Customer Loyalty in the Finance Industry doi: 10.1109/ICCSE.2019.8845529 – volume: 115 start-page: 11322 issue: 44 year: 2018 end-page: 11326 ident: 2023.06.16.545302v3.32 article-title: Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1810766115 – year: 2023 ident: 2023.06.16.545302v3.25 publication-title: mcdermottLab/pycochleagram – start-page: 278 year: 2005 end-page: 305 ident: 2023.06.16.545302v3.9 publication-title: Pitch: Neural Coding and Perception doi: 10.1007/0-387-28958-58 – volume: 25 start-page: 201 issue: 2 year: 2022 end-page: 212 ident: 2023.06.16.545302v3.2 article-title: Mice alternate between discrete strategies during perceptual decision-making publication-title: Nature Neuroscience doi: 10.1038/s41593-021-01007-z – volume: 11 start-page: e78278 year: 2022 ident: 2023.06.16.545302v3.19 article-title: Vocalization categorization behavior explained by a feature-based auditory categorization model publication-title: eLife doi: 10.7554/eLife.78278 – volume: 277 start-page: 1003 issue: 1684 year: 2010 end-page: 1009 ident: 2023.06.16.545302v3.29 article-title: Zebra finches exhibit speaker-independent phonetic perception of human speech publication-title: Proceedings. Biological Sciences doi: 10.1098/rspb.2009.1788 – volume: 30 year: 2017 ident: 2023.06.16.545302v3.22 publication-title: Advances in Neural Information Processing Systems – volume: 367 start-page: 919 issue: 1591 year: 2012 end-page: 931 ident: 2023.06.16.545302v3.27 article-title: Properties of auditory stream formation publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences doi: 10.1098/rstb.2011.0355 – volume: 137 start-page: 2870 issue: 5 year: 2015 end-page: 2883 ident: 2023.06.16.545302v3.33 article-title: The role of spectral cues in timbre discrimination by ferrets and humans publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4916690 – volume: 51 start-page: 1242 issue: 5 year: 2020 end-page: 1253 ident: 2023.06.16.545302v3.11 article-title: Release from informational masking by auditory stream segregation: perception and its neural correlate publication-title: The European Journal of Neuroscience doi: 10.1111/ejn.13794 – volume: 109 start-page: 597 issue: 4 year: 2021 end-page: 610 ident: 2023.06.16.545302v3.31 article-title: Extracting the dynamics of behavior in sensory decision-making experiments publication-title: Neuron doi: 10.1016/j.neuron.2020.12.004 – volume: 133 start-page: 365 issue: 1 year: 2013 end-page: 376 ident: 2023.06.16.545302v3.6 article-title: Spectral timbre perception in ferrets: Discrimination of artificial vowels under different listening conditions publication-title: The Journal of the Acoustical Society of America doi: 10.1121/1.4768798 – start-page: 3149 year: 2017 end-page: 3157 ident: 2023.06.16.545302v3.21 article-title: LightGBM: a highly efficient gradient boosting decision tree |
| SSID | ssj0002961374 |
| Score | 1.7178491 |
| SecondaryResourceType | preprint |
| Snippet | Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a... |
| SourceID | unpaywall biorxiv proquest |
| SourceType | Open Access Repository Aggregation Database |
| SubjectTerms | Auditory discrimination Decision making Decision trees False alarms Frequency Hemispheric laterality Mustela Neuroscience Psychophysics Reaction time task Streaming |
| SummonAdditionalLinks | – databaseName: bioRxiv dbid: FX. link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EInrzidUqK3iTlN3sZpM9i7UIioiF3sI-oVCSkrZq_707SVoqevAayC7MZDLfPL4ZhG55HLsksyYKppNG3AgeKel9JLykxgmrUw7k5OcXMRzxp3Ey3lr1BW2VelJWX5OPuo4PDdvh79sYN6EQqzMYuElFP_h-BmMkO2lw8dDNNRj3N-mVWAY_lfK2jvnnmwHxtjf9QJf7y2KmVp9qOt1yNIND1HlVM1cdoR1XHKO9ZlPk6gS9PVZ1b9YCB1QMGUps2-U4GMrKcwyTmNQUF0vQ4hyXHivgW5TVCgPxtlneBUrAa2L-KRoNHt7vh1G7DiHSFEg0UkP2jzKrmQeUQZSwAoarBBNT3krjvXGZT713ITTUlNtEOSq9DSCEpLFhZ2i3KAt3jjDjmmrJrfOJ55QolanEZwlhhmvipOyim1Y0-awZepGD-HIiciryRnxd1FsLLW-_-3keAxxkIstoF91tBLk5pI44CP192MU_LrxEB-EZb_jkPbS7qJbuKiCChb6udf8NsrOwRA priority: 102 providerName: Cold Spring Harbor Laboratory Press – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS8MwEA66PfimouJkSgTfpG3Spln7KOIcgmOIg_lUkiaB4ehG16rz15vbsqHuSfCtlDZtcnftd7m77xC6YmGo40TlnjWdjsdyzjyRGuNxk9JccyU7DIqTH_u8N2QPo3jkKuvmLq1Sjqflx_htGceHhG379Q3cuUAD7S947FFAeBDS5SEwcFLuWzAQkdCHfWt_pswuavLYAvQGag77g5sXF9O0Orh9k0W_7gk_kOZeXczE4l1MJt9-Ot19VK1fd5Vr8urXlfTzz19Mjv88nwPUHIiZLg_Rji6O0NN9uUwKq7CF47A1ipXryoMhnj3HQAElJrioQX3meGqwgEKPabnAUPG76hoG0sdrRoBjNOzePd_2PNeHwZMUqndSCduONFIyMgBviOCKA6uLtW1hVJobk-vEdIzR1ieVlKlYaJoaZdEP6YR5dIIaxbTQpwhHTFKZMqVNbBglQiQiNklMopxJotO0hS7dymSzFdtGBguSEZ5Rnq0WpIXaawllzuDmWQg4NOJJQlvoeiO1zSBLV4fQ7cHO_nR1GzWqstbnFodU8sLp1ReYUNzK priority: 102 providerName: Unpaywall |
| Title | Gradient boosted decision trees reveal nuances of auditory discrimination behaviour |
| URI | https://www.proquest.com/docview/2932636881 https://www.biorxiv.org/content/10.1101/2023.06.16.545302 https://www.biorxiv.org/content/biorxiv/early/2023/06/21/2023.06.16.545302.full.pdf |
| UnpaywallVersion | acceptedVersion |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-swFD7MDdE39SrOHyPCfbtUmzbNmgcRFacIdwy9g_lUkiYBYbSz29T99-a03bwi-NiH5uEkJ_lyTr7vA_jNgsBEsU49lzpdj6WceVJY63EraGq4Vl2G5OS_fX43ZPejaNSA_pILg88ql3tiuVHrPMUa-VmAQCPkcUwvJi8eukZhd3VpoSFrawV9XkqMrUErQGWsJrSubvqDh1XVJRDu-CqlmQMu3FYQ-FHd6nRLEwsBIap5Un7qgEWIpZZ19ZwX78-vXwDoxjybyMWbHI__O4t6W9AayIkptqFhsh1Yr8wkF7_g8bYon2_NiAPOWMQkuvbPIdh5nhIUa5Jjks1xoqckt0QiJSMvFgS5uZW_F84Tqbn782IXhr2bf9d3Xm2Z4CmKRBuhsEJIQ61Ci0jEl1xzFGBxaSitFqm1qYlt11rjro-KMh1JQ4XVDqj43SAN96CZ5ZnZBxIyRZVg2tjIMupLGcvIxpEfpkz5Rog2nNSxSSaVMEaC8Ut8nlCeVPFrw9EyakmdG9Pkcybb8GcVydUg5a3Ep98HO_h5sEPYdL-wim5-BM1ZMTfHDjDMVKdeBR1Y641O3dewP7h8-gCxjL_z |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aq6bxNm6i2xhGgicUiC9x44cJabDRsa2aYJP2FuzYliZVSUnbbf1z_DZ8EreAkHjbD8h5ODn2ufn7PoDXgjGX5bZMwtEZJKKUItHK-0R6RUsnrRkIBCefjeTwUny5yq7W4OcSC4PPKpd3YntR27rEGfl7hoUGl3lOP0x-JKgahdvVpYSGjtIKdr-lGIvAjhO3uA0t3HT_-FP4328YOzq8-DhMospAYihiU5TBoRrl1nCPyTvV0krkLAmRq71Vpfely_3Aexc6LkOFzbSjytuQ29MBK3mw-wB6ggsVmr_eweHo_OtqysNUSJctFTSTKlw9LM3iajUcBRw8cGQPpfJdKGQ4jnY2zHXd3F3f_FXwbs6riV7c6vH4j9x3tAW9cz1xzSNYc9Vj2OjEKxdP4Nvnpn0uNiOhUMehKbFRr4fgpntKkBxKj0k1x8CaktoTjRCQulkQxAJ3emIYFyRyBcybp3B5L857ButVXbnnQLgw1Chhnc-8oKnWuc58nqW8FCZ1SvXhVfRNMemIOAr0X5HKgsqi818fdpdeK-JZnBa_I6cPb1eeXBlpu6CU_mts-__GXsLm8OLstDg9Hp3swMPwueig7ruwPmvm7kUoVmZmL0YEge_3HYS_AN1L-jw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-64cebnzidGsE36UjaNG2e1Tm_xhAHeytJk8BgtKPb1P335tZuTPTB58IFLr3c7z5-dwhdM983YaxTz5lO5LGUM08Kaz1uBU0N1ypiQE5-7fJOnz0NwsEaFwbaKtUwL76GH4s6PjRsu9e3NG5CIVYPYOAm5S3n-wPityBN3Rpru4nqkfP1EIC1B61VnsUXzmFFrCpo_inCQd_qyB8wc2eWjeX8U45Gax6nvYfqPTk2xT7aMNkB2ipXRs4P0dtDsWjSmmIHjyFViXW1JQdDfXmCYSSTHOFsBtc5wbnFEogXeTHHwMAtt3jBbeAlQ_8I9dv377cdr9qL4CkKbBqhIA1IA60CC3CDSK45TFlxtiatFqm1qYltZK1xMaKiTIfSUGG1QyMk8tPgGNWyPDMnCAdMUSWYNja0jBIpYxnaOCRByhQxQjTQVaWaZFxOv0hAfQnhCeVJqb4Gai6VllQGMEl8wIUBj2PaQDcrRa6ELEIPQn8LO_3HgZdou3fXTl4eu89naNd9ZiXHvIlq02Jmzh1KmKqLxW_wDWwYtiM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS8MwEA66PfimouJkSgTfpG3Spln7KOIcgmOIg_lUkiaB4ehG16rz15vbsqHuSfCtlDZtcnftd7m77xC6YmGo40TlnjWdjsdyzjyRGuNxk9JccyU7DIqTH_u8N2QPo3jkKuvmLq1Sjqflx_htGceHhG379Q3cuUAD7S947FFAeBDS5SEwcFLuWzAQkdCHfWt_pswuavLYAvQGag77g5sXF9O0Orh9k0W_7gk_kOZeXczE4l1MJt9-Ot19VK1fd5Vr8urXlfTzz19Mjv88nwPUHIiZLg_Rji6O0NN9uUwKq7CF47A1ipXryoMhnj3HQAElJrioQX3meGqwgEKPabnAUPG76hoG0sdrRoBjNOzePd_2PNeHwZMUqndSCduONFIyMgBviOCKA6uLtW1hVJobk-vEdIzR1ieVlKlYaJoaZdEP6YR5dIIaxbTQpwhHTFKZMqVNbBglQiQiNklMopxJotO0hS7dymSzFdtGBguSEZ5Rnq0WpIXaawllzuDmWQg4NOJJQlvoeiO1zSBLV4fQ7cHO_nR1GzWqstbnFodU8sLp1ReYUNzK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+boosted+decision+trees+reveal+nuances+of+auditory+discrimination+behaviour&rft.jtitle=bioRxiv&rft.au=Griffiths%2C+Carla+Seoyun&rft.au=Lebert%2C+Jules+M&rft.au=Sollini%2C+Joseph&rft.au=Bizley%2C+Jennifer+K&rft.date=2024-02-28&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.06.16.545302 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon |