Geometric Aspects of Functional Analysis Israel Seminar (GAFA) 2017-2019 Volume II

Saved in:
Bibliographic Details
Main Authors Klartag, Bo'az, Milman, Emanuel
Format eBook
LanguageEnglish
Published Cham Springer International Publishing AG 2020
Springer International Publishing
Edition1
SeriesLecture Notes in Mathematics
Subjects
Online AccessGet full text
ISBN9783030467616
3030467619
ISSN0075-8434
1617-9692
DOI10.1007/978-3-030-46762-3

Cover

Table of Contents:
  • Intro -- Preface -- Jean Bourgain: In Memoriam -- Contents Overview for Volume I -- Contents -- 1 A Generalized Central Limit Conjecture for Convex Bodies -- 1.1 Introduction -- 1.2 Preliminaries -- 1.2.1 Notation and Definitions -- 1.2.2 Stochastic Calculus -- 1.2.3 Log-Concave Functions -- 1.2.4 Distance Between Probability Measures -- 1.2.5 Matrix Inequalities -- 1.2.6 From Generalized CLT to Third Moment Bound -- 1.3 Stochastic Localization -- 1.3.1 The Process and Its Basic Properties -- 1.3.2 Bounding the KLS Constant -- 1.3.3 Bounding the Potential -- 1.4 From Third Moment Bound to KLS -- 1.4.1 Tensor Inequalities -- 1.4.2 Derivatives of the Potential -- 1.4.3 Bounding the Potential -- 1.4.4 Proof of Theorem 1.9 -- 1.5 From KLS to Generalized CLT -- 1.5.1 Connection to Classical CLT for Convex Sets -- Appendix 1: Missing Proofs in Sect.1.2.4 -- Appendix 2: Missing Proofs in Sect.1.4.1 -- References -- 2 The Lower Bound for Koldobsky's Slicing Inequality via Random Rounding -- 2.1 Introduction -- 2.2 The Random Rounding and the Net Construction -- 2.3 The Key Estimate -- 2.3.1 Asymptotic Estimates -- 2.3.2 Union Bound -- 2.3.3 An Application of Random Rounding and Conclusion of the Proof of the Proposition 2.3.1 -- 2.4 Proof of Theorem 2.1.1 -- 2.5 Further Applications -- 2.5.1 Comparison via the Hilbert-Schmidt Norm for Arbitrary Matrices -- 2.5.2 Covering Spheres with Strips -- References -- 3 Two-Sided Estimates for Order Statistics of Log-Concave Random Vectors -- 3.1 Introduction and Main Results -- 3.2 Exponential Concentration -- 3.3 Sums of Largest Coordinates of Log-Concave Vectors -- 3.4 Vectors Satisfying Condition (3.3) -- 3.5 Lower Estimates for Order Statistics -- 3.6 Upper Estimates for Order Statistics -- References
  • 6.4.2 Information Content and Intrinsic Volumes -- 6.4.3 A Bound for the mgf -- 6.4.4 Proof of Theorem 6.4.1 -- 6.4.5 Proof of Theorem 6.1.11 -- 6.5 Example: Rectangular Parallelotopes -- 6.5.1 Generating Functions and Intrinsic Volumes -- 6.5.2 Intrinsic Volumes of a Rectangular Parallelotope -- 6.5.3 Intrinsic Volumes of a Cube -- 6.6 Maximum-Entropy Distributions of Intrinsic Volumes -- 6.6.1 Ultra-Log-Concavity and Convex Bodies -- 6.6.2 Proof of Theorem 6.1.13 -- References -- 7 Two Remarks on Generalized Entropy Power Inequalities -- 7.1 Introduction -- 7.2 Failure of Schur-Concavity -- 7.3 Entropy Power Inequalities Under Symmetries -- References -- 8 On the Geometry of Random Polytopes -- 8.1 Introduction -- 8.2 Proof of Theorem 8.1.5 -- 8.3 Concluding Remarks -- References -- 9 Reciprocals and Flowers in Convexity -- 9.1 Introduction -- 9.2 Properties of Reciprocity and Flowers -- 9.3 The Spherical Inversion and a Proof of Theorem 9.9 -- 9.4 Structures on the Class of Flowers and Applications -- 9.5 Geometric Inequalities -- References -- 10 Moments of the Distance Between Independent Random Vectors -- 10.1 Introduction -- 10.1.1 Geometric Motivation -- 10.1.2 Probabilistic Discussion -- 10.1.3 Complex Interpolation -- 10.2 Proof of Theorem 10.1.1 -- 10.3 Proof of Theorem 10.1.6 and Its Consequences -- References -- 11 The Alon-Milman Theorem for Non-symmetric Bodies -- 11.1 Introduction -- 11.2 Proof of Theorem 11.1 -- References -- 12 An Interpolation Proof of Ehrhard's Inequality -- 12.1 Introduction -- 12.2 An ``Improved Jensen'' Inequality -- 12.3 A Short Proof of Prékopa-Leindler Inequality -- 12.4 Proof of Ehrhard's Inequality -- 12.4.1 An Example -- 12.4.2 Allowing J to Depend on t -- 12.4.3 The Hessian of J -- 12.4.4 Adding the Dependence on t -- References -- 13 Bounds on Dimension Reduction in the Nuclear Norm -- 13.1 Introduction
  • 4 Further Investigations of Rényi Entropy Power Inequalities and an Entropic Characterization of s-Concave Densities -- 4.1 Introduction -- 4.2 Convergence Along the CLT for Rényi Entropies -- 4.3 Rényi EPIs of Order r(0,1) -- 4.3.1 Failure of a Generic Rényi EPI -- 4.3.2 Rényi EPIs for s-Concave Densities -- 4.3.2.1 Proof of Theorem 4.2 -- 4.3.2.2 Proof of Theorem 4.3 -- 4.4 An Entropic Characterization of s-Concave Densities -- References -- 5 Small Ball Probability for the Condition Number of Random Matrices -- 5.1 Introduction -- 5.2 Preliminaries -- 5.3 Proofs of Main Results -- 5.4 Small Ball Estimates for Singular Values -- 5.4.1 Proof of Theorem 5.2.1, the Case k≥lnn -- 5.4.2 Proof of Theorem 5.2.1, the Case k≤lnn -- References -- 6 Concentration of the Intrinsic Volumes of a Convex Body -- 6.1 Introduction and Main Results -- 6.1.1 Convex Bodies and Volume -- 6.1.2 The Intrinsic Volumes -- 6.1.2.1 Geometric Functionals -- 6.1.2.2 Properties -- 6.1.2.3 Hadwiger's Characterization Theorems -- 6.1.2.4 Quermassintegrals -- 6.1.3 The Intrinsic Volume Random Variable -- 6.1.4 Concentration of Intrinsic Volumes -- 6.1.5 Concentration of Conic Intrinsic Volumes -- 6.1.6 Maximum-Entropy Convex Bodies -- 6.1.7 Other Inequalities for Intrinsic Volumes -- 6.1.7.1 Ultra-Log-Concavity -- 6.1.7.2 Isoperimetric Ratios -- 6.2 Steiner's Formula and Distance Integrals -- 6.2.1 Steiner's Formula -- 6.2.2 Distance Integrals -- 6.2.3 Moments of the Intrinsic Volume Sequence -- 6.3 Variance of the Intrinsic Volume Random Variable -- 6.3.1 The Varentropy of a Log-Concave Distribution -- 6.3.2 A Log-Concave Density -- 6.3.3 Information Content and Intrinsic Volumes -- 6.3.4 Proof of Theorem 6.3.1 -- 6.4 Concentration of the Intrinsic Volume Random Variable -- 6.4.1 Moment Generating Function of the Information Content
  • 13.2 Preliminaries -- 13.3 Certifying Projections -- 13.4 Certifying Anti-commutation -- 13.5 Replacing sigma with Identity -- 13.6 Dimension Bounds -- References -- 14 High-Dimensional Convex Sets Arising in Algebraic Geometry -- 14.1 Introduction -- 14.1.1 Organization -- 14.2 Asymptotic Log Positivity -- 14.2.1 Positivity -- 14.2.2 Asymptotic Log Positivity -- 14.3 The Body of Ample Angles -- 14.4 Asymptotically Log Fano/Canonically Polarized Varieties -- 14.4.1 Asymptotic Logarithmic Positivity Associated to (Anti)Canonical Divisors -- 14.4.2 Relation to the Body of Ample Angles -- 14.5 Convex Optimization and Classification in Algebraic Geometry -- 14.5.1 Tail Blow-Ups -- 14.5.2 Towards a Classification of Nested ``Tail'' Blow-Ups -- 14.5.3 The Set-Up -- 14.5.4 The Easy Direction and the Sub-critical Case -- 14.5.5 Dealing with the Quadratic Constraint and the Critical Case -- 14.5.6 Proof of Theorem 14.5.5 -- 14.5.7 Reduction of the Linear Intersection Constraints -- References -- 15 Polylog Dimensional Subspaces of ∞N -- 15.1 Introduction -- 15.2 Proofs -- 15.3 Remarks -- References -- 16 On a Formula for the Volume of Polytopes -- 16.1 Introduction -- 16.2 Formulation of the Result -- 16.3 Proof of Theorem 16.1 -- 16.4 Mixed Volumes -- References