Global Navigation Satellite Systems New Technologies and Applications

Global Navigation Satellite Systems (GNSS) and their associated technologies have advanced by leaps and bounds in the nine years since the first edition of this book was published. The concept of survey has changed, especially in the disciplines of geomatics and geoinformatics. This revised and upda...

Full description

Saved in:
Bibliographic Details
Main Author Bhatta, Basudeb
Format eBook
LanguageEnglish
Published Milton CRC Press 2021
Taylor & Francis Group
Edition2
Subjects
Online AccessGet full text
ISBN0367474085
9780367474089
0367709724
9780367709723
DOI10.1201/9781003148753

Cover

Table of Contents:
  • Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgements -- Author -- Acronyms -- Chapter 1 Overview of GNSS -- 1.1 Introduction -- 1.2 Definition of GNSS -- 1.3 Navigation and Positioning -- 1.4 Points of Reference -- 1.5 History of Navigation Systems -- 1.5.1 The Celestial Age -- 1.5.2 The Radio Age -- 1.5.3 The Satellite Age -- 1.6 Satellite-Based Navigation and Positioning Systems -- Chapter 2 Functional Segments of GNSS -- 2.1 Introduction -- 2.2 Space Segment -- 2.2.1 GPS Space Segment -- 2.2.2 GLONASS Space Segment -- 2.2.3 Galileo Space Segment -- 2.2.4 BeiDou Space Segment -- 2.3 Control Segment -- 2.3.1 GPS Control Segment -- 2.3.2 GLONASS Control Segment -- 2.3.3 Galileo Control Segment -- 2.3.4 BeiDou Control Segment -- 2.4 User Segment -- 2.5 Summary and Comparison of the Four Systems -- Chapter 3 Working Principle of GNSS -- 3.1 Introduction -- 3.2 Triangulation and Trilateration -- 3.3 Almanac and Ephemeris -- 3.4 Time and Range -- 3.5 Number of Satellites -- 3.6 Time Synchronisation -- 3.7 Satellite Orbit and Location -- 3.8 Signal-Related Parameters -- Chapter 4 GNSS Signals and Range Determination -- 4.1 Introduction -- 4.2 Concepts of Radio Waves -- 4.2.1 Electromagnetic Wave -- 4.2.2 Electromagnetic Spectrum -- 4.2.3 Source of Radio Waves -- 4.2.4 Strength of Radio Waves -- 4.2.5 Radio Transmitter and Receiver -- 4.3 GNSS Signals-Carriers and Codes -- 4.4 Information Carried by GNSS Signal -- 4.5 Navigation Message -- 4.5.1 GNSS Time -- 4.5.2 Satellite Clocks -- 4.5.3 Broadcast Ephemeris -- 4.5.4 Atmospheric Correction -- 4.5.5 Broadcast Almanac -- 4.5.6 Satellite Health -- 4.6 Ranging Codes -- 4.7 Modulated Carrier Wave and Phase Shift -- 4.8 Observables-Pseudorange and Carrier Phase -- 4.8.1 Encoding by Phase Modulation -- 4.9 Pseudorange Measurement -- 4.9.1 Autocorrelation
  • 9.6.2.2 Conical Projections -- 9.6.2.3 Azimuthal Projections -- 9.6.2.4 Miscellaneous Projections -- 9.6.3 Projection Parameters -- 9.6.3.1 Linear Parameters -- 9.6.3.2 Angular Parameters -- 9.6.4 Common Projections -- 9.6.4.1 Polyconic Projection -- 9.6.4.2 Lambert's Azimuthal Equal-Area Projection -- 9.6.4.3 UTM Projection -- 9.6.4.4 Latitude/Longitude Geographic Coordinates -- Chapter 10 Applications of GNSS -- 10.1 Introduction -- 10.2 Classification of GNSS Applications -- 10.3 Surveying and Mapping -- 10.3.1 Geodetic Control Survey -- 10.3.2 GIS Mapping -- 10.3.3 Structural Deformation Survey -- 10.3.4 Construction Stakeout and Grading -- 10.3.5 Coastal Engineering Surveys -- 10.3.6 Photogrammetric Mapping Control -- 10.3.7 Remote Sensing Applications Control Survey -- 10.3.8 Geophysics, Geology, and Archaeological Survey -- 10.4 Navigation -- 10.4.1 Automobile Navigation -- 10.4.2 Aircraft/UAV Navigation -- 10.4.3 Maritime Navigation -- 10.4.4 Machine Control and Navigation -- 10.4.5 Navigation for Bicyclers, Hikers, Climbers, and Pedestrians -- 10.4.6 Space Flight and Satellite Navigation -- 10.5 Tracking -- 10.5.1 Fleet Management -- 10.5.2 Parking Automation -- 10.5.3 Tracking of Spacecraft -- 10.5.4 Tracking of People -- 10.6 Time-Related Applications -- 10.7 Geodesy -- 10.8 Civil Engineering -- 10.9 Location-Based Services -- 10.10 Scientific and Research Applications -- 10.10.1 Atmospheric Study -- 10.10.2 Tectonics and Seismology -- 10.11 Animal Surveillance and Wildlife Applications -- 10.12 Military Applications -- 10.13 Precision Agriculture -- 10.14 Other Applications -- Chapter 11 Surveying with GNSS -- 11.1 Introduction -- 11.2 Surveying Techniques -- 11.3 Equipment -- 11.4 Planning the Survey -- 11.5 General Factors for GNSS Surveying -- 11.5.1 Accuracy -- 11.5.2 Obstructions -- 11.5.3 Length of Baselines
  • 11.5.4 Occupation Time -- 11.5.5 Recording Rate -- 11.5.6 Measurement Redundancy -- 11.5.7 Satellite Geometry -- 11.5.8 Control Requirements -- 11.5.9 Loop Closures and Baseline Differences -- 11.5.10 Network Adjustment -- 11.5.10.1 Minimally Constrained Adjustment -- 11.5.10.2 Constrained Adjustment -- 11.5.10.3 Error Ellipses -- 11.5.10.4 Independent Baselines -- 11.5.11 Independent Reoccupation of Stations -- 11.5.12 Point or Line Offset -- 11.5.13 Float Solution -- 11.6 Observation Methods -- 11.6.1 Classic Static Technique -- 11.6.2 Rapid Static Technique -- 11.6.3 Pseudokinematic Technique -- 11.6.4 Stop-and-Go Technique -- 11.6.5 Continuous Kinematic Technique -- 11.6.6 Real-Time Kinematic (RTK) Techniques -- 11.7 Initialisation Techniques -- 11.7.1 On-the-Fly -- 11.7.2 Static Survey of New Point -- 11.7.3 Known Baseline or Known Point -- 11.7.4 Antenna Swap -- 11.7.5 Recommended RTK Initialisation Procedure -- 11.8 Personnel Management -- Chapter 12 Mapping with GNSS -- 12.1 Introduction -- 12.2 Integration of Surveying Tools -- 12.2.1 Achieving Instrument Independence -- 12.2.2 GNSS Technology -- 12.2.3 Optical Total Station Technology -- 12.2.4 Servo-Driven and Robotic Optical Total Stations -- 12.2.5 Impact on Surveying Operations -- 12.3 Accuracy Standards and Specifications for Survey -- 12.3.1 Class/Order of Survey -- 12.3.2 Positional Accuracy -- 12.4 Remote Sensing and Photogrammetric Control Point -- 12.5 Intelligent Map and GNSS -- 12.6 Map-aided Positioning and Navigation -- 12.7 Scale, Detail, Accuracy, and Resolution of Map -- Glossary -- References -- Index
  • 4.9.2 Lock and Time Shift -- 4.9.3 Pseudoranging Equation -- 4.10 Carrier Phase Measurement -- 4.10.1 Doppler Effect -- 4.10.2 Carrier Phase Measurement Equation -- Chapter 5 Errors and Accuracy Issues -- 5.1 Introduction -- 5.2 Impacts of Errors in Pseudoranges -- 5.3 Satellite Clock Error -- 5.3.1 Relativistic Effects on the Satellite Clock -- 5.3.2 Satellite Clock Drift -- 5.4 Atmospheric Effects -- 5.4.1 Ionospheric Delay -- 5.4.2 Tropospheric Delay -- 5.5 Multipath Signal -- 5.6 Receiver Clock Error -- 5.7 Receiver Noise -- 5.8 Orbital/Ephemeris Errors -- 5.8.1 Orbital Characteristics of Satellites -- 5.9 Other Accuracy Related Issues -- 5.9.1 Number of Satellites -- 5.9.2 Dilution of Precision -- 5.9.3 SA and AS -- 5.10 Estimation of Error Budget -- Chapter 6 Positioning Methods -- 6.1 Introduction -- 6.2 Classification of Positioning -- 6.3 Point Positioning and Autonomous Positioning -- 6.4 Differential Positioning and Relative Positioning -- 6.4.1 Code-Based Differential Technique -- 6.4.1.1 Position Domain and Measurement Domain Differential Strategies -- 6.4.1.2 Real-Time and Post-Processed Techniques -- 6.4.1.3 Autonomous and Inverted Techniques -- 6.4.2 Carrier-Based Relative Technique -- 6.4.2.1 Single Difference -- 6.4.2.2 Double Difference -- 6.4.2.3 Triple Difference -- 6.5 Autonomous Positioning -- 6.6 Differential and Relative Correction Sources -- 6.6.1 Communication (Radio) Link -- 6.7 Processing Algorithms, Operational Mode and Other Enhancements -- 6.7.1 Software Enhancements -- 6.7.1.1 Clock-Aiding and Height-Aiding -- 6.7.1.2 Using Carrier Phase Data to Smooth Pseudorange Data -- 6.7.1.3 Kalman Filter -- 6.7.2 Hardware Enhancements: GNSS and Other Sensors -- 6.8 Miscellaneous Discussion -- 6.8.1 Online Data Processing Services -- 6.9 Summary of Positioning Methods
  • Chapter 7 GNSS Augmentations and Other Navigation Satellite Systems -- 7.1 Introduction -- 7.2 GNSS-1 and GNSS-2 -- 7.3 GNSS Augmentations -- 7.3.1 Satellite-Based Augmentation Systems -- 7.3.1.1 EGNOS -- 7.3.1.2 WAAS -- 7.3.1.3 MSAS -- 7.3.1.4 GAGAN -- 7.3.1.5 SDCM -- 7.3.1.6 Other Government SBAS Systems -- 7.3.1.7 Commercial SBAS Systems -- 7.3.2 Ground-Based Augmentation Systems -- 7.3.2.1 LAAS -- 7.3.2.2 DGPS -- 7.3.2.3 Augmentation Services from Trimble, Leica, and Others -- 7.4 Regional Navigation Satellite Systems -- 7.4.1 Quasi-Zenith Satellite System -- 7.4.2 Indian Regional Navigational Satellite System (NavIC) -- 7.5 Inertial Navigation System -- 7.6 Pseudolite -- 7.7 Interoperability and Integrity of GNSS -- Chapter 8 GNSS Receivers -- 8.1 Introduction -- 8.2 Receiver Architecture -- 8.2.1 Receiver Antenna -- 8.2.2 RF Section -- 8.2.3 Microprocessor -- 8.2.4 Control and Display Unit -- 8.2.5 Storage Unit -- 8.2.6 Power Unit -- 8.2.7 Radio Modem -- 8.3 Signal Acquisition and Positioning -- 8.3.1 Doppler Shift -- 8.3.2 Time Shift -- 8.3.3 Integer Ambiguity -- 8.4 Classification of GNSS Receivers -- 8.5 Receiver Independent Exchange Format -- 8.6 Choosing a GNSS Receiver -- 8.7 GNSS Receiver Manufacturers -- 8.8 Smartphone for Survey -- Chapter 9 Geodesy -- 9.1 Introduction -- 9.2 Coordinate System -- 9.2.1 Celestial Equatorial Coordinate System -- 9.2.2 Earth-Cantered Inertial Coordinate System -- 9.2.3 Geographical Coordinate System -- 9.2.4 Earth-Cantered Earth-Fixed Coordinate System -- 9.3 Shape of the Earth -- 9.4 Datum -- 9.4.1 WGS 1984 Datum -- 9.4.2 Indian Geodetic Datum -- 9.4.3 International Terrestrial Reference System -- 9.5 Ellipsoids and Datums Used in GNSS -- 9.5.1 GNSS and Height Measurement -- 9.6 Projection -- 9.6.1 Selection of Projection -- 9.6.2 Classification of Projections -- 9.6.2.1 Cylindrical Projections