Gradient boosted decision trees reveal nuances of auditory discrimination behaviour

Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes...

Full description

Saved in:
Bibliographic Details
Published inbioRxiv
Main Authors Griffiths, Carla Seoyun, Lebert, Jules M, Sollini, Joseph, Bizley, Jennifer K
Format Paper
LanguageEnglish
Published Cold Spring Harbor Cold Spring Harbor Laboratory Press 28.02.2024
Cold Spring Harbor Laboratory
Edition1.3
Subjects
Online AccessGet full text
ISSN2692-8205
2692-8205
DOI10.1101/2023.06.16.545302

Cover

Abstract Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word's presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals' ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets' decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches.Competing Interest StatementThe authors have declared no competing interest.Footnotes* This version of the manuscript has been revised to further link false alarms to acoustic features of non-target sounds, and to provide a more reader-friendly explanation of the methods used.
AbstractList Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word's presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals' ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets' decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches.Competing Interest StatementThe authors have declared no competing interest.Footnotes* This version of the manuscript has been revised to further link false alarms to acoustic features of non-target sounds, and to provide a more reader-friendly explanation of the methods used.
Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a promising machine learning approach for analyzing such data, partly due to the tools that allow users to gain insight into how the model makes predictions. We trained ferrets to report a target word’s presence, timing, and lateralization within a stream of consecutively presented non-target words. To assess the animals’ ability to generalize across pitch, we manipulated the fundamental frequency (F0) of the speech stimuli across trials, and to assess the contribution of pitch to streaming, we roved the F0 from word token-to-token. We then implemented gradient-boosted regression and decision trees on the trial outcome and reaction time data to understand the behavioral factors behind the ferrets’ decision-making. We visualized model contributions by implementing SHAPs feature importance and partial dependency plots. While ferrets could accurately perform the task across all pitch-shifted conditions, our models reveal subtle effects of shifting F0 on performance, with within-trial pitch shifting elevating false alarms and extending reaction times. Our models identified a subset of non-target words that animals commonly false alarmed to. Follow-up analysis demonstrated that the spectrotemporal similarity of target and non-target words rather than similarity in duration or amplitude waveform was the strongest predictor of the likelihood of false alarming. Finally, we compared the results with those obtained with traditional mixed effects models, revealing equivalent or better performance for the gradient-boosted models over these approaches. The sorts of listening challenges faced by real-world listeners are rarely captured by most laboratory-based auditory paradigms, particularly those testing animal models. However, many labs are attempting to utilize more realistic experiments, and more complicated behavioral paradigms require more sophisticated approaches to analyzing the resulting data. Here, we used a new behavioral paradigm to test the ability of ferret listeners to identify target speech sounds and assess their ability to generalize across changes in pitch. To make sense of the resulting dataset, we used machine learning algorithms to understand how trained ferrets perform this task. Gradient-boosted regression and decision trees are well-established machine learning methods that do not require users to predetermine interaction effects and are accompanied by visualization methods that allow insights to be gained into how multiple factors ultimately shape behavior. We compare the use of gradient-boosted models to more standard regression approaches and, by applying these methods, we demonstrate key features of ferrets’ performance on this task. Our results suggest that this machine learning approach is ideal for analyzing behavioral data in animal models.
Author Lebert, Jules M
Sollini, Joseph
Bizley, Jennifer K
Griffiths, Carla Seoyun
Author_xml – sequence: 1
  givenname: Carla
  surname: Griffiths
  middlename: Seoyun
  fullname: Griffiths, Carla Seoyun
– sequence: 2
  givenname: Jules
  surname: Lebert
  middlename: M
  fullname: Lebert, Jules M
– sequence: 3
  givenname: Joseph
  surname: Sollini
  fullname: Sollini, Joseph
– sequence: 4
  givenname: Jennifer
  surname: Bizley
  middlename: K
  fullname: Bizley, Jennifer K
BookMark eNptkEFLxDAQhYOs4LruD_AW8OKldZK0aXOURVdhwYN6DmmTYJaarEm7uv_eLhXx4Glm4HvDe-8czXzwBqFLAjkhQG4oUJYDzwnPy6JkQE_QnHJBs5pCOfuzn6FlSlsAoIITVhVz9LyOSjvje9yEkHqjsTatSy543EdjEo5mb1SH_aB8O57BYjVo14d4wNqlNrp351V_5BvzpvYuDPECnVrVJbP8mQv0en_3snrINk_rx9XtJmsIFDQTDZCiJkw3zNaCVaC45kJwqARTVovW2tbUtrLWiKpuSKFLZYiwmjMBFW3ZAtHp7-B36vCpuk7uRj8qHiQBeWxGHpuRwCXhcmpmFF1PosaF-OX2v5L_0KsJ3cXwMZjUy-2Yzo-RJBWMcsbr0f43YQhxsQ
Cites_doi 10.1152/jn.00884.2003
10.1121/1.4954378
10.1162/0899766054322964
10.1073/pnas.2221756120
10.1121/1.4941322
10.1016/j.anbehav.2009.06.029
10.48550/arXiv.2207.08815
10.1250/ast.27.349
10.1145/3556702.3556839
10.48550/arXiv.1907.10902
10.1073/pnas.1515380113
10.1016/j.anbehav.2008.01.026
10.1371/journal.pone.0078607
10.1097/00001756-199309150-00018
10.1037/0735-7036.111.1.3
10.1086/285553
10.1371/journal.pone.0085405
10.1109/ICCSE.2019.8845529
10.1073/pnas.1810766115
10.1007/0-387-28958-58
10.1038/s41593-021-01007-z
10.7554/eLife.78278
10.1098/rspb.2009.1788
10.1098/rstb.2011.0355
10.1121/1.4916690
10.1111/ejn.13794
10.1016/j.neuron.2020.12.004
10.1121/1.4768798
ContentType Paper
Copyright 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2024, Posted by Cold Spring Harbor Laboratory
Copyright_xml – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (“the License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2024, Posted by Cold Spring Harbor Laboratory
DBID 8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
FX.
UNPAY
DOI 10.1101/2023.06.16.545302
DatabaseName ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
bioRxiv
Unpaywall
DatabaseTitle Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

Database_xml – sequence: 1
  dbid: FX.
  name: bioRxiv
  url: https://www.biorxiv.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2692-8205
Edition 1.3
ExternalDocumentID 10.1101/2023.06.16.545302
2023.06.16.545302v3
Genre Working Paper/Pre-Print
GroupedDBID 8FE
8FH
ABUWG
AFKRA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
NQS
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PROAC
RHI
FX.
UNPAY
ID FETCH-LOGICAL-b1042-9b014813db3f89370a6d69960793afd9cffce8f7ffe978b14d5ae19fd639072c3
IEDL.DBID BENPR
ISSN 2692-8205
IngestDate Sun Oct 26 03:05:42 EDT 2025
Tue Jan 07 18:52:39 EST 2025
Fri Jul 25 09:17:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Keywords pitch
behavioral data analysis in neuroscience
Shapley Additive Explanations
ferret
auditory scene analysis
Language English
License This pre-print is available under a Creative Commons License (Attribution-NonCommercial-NoDerivs 4.0 International), CC BY-NC-ND 4.0, as described at http://creativecommons.org/licenses/by-nc-nd/4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-b1042-9b014813db3f89370a6d69960793afd9cffce8f7ffe978b14d5ae19fd639072c3
Notes SourceType-Working Papers-1
ObjectType-Working Paper/Pre-Print-1
content type line 50
Competing Interest Statement: The authors have declared no competing interest.
ORCID 0000-0001-7494-2293
0000-0002-1974-4291
0000-0001-6605-2362
0000-0001-7612-7823
OpenAccessLink https://www.proquest.com/docview/2932636881?pq-origsite=%requestingapplication%&accountid=15518
PQID 2932636881
PQPubID 2050091
PageCount 35
ParticipantIDs unpaywall_primary_10_1101_2023_06_16_545302
biorxiv_primary_2023_06_16_545302
proquest_journals_2932636881
PublicationCentury 2000
PublicationDate 20240228
PublicationDateYYYYMMDD 2024-02-28
PublicationDate_xml – month: 02
  year: 2024
  text: 20240228
  day: 28
PublicationDecade 2020
PublicationPlace Cold Spring Harbor
PublicationPlace_xml – name: Cold Spring Harbor
PublicationTitle bioRxiv
PublicationYear 2024
Publisher Cold Spring Harbor Laboratory Press
Cold Spring Harbor Laboratory
Publisher_xml – name: Cold Spring Harbor Laboratory Press
– name: Cold Spring Harbor Laboratory
References Molnar (2023.06.16.545302v3.26) 2023
Darwin (2023.06.16.545302v3.9) 2005
Homma (2023.06.16.545302v3.17) 2016; 139
Kar (2023.06.16.545302v3.19) 2022; 11
Town (2023.06.16.545302v3.33) 2015; 137
Aulanko (2023.06.16.545302v3.3) 1993; 4
Bee, Klump (2023.06.16.545302v3.4) 2004; 92
Grinsztajn, Oyallon, Varoquaux (2023.06.16.545302v3.14) 2022
Kawahara (2023.06.16.545302v3.20) 2006; 27
(2023.06.16.545302v3.25) 2023
Luo (2023.06.16.545302v3.23) 2022; 2022
Lundberg, Lee (2023.06.16.545302v3.22) 2017; 30
Haykin (2023.06.16.545302v3.16) 2005; 17
Moore, Gockel (2023.06.16.545302v3.27) 2012; 367
Ashwood (2023.06.16.545302v3.2) 2022; 25
Charlton, Zhihe, Snyder (2023.06.16.545302v3.8) 2009; 78
Dolležal (2023.06.16.545302v3.11) 2020; 51
Machado, Karray, de Sousa (2023.06.16.545302v3.24) 2019
Bizley (2023.06.16.545302v3.6) 2013; 133
Osmanski, Wang (2023.06.16.545302v3.30) 2023; 120
Sumner (2023.06.16.545302v3.32) 2018; 115
Roy (2023.06.16.545302v3.31) 2021; 109
Hulse, MacDougall-Shackleton, Wisniewski (2023.06.16.545302v3.18) 1997; 111
Green, Swets (2023.06.16.545302v3.13) 1966
Dent (2023.06.16.545302v3.10) 2016; 139
Ke (2023.06.16.545302v3.21) 2017
Ohms (2023.06.16.545302v3.29) 2010; 277
Akiba (2023.06.16.545302v3.1) 2019
Bee, Riemersma (2023.06.16.545302v3.5) 2008; 76
Engineer (2023.06.16.545302v3.12) 2013; 8
Neilans (2023.06.16.545302v3.28) 2014; 9
Bregman, Patel, Gentner (2023.06.16.545302v3.7) 2016; 113
Hauser (2023.06.16.545302v3.15) 1993; 142
References_xml – year: 2023
  ident: 2023.06.16.545302v3.26
  publication-title: 8.5 Permutation Feature Importance — Interpretable Machine Learning
– volume: 92
  start-page: 1088
  issue: 2
  year: 2004
  end-page: 1104
  ident: 2023.06.16.545302v3.4
  article-title: Primitive Auditory Stream Segregation: A Neurophysiological Study in the Songbird Forebrain
  publication-title: Journal of Neurophysiology
  doi: 10.1152/jn.00884.2003
– volume: 139
  start-page: EL246
  issue: 6
  year: 2016
  end-page: EL251
  ident: 2023.06.16.545302v3.17
  article-title: Mistuning detection performance of ferrets in a go/no-go task
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4954378
– volume: 17
  start-page: 1875
  issue: 9
  year: 2005
  end-page: 1902
  ident: 2023.06.16.545302v3.16
  article-title: The cocktail party problem
  publication-title: Neural Computation
  doi: 10.1162/0899766054322964
– volume: 120
  start-page: e2221756120
  issue: 24
  year: 2023
  ident: 2023.06.16.545302v3.30
  article-title: Perceptual specializations for processing species-specific vocalizations in the common marmoset (Callithrix jacchus)
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.2221756120
– volume: 139
  start-page: 674
  issue: 2
  year: 2016
  end-page: 683
  ident: 2023.06.16.545302v3.10
  article-title: Cues for auditory stream segregation of birdsong in budgerigars and zebra finches: Effects of location, timing, amplitude, and frequency
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4941322
– volume: 78
  start-page: 893
  year: 2009
  end-page: 898
  ident: 2023.06.16.545302v3.8
  article-title: The information content of giant panda, Ailuropoda melanoleuca, bleats: Acoustic cues to sex, age and size
  publication-title: Animal Behaviour
  doi: 10.1016/j.anbehav.2009.06.029
– start-page: arXiv:2207.08815
  year: 2022
  ident: 2023.06.16.545302v3.14
  publication-title: Why do tree-based models still outperform deep learning on tabular data?
  doi: 10.48550/arXiv.2207.08815
– volume: 27
  start-page: 349
  issue: 6
  year: 2006
  end-page: 353
  ident: 2023.06.16.545302v3.20
  article-title: STRAIGHT, exploitation of the other aspect of VOCODER: Perceptually isomorphic decomposition of speech sounds
  publication-title: Acoustical Science and Technology
  doi: 10.1250/ast.27.349
– start-page: xi
  year: 1966
  end-page: 455
  ident: 2023.06.16.545302v3.13
  publication-title: Signal detection theory and psychophysics
– volume: 2022
  start-page: 24
  year: 2022
  end-page: 28
  ident: 2023.06.16.545302v3.23
  article-title: LightGBM using Enhanced and De-biased Item Representation for Better Session-based Fashion Recommender Systems
  publication-title: Proceedings of the Recommender Systems Challenge
  doi: 10.1145/3556702.3556839
– start-page: arXiv:1907.10902
  year: 2019
  ident: 2023.06.16.545302v3.1
  publication-title: Optuna: A Next-generation Hyperparameter Optimization Framework
  doi: 10.48550/arXiv.1907.10902
– volume: 113
  start-page: 1666
  issue: 6
  year: 2016
  end-page: 1671
  ident: 2023.06.16.545302v3.7
  article-title: Songbirds use spectral shape, not pitch, for sound pattern recognition
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1515380113
– volume: 76
  start-page: 831
  issue: 3
  year: 2008
  end-page: 843
  ident: 2023.06.16.545302v3.5
  article-title: Does common spatial origin promote the auditory grouping of temporally separated signal elements in grey treefrogs?
  publication-title: Animal Behaviour
  doi: 10.1016/j.anbehav.2008.01.026
– volume: 8
  start-page: e78607
  issue: 10
  year: 2013
  ident: 2023.06.16.545302v3.12
  article-title: Similarity of cortical activity patterns predicts generalization behavior
  publication-title: PloS One
  doi: 10.1371/journal.pone.0078607
– volume: 4
  start-page: 1356
  issue: 12
  year: 1993
  end-page: 1358
  ident: 2023.06.16.545302v3.3
  article-title: Phonetic invariance in the human auditory cortex
  publication-title: Neuroreport
  doi: 10.1097/00001756-199309150-00018
– volume: 111
  start-page: 3
  issue: 1
  year: 1997
  end-page: 13
  ident: 2023.06.16.545302v3.18
  article-title: Auditory scene analysis by songbirds: stream segregation of birdsong by European starlings (Sturnus vulgaris)
  publication-title: Journal of Comparative Psychology (Washington, D.C.: 1983)
  doi: 10.1037/0735-7036.111.1.3
– volume: 142
  start-page: 528
  issue: 3
  year: 1993
  end-page: 542
  ident: 2023.06.16.545302v3.15
  article-title: The Evolution of Nonhuman Primate Vocalizations: Effects of Phylogeny, Body Weight, and Social Context
  publication-title: The American Naturalist
  doi: 10.1086/285553
– volume: 9
  start-page: e85405
  issue: 1
  year: 2014
  ident: 2023.06.16.545302v3.28
  article-title: Discrimination of Ultrasonic Vocalizations by CBA/CaJ Mice (Mus musculus) Is Related to Spectrotemporal Dissimilarity of Vocalizations”. en
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0085405
– start-page: 1111
  year: 2019
  end-page: 1116
  ident: 2023.06.16.545302v3.24
  article-title: LightGBM: an Effective Decision Tree Gradient Boosting Method to Predict Customer Loyalty in the Finance Industry
  doi: 10.1109/ICCSE.2019.8845529
– volume: 115
  start-page: 11322
  issue: 44
  year: 2018
  end-page: 11326
  ident: 2023.06.16.545302v3.32
  article-title: Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1810766115
– year: 2023
  ident: 2023.06.16.545302v3.25
  publication-title: mcdermottLab/pycochleagram
– start-page: 278
  year: 2005
  end-page: 305
  ident: 2023.06.16.545302v3.9
  publication-title: Pitch: Neural Coding and Perception
  doi: 10.1007/0-387-28958-58
– volume: 25
  start-page: 201
  issue: 2
  year: 2022
  end-page: 212
  ident: 2023.06.16.545302v3.2
  article-title: Mice alternate between discrete strategies during perceptual decision-making
  publication-title: Nature Neuroscience
  doi: 10.1038/s41593-021-01007-z
– volume: 11
  start-page: e78278
  year: 2022
  ident: 2023.06.16.545302v3.19
  article-title: Vocalization categorization behavior explained by a feature-based auditory categorization model
  publication-title: eLife
  doi: 10.7554/eLife.78278
– volume: 277
  start-page: 1003
  issue: 1684
  year: 2010
  end-page: 1009
  ident: 2023.06.16.545302v3.29
  article-title: Zebra finches exhibit speaker-independent phonetic perception of human speech
  publication-title: Proceedings. Biological Sciences
  doi: 10.1098/rspb.2009.1788
– volume: 30
  year: 2017
  ident: 2023.06.16.545302v3.22
  publication-title: Advances in Neural Information Processing Systems
– volume: 367
  start-page: 919
  issue: 1591
  year: 2012
  end-page: 931
  ident: 2023.06.16.545302v3.27
  article-title: Properties of auditory stream formation
  publication-title: Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences
  doi: 10.1098/rstb.2011.0355
– volume: 137
  start-page: 2870
  issue: 5
  year: 2015
  end-page: 2883
  ident: 2023.06.16.545302v3.33
  article-title: The role of spectral cues in timbre discrimination by ferrets and humans
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4916690
– volume: 51
  start-page: 1242
  issue: 5
  year: 2020
  end-page: 1253
  ident: 2023.06.16.545302v3.11
  article-title: Release from informational masking by auditory stream segregation: perception and its neural correlate
  publication-title: The European Journal of Neuroscience
  doi: 10.1111/ejn.13794
– volume: 109
  start-page: 597
  issue: 4
  year: 2021
  end-page: 610
  ident: 2023.06.16.545302v3.31
  article-title: Extracting the dynamics of behavior in sensory decision-making experiments
  publication-title: Neuron
  doi: 10.1016/j.neuron.2020.12.004
– volume: 133
  start-page: 365
  issue: 1
  year: 2013
  end-page: 376
  ident: 2023.06.16.545302v3.6
  article-title: Spectral timbre perception in ferrets: Discrimination of artificial vowels under different listening conditions
  publication-title: The Journal of the Acoustical Society of America
  doi: 10.1121/1.4768798
– start-page: 3149
  year: 2017
  end-page: 3157
  ident: 2023.06.16.545302v3.21
  article-title: LightGBM: a highly efficient gradient boosting decision tree
SSID ssj0002961374
Score 1.7178491
SecondaryResourceType preprint
Snippet Animal psychophysics can generate rich behavioral datasets, often comprised of many 1000s of trials for an individual subject. Gradient-boosted models are a...
SourceID unpaywall
biorxiv
proquest
SourceType Open Access Repository
Aggregation Database
SubjectTerms Auditory discrimination
Decision making
Decision trees
False alarms
Frequency
Hemispheric laterality
Mustela
Neuroscience
Psychophysics
Reaction time task
Streaming
SummonAdditionalLinks – databaseName: bioRxiv
  dbid: FX.
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF7EInrzidUqK3iTlN3sZpM9i7UIioiF3sI-oVCSkrZq_707SVoqevAayC7MZDLfPL4ZhG55HLsksyYKppNG3AgeKel9JLykxgmrUw7k5OcXMRzxp3Ey3lr1BW2VelJWX5OPuo4PDdvh79sYN6EQqzMYuElFP_h-BmMkO2lw8dDNNRj3N-mVWAY_lfK2jvnnmwHxtjf9QJf7y2KmVp9qOt1yNIND1HlVM1cdoR1XHKO9ZlPk6gS9PVZ1b9YCB1QMGUps2-U4GMrKcwyTmNQUF0vQ4hyXHivgW5TVCgPxtlneBUrAa2L-KRoNHt7vh1G7DiHSFEg0UkP2jzKrmQeUQZSwAoarBBNT3krjvXGZT713ITTUlNtEOSq9DSCEpLFhZ2i3KAt3jjDjmmrJrfOJ55QolanEZwlhhmvipOyim1Y0-awZepGD-HIiciryRnxd1FsLLW-_-3keAxxkIstoF91tBLk5pI44CP192MU_LrxEB-EZb_jkPbS7qJbuKiCChb6udf8NsrOwRA
  priority: 102
  providerName: Cold Spring Harbor Laboratory Press
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS8MwEA66PfimouJkSgTfpG3Spln7KOIcgmOIg_lUkiaB4ehG16rz15vbsqHuSfCtlDZtcnftd7m77xC6YmGo40TlnjWdjsdyzjyRGuNxk9JccyU7DIqTH_u8N2QPo3jkKuvmLq1Sjqflx_htGceHhG379Q3cuUAD7S947FFAeBDS5SEwcFLuWzAQkdCHfWt_pswuavLYAvQGag77g5sXF9O0Orh9k0W_7gk_kOZeXczE4l1MJt9-Ot19VK1fd5Vr8urXlfTzz19Mjv88nwPUHIiZLg_Rji6O0NN9uUwKq7CF47A1ipXryoMhnj3HQAElJrioQX3meGqwgEKPabnAUPG76hoG0sdrRoBjNOzePd_2PNeHwZMUqndSCduONFIyMgBviOCKA6uLtW1hVJobk-vEdIzR1ieVlKlYaJoaZdEP6YR5dIIaxbTQpwhHTFKZMqVNbBglQiQiNklMopxJotO0hS7dymSzFdtGBguSEZ5Rnq0WpIXaawllzuDmWQg4NOJJQlvoeiO1zSBLV4fQ7cHO_nR1GzWqstbnFodU8sLp1ReYUNzK
  priority: 102
  providerName: Unpaywall
Title Gradient boosted decision trees reveal nuances of auditory discrimination behaviour
URI https://www.proquest.com/docview/2932636881
https://www.biorxiv.org/content/10.1101/2023.06.16.545302
https://www.biorxiv.org/content/biorxiv/early/2023/06/21/2023.06.16.545302.full.pdf
UnpaywallVersion acceptedVersion
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS-swFD7MDdE39SrOHyPCfbtUmzbNmgcRFacIdwy9g_lUkiYBYbSz29T99-a03bwi-NiH5uEkJ_lyTr7vA_jNgsBEsU49lzpdj6WceVJY63EraGq4Vl2G5OS_fX43ZPejaNSA_pILg88ql3tiuVHrPMUa-VmAQCPkcUwvJi8eukZhd3VpoSFrawV9XkqMrUErQGWsJrSubvqDh1XVJRDu-CqlmQMu3FYQ-FHd6nRLEwsBIap5Un7qgEWIpZZ19ZwX78-vXwDoxjybyMWbHI__O4t6W9AayIkptqFhsh1Yr8wkF7_g8bYon2_NiAPOWMQkuvbPIdh5nhIUa5Jjks1xoqckt0QiJSMvFgS5uZW_F84Tqbn782IXhr2bf9d3Xm2Z4CmKRBuhsEJIQ61Ci0jEl1xzFGBxaSitFqm1qYlt11rjro-KMh1JQ4XVDqj43SAN96CZ5ZnZBxIyRZVg2tjIMupLGcvIxpEfpkz5Rog2nNSxSSaVMEaC8Ut8nlCeVPFrw9EyakmdG9Pkcybb8GcVydUg5a3Ep98HO_h5sEPYdL-wim5-BM1ZMTfHDjDMVKdeBR1Y641O3dewP7h8-gCxjL_z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4aq6bxNm6i2xhGgicUiC9x44cJabDRsa2aYJP2FuzYliZVSUnbbf1z_DZ8EreAkHjbD8h5ODn2ufn7PoDXgjGX5bZMwtEZJKKUItHK-0R6RUsnrRkIBCefjeTwUny5yq7W4OcSC4PPKpd3YntR27rEGfl7hoUGl3lOP0x-JKgahdvVpYSGjtIKdr-lGIvAjhO3uA0t3HT_-FP4328YOzq8-DhMospAYihiU5TBoRrl1nCPyTvV0krkLAmRq71Vpfely_3Aexc6LkOFzbSjytuQ29MBK3mw-wB6ggsVmr_eweHo_OtqysNUSJctFTSTKlw9LM3iajUcBRw8cGQPpfJdKGQ4jnY2zHXd3F3f_FXwbs6riV7c6vH4j9x3tAW9cz1xzSNYc9Vj2OjEKxdP4Nvnpn0uNiOhUMehKbFRr4fgpntKkBxKj0k1x8CaktoTjRCQulkQxAJ3emIYFyRyBcybp3B5L857ButVXbnnQLgw1Chhnc-8oKnWuc58nqW8FCZ1SvXhVfRNMemIOAr0X5HKgsqi818fdpdeK-JZnBa_I6cPb1eeXBlpu6CU_mts-__GXsLm8OLstDg9Hp3swMPwueig7ruwPmvm7kUoVmZmL0YEge_3HYS_AN1L-jw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-64cebnzidGsE36UjaNG2e1Tm_xhAHeytJk8BgtKPb1P335tZuTPTB58IFLr3c7z5-dwhdM983YaxTz5lO5LGUM08Kaz1uBU0N1ypiQE5-7fJOnz0NwsEaFwbaKtUwL76GH4s6PjRsu9e3NG5CIVYPYOAm5S3n-wPityBN3Rpru4nqkfP1EIC1B61VnsUXzmFFrCpo_inCQd_qyB8wc2eWjeX8U45Gax6nvYfqPTk2xT7aMNkB2ipXRs4P0dtDsWjSmmIHjyFViXW1JQdDfXmCYSSTHOFsBtc5wbnFEogXeTHHwMAtt3jBbeAlQ_8I9dv377cdr9qL4CkKbBqhIA1IA60CC3CDSK45TFlxtiatFqm1qYltZK1xMaKiTIfSUGG1QyMk8tPgGNWyPDMnCAdMUSWYNja0jBIpYxnaOCRByhQxQjTQVaWaZFxOv0hAfQnhCeVJqb4Gai6VllQGMEl8wIUBj2PaQDcrRa6ELEIPQn8LO_3HgZdou3fXTl4eu89naNd9ZiXHvIlq02Jmzh1KmKqLxW_wDWwYtiM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RS8MwEA66PfimouJkSgTfpG3Spln7KOIcgmOIg_lUkiaB4ehG16rz15vbsqHuSfCtlDZtcnftd7m77xC6YmGo40TlnjWdjsdyzjyRGuNxk9JccyU7DIqTH_u8N2QPo3jkKuvmLq1Sjqflx_htGceHhG379Q3cuUAD7S947FFAeBDS5SEwcFLuWzAQkdCHfWt_pswuavLYAvQGag77g5sXF9O0Orh9k0W_7gk_kOZeXczE4l1MJt9-Ot19VK1fd5Vr8urXlfTzz19Mjv88nwPUHIiZLg_Rji6O0NN9uUwKq7CF47A1ipXryoMhnj3HQAElJrioQX3meGqwgEKPabnAUPG76hoG0sdrRoBjNOzePd_2PNeHwZMUqndSCduONFIyMgBviOCKA6uLtW1hVJobk-vEdIzR1ieVlKlYaJoaZdEP6YR5dIIaxbTQpwhHTFKZMqVNbBglQiQiNklMopxJotO0hS7dymSzFdtGBguSEZ5Rnq0WpIXaawllzuDmWQg4NOJJQlvoeiO1zSBLV4fQ7cHO_nR1GzWqstbnFodU8sLp1ReYUNzK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gradient+boosted+decision+trees+reveal+nuances+of+auditory+discrimination+behaviour&rft.jtitle=bioRxiv&rft.au=Griffiths%2C+Carla+Seoyun&rft.au=Lebert%2C+Jules+M&rft.au=Sollini%2C+Joseph&rft.au=Bizley%2C+Jennifer+K&rft.date=2024-02-28&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=2692-8205&rft.eissn=2692-8205&rft_id=info:doi/10.1101%2F2023.06.16.545302
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2692-8205&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2692-8205&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2692-8205&client=summon