Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2017-2019 Volume I

Saved in:
Bibliographic Details
Main Authors Klartag, Bo'az, Milman, Emanuel
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2020
Springer International Publishing
Edition1
SeriesLecture Notes in Mathematics
Subjects
Online AccessGet full text
ISBN9783030360191
3030360199
ISSN0075-8434
1617-9692
DOI10.1007/978-3-030-36020-7

Cover

Table of Contents:
  • 6 Three Applications of the Siegel Mass Formula -- 6.1 Background on the Siegel Mass Formula -- 6.2 Uneven Parsell-Vinogradov Sums -- 6.3 Non-congruent Tetrahedra in the Truncated Lattice [0,q]3Z3 -- 6.4 Distribution of Lattice Points on Caps -- References -- 7 Decouplings for Real Analytic Surfaces of Revolution -- 7.1 Background and the Main Result -- 7.2 A Case Analysis Based on Principal Curvatures -- 7.3 The Case of the Quasi-Torus -- 7.4 The Perturbed Cone -- 7.5 Final Remarks -- References -- 8 On Discrete Hardy-Littlewood Maximal Functions over the Balls in Zd: Dimension-Free Estimates -- 8.1 Introduction -- 8.1.1 Motivations and Statement of the Results -- 8.1.2 The Large-Scale Case -- 8.1.3 The Intermediate-Scale Case -- 8.1.4 The Small-Scale Case -- 8.1.5 Notation -- 8.2 Estimates for the Dyadic Maximal Function: Intermediate Scales -- 8.2.1 Some Preparatory Estimates -- 8.2.2 Analysis on Permutation Groups -- 8.2.3 A Decrease Dimension Trick -- 8.2.4 All Together -- 8.3 Estimates for the Dyadic Maximal Function: Small Scales -- 8.3.1 Some Preparatory Estimates -- 8.3.2 Analysis Exploiting the Krawtchouk Polynomials -- 8.3.3 All Together -- References -- 9 On the Poincaré Constant of Log-Concave Measures -- 9.1 Introduction and Overview -- 9.2 Revisiting E. Milman's Results -- 9.2.1 (p,q) Poincaré Inequalities -- 9.2.2 Log-Concave Probability Measures -- 9.2.3 Some Variations and Some Immediate Consequences -- 9.2.3.1 Immediate Consequences -- 9.2.3.2 Variations: The L2 Framework -- 9.2.3.3 Other Consequences: Reducing the Support -- 9.3 Transference of the Poincaré Inequality -- 9.3.1 Transference via Absolute Continuity -- 9.3.2 Transference Using Distances -- 9.4 Mollifying the Measure -- 9.4.1 Mollifying Using Transportation -- 9.4.1.1 Convolution with the Uniform Distribution -- 9.4.1.2 Convolution with the Gaussian Distribution
  • 9.4.2 Mollifying with Gaussian Convolution: A Stochastic Approach -- 9.5 Probability Metrics and Log-Concavity -- 9.5.1 Comparing Bounded Lipschitz and Total Variation Distances -- 9.5.2 Comparing Total Variation and W1 -- 9.5.3 Comparison with Other Metrics on Probability Measures -- References -- 10 On Poincaré and Logarithmic Sobolev Inequalities for a Class of Singular Gibbs Measures -- 10.1 Introduction -- 10.1.1 Functional Inequalities and Concentration of Measure -- 10.1.2 Dynamics -- 10.1.3 Hermite-Lassalle Orthogonal Polynomials -- 10.1.4 Comments and Open Questions -- 10.2 Useful or Beautiful Facts -- 10.2.1 Random Matrices, GUE, and Beta Hermite Ensemble -- 10.2.2 Isotropy of Beta Hermite Ensembles -- 10.2.3 Log-Concavity and Curvature -- 10.2.4 Factorization by Projection -- 10.3 Proofs -- 10.3.1 Proof of Theorems 10.1.1 and 10.1.2 -- 10.3.2 Proof of Theorem 10.1.3 and Comments on Optimality -- 10.3.3 Proof of Corollary 10.1.4 and Comments on Concentration -- 10.3.4 Proof of Theorem 10.1.5 -- References -- 11 Several Results Regarding the (B)-Conjecture -- 11.1 Introduction -- 11.2 A Gaussian Counter-Example -- 11.3 A Functional (B)-Conjecture -- References -- 12 A Dimension-Free Reverse Logarithmic Sobolev Inequalityfor Low-Complexity Functions in Gaussian Space -- 12.1 A Reverse Logarithmic Sobolev Inequality -- 12.2 Stochastic Calculus and the Föllmer Process -- References -- 13 Information and Dimensionality of Anisotropic Random Geometric Graphs -- 13.1 Introduction -- 13.1.1 Previous Work -- 13.1.2 Main Results and Ideas -- 13.2 Preliminaries -- 13.3 Estimates for a Triangle in a Random Geometric Graph -- 13.3.1 Lower Bound: The Case p=12 -- Step 1-The Integral is Bounded from Below on B1 = {x R3 : || x||2 ≤1||α||22 }, the Ball of Radius 1|| α||2
  • Step 2-The Integrand is Positive on B2 = {x R3 : || x|| 2 ≤1|| α||222/12 }, the Ball of Radius 1|| α||211/12 -- Step 3-The Absolute Value of the Integrand Is Negligible on the Spherical Shell B B2 Where B Is the Unit Ball in R3 -- Step 4-The Integral Is Negligible Outside of B -- Final Step-R3 -Im(φ(a,b,c))abcdadbdc ≥1100(||α||3||α||2)3 -- 13.3.2 Arbitrary 0 &lt -- p &lt -- 1 -- 13.3.3 Upper Bound -- 13.4 Proof of Theorem 13.3 -- 13.5 Proof of the Lower Bound -- References -- 14 On the Ekeland-Hofer-Zehnder Capacity of Difference Body -- 14.1 Proof of Theorem 14.1 -- 14.2 Preliminaries for the proof of Theorem 14.2 -- 14.3 Proof of Theorem 14.2 -- References
  • Intro -- Preface -- Jean Bourgain: In Memoriam -- Contents Overview for Volume II -- Contents -- 1 Gromov's Waist of Non-radial Gaussian Measures and Radial Non-Gaussian Measures -- 1.1 Introduction -- 1.2 Nonradial Gaussian Measures: Proof of Theorem 1.1.1 -- 1.3 Existence of Waist Theorems for Some Radial Measures -- 1.4 Waist for Radial Measures and Odd Maps -- 1.5 Neighborhoods of Critical Submanifolds -- 1.5.1 Neighborhoods of Submanifolds in the Euclidean Space -- 1.5.2 Neighborhoods in the Sphere and the Complex Projective Space -- 1.6 Appendix: Explanation of the Caffarelli Theorem -- 1.7 Appendix: Explanation of the Pancake Decomposition -- 1.7.1 General Version of the Equipartition Argument -- 1.7.2 Modification of the Equipartition Argument for the Spherical Waist Theorem -- 1.7.3 Simplified Version of the Equipartition Argument -- 1.7.4 Proof that the Parts Are Pancakes -- References -- 2 Zhang's Inequality for Log-Concave Functions -- 2.1 Introduction -- 2.2 Notation and Preliminaries -- 2.3 Proof of the Inequality in Theorem 2.1.1 -- 2.4 Characterization of the Equality in Theorem 2.1.1 -- References -- 3 Bobkov's Inequality via Optimal Control Theory -- 3.1 Bobkov's Inequality -- 3.2 Bellman Principle -- 3.3 The Proof -- 3.3.1 Hamilton-Jacobi-Bellman PDE -- 3.3.2 Deriving Bobkov's Inequality -- 3.3.3 Optimizers -- References -- 4 Arithmetic Progressions in the Trace of Brownian Motionin Space -- 4.1 Introduction -- 4.2 Proofs -- Reference -- 5 Edgeworth Corrections in Randomized Central Limit Theorems -- 5.1 Introduction -- 5.2 Construction of Asymptotic Expansions -- 5.3 Moments and Deviations of Lyapunov Coefficients -- 5.4 Upper Bounds on Characteristic Functions -- 5.5 Proof of Theorem 5.1.1 -- 5.6 General Lower Bounds -- 5.7 Approximation by Mean Characteristic Functions -- 5.8 Proof of Theorem 5.1.2 -- References