Composites in Biomedical Applications
Composites in Biomedical Applications presents a comprehensive review on recent developments in composites and their use in biomedical applications. It features cutting-edge developments to encourage further advances in the field of composite research. Highlights a completely new research theme in p...
Saved in:
Main Authors | , , , |
---|---|
Format | eBook |
Language | English |
Published |
Milton
CRC Press
2021
Taylor & Francis Group |
Edition | 1 |
Subjects | |
Online Access | Get full text |
ISBN | 0367545136 0367271680 9780367271688 9780367545130 |
DOI | 10.1201/9780429327766 |
Cover
Table of Contents:
- 8.3.2. Wound Dressings and Skin Substitutes -- 8.3.3. Cardiovascular Medical Devices -- 8.3.4. Orthopedics -- 8.3.5. Dental -- 8.3.6. Ophthalmologic Application -- 8.4. Conclusion -- References -- Chapter 9: Medical Rubber Glove Waste As Potential Filler Materials in Polymer Composites -- Contents -- 9.1. Introduction -- 9.1.1. General Overview of Rubber Gloves -- 9.1.2. Rubber Glove Types -- 9.1.3. Medical Rubber Glove Manufacturing -- 9.1.4. Medical Rubber Glove Properties -- 9.2. Incorporation of Waste Rubber Products in the Composites Industry -- 9.3. Incorporation of Waste Medical Rubber Gloves in the Composite Industry -- 9.4. Conclusion -- Acknowledgment -- References -- Chapter 10: Fabrication and Properties of Polylactic Acid/Hydroxyapatite Biocomposites for Human Bone Substitute Materials -- Contents -- 10.1. Introduction -- 10.2. Fabrication Techniques of PLA/HAP Biocomposite -- 10.3. Properties of PLA/HAP Biocomposite -- 10.4. Thermal Properties -- 10.5. Mechanical Properties -- 10.6. Melt Flow Properties -- 10.7. Conclusion -- Acknowledgment -- References -- Chapter 11: Hydrogel-Based Composites in Perfusion Cell Culture/Test Device: Drug Delivery through Diffusion -- Contents -- 11.1. Introduction -- 11.1.1. Background -- 11.1.2. Perfusion Cell Culture/Test Device -- 11.2. Theoretical Basis -- 11.2.1. Kinetic Theories of Diffusion in Composite Membrane -- 11.2.2. Basic Fluid Dynamics in Perfusion Channels -- 11.3. Materials and Experimental Approaches -- 11.3.1. Preparation of Hydrogel-Based Composite Membrane -- 11.3.2. Purification Treatment of Hydrogel-Based Composite -- 11.3.3. Experimental Approaches for Tests -- 11.4. Experimental Results -- 11.4.1. Glucose Release Rate -- 11.4.2. Capacity of Absorption -- 11.5. Drug Delivery through Diffusion -- 11.5.1. Glucose from Culture Chamber to Drug Delivery Reservoir
- 11.5.2. Testing Drug from Delivery Reservoir to Culture Chamber -- 11.6. Conclusion -- Acknowledgment -- References -- Chapter 12: Nanocomposites for Human Body Tissue Repair -- Contents -- 12.1. Introduction -- 12.1.1. The Composite Approach -- 12.1.2. Classification of Biomedical Composites -- 12.2. Matrix, Reinforcement, and Interface in Biomedical Composites -- 12.2.1. Matrix Materials -- 12.2.2. Reinforcements -- 12.2.3. Interface -- 12.3. Design and Fabrication of Nanocomposites -- 12.3.1. Design of Nanocomposites -- 12.3.2. Fabrication Techniques -- 12.4. Characterization, Performance, and Applications of Nanocomposites -- 12.4.1. Characterization of Biomedical Nanocomposites -- 12.4.2. Physical and Mechanical Properties of Biomedical Nanocomposites -- 12.4.2.1. Tensile Testing -- 12.4.2.2. Compression Testing -- 12.4.2.3. Flexural Testing -- 12.4.2.4. Microhardness Testing -- 12.4.2.5. Dynamic Mechanical Analysis -- 12.4.3. Biological Evaluation of Biomedical Nanocomposites -- 12.4.3.1. Cell Viability -- 12.4.3.2. Cell Adhesion and Cell Morphology -- 12.4.3.3. Cell Differentiation -- 12.4.3.4. In Vivo Animal Study -- 12.4.4. Medical Applications of Nanocomposites -- 12.5. Concluding Remarks -- Acknowledgments -- References -- Chapter 13: Advances in Marine Skeletal Nanocomposites for Bone Repair -- Contents -- 13.1. Introduction -- 13.2. Natural Bone Structure -- 13.3. Nanomaterials and Nanostructures -- 13.4. Marine Skeletal Nanostructures -- 13.5. Bioceramic-Polymer Nanocomposites -- 13.5.1. Advanced Scaffold Fabrication Techniques -- 13.6. Marine Nanocomposites -- 13.7. Conclusion -- References -- Chapter 14: Magnesium Metal Matrix Composites for Biomedical Applications -- Contents -- 14.1. Introduction -- 14.2. Magnesium Composite Materials and Applications -- 14.2.1. Magnesium Composite Materials -- 14.2.2. Applications
- 4.7. The Influence of Curing Light Distance on the Effectiveness of Cure of Resin-Based Composites -- 4.8. Summary -- References -- Chapter 5: Classifications and Applications of Biocomposite Materials in Various Biomedical Fields -- Contents -- 5.1. Introduction -- 5.2. Biomaterials -- 5.2.1. Biomaterials: Evolution -- 5.2.2. Classes of Biomaterials -- 5.2.3. Metals and Alloys -- 5.2.4. Bioceramics -- 5.2.5. Biopolymers -- 5.3. Biocomposites -- 5.3.1. Types of Biocomposites -- 5.3.2. Properties of Biocomposites -- 5.3.3. Applications of Biocomposites -- 5.4. Conclusion -- Acknowledgment -- References -- Chapter 6: Conceptual Design of Composite Crutches -- Contents -- 6.1. Introduction -- 6.2. Methodology -- 6.2.1. Market Investigation -- 6.2.2. Product Design Specification (PDS) -- 6.2.3. Conceptual Design -- 6.2.4. Detailed Design -- 6.3. Results and Discussions -- 6.3.1. Market Investigation -- 6.3.2. Product Design Specification (PDS) -- 6.3.3. Conceptual Design -- 6.3.3.1. Concept Generation -- 6.3.3.2. Design Evaluation -- 6.4. Conclusion -- References -- Chapter 7: Conceptual Design of Kenaf Fiber Reinforced Polymer Composite Chair with Input from Anthropometric Data -- Contents -- 7.1. Introduction -- 7.2. Methods -- 7.3. Results and Discussion -- 7.3.1. Anthropometric Data Analysis -- 7.3.1.1. Anthropometric Data Evaluation of Malaysian Adults -- 7.3.1.2. Anthropometric Data Comparison between Students with Chair Dimensions -- 7.3.2. Mismatches between Chair -- 7.3.3. Detail Design of Biocomposite Chair with Inputs from AD -- 7.4. Conclusion -- Acknowledgments -- References -- Chapter 8: A Review on Nanocellulose Composites in Biomedical Application -- Contents -- 8.1. Introduction -- 8.2. Biocompatibility and Toxicology of Nanocellulose Composites -- 8.3. Biomedical Application of Nanocellulose Composites -- 8.3.1. Pharmaceutical
- Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Preface -- Editors -- Contributors -- Chapter 1: The Hip Joint and Total Hip Replacement -- Contents -- 1.1. Introduction -- 1.2. Implant Fixation Methods -- 1.3. Total Hip Replacement Failure -- 1.3.1. Osteolysis -- 1.3.2. Primary Stability -- 1.3.3. Stress Shielding -- 1.3.4. Cement Failure -- 1.3.5. Debonding -- 1.3.6. Implant Fracture -- 1.4. Material and Geometry of Artificial Hip Joint Constituents -- 1.4.1. Femoral Head and Acetabular Cup -- 1.4.2. Femoral Prosthesis (STEM) -- 1.4.3. Femoral Prosthesis Geometry -- 1.4.4. Femoral Prosthesis Materials -- 1.5. Surface Finishing -- 1.6. Materials Utilized in Artificial Hip Joint Components -- 1.6.1. Metals -- 1.6.2. Polymers -- 1.6.3. Ceramics -- 1.6.4. Composites -- 1.7. Numerical Methods in Hip Joint Biomechanics and Implant Study -- 1.8. Load Transfer in the Proximal Femur -- 1.9. Bone -- 1.10. Conclusion -- References -- Chapter 2: A Review of Biocomposites in Biomedical Application -- Contents -- 2.1. Introduction -- 2.2. Value of Fuels and Lignocellulose as Raw Material -- 2.2.1. Plant-based Natural Fibers -- 2.2.2. Cellulose-based Natural Fibers -- 2.2.3. Biocomposites -- 2.3. Biomaterials in Biomedicine -- 2.3.1. Biomaterial Classifications -- 2.3.2. Application of Natural Fiber Biocomposite in Biomedicine -- 2.4. Conclusion -- References -- Chapter 3: Biocomposites in Advanced Biomedical and Electronic Systems Applications -- Contents -- 3.1. Introduction -- 3.2. Biopolymer Processing and its Development -- 3.2.1. Extrusion -- 3.2.2. Injection Molding -- 3.3. Electronics Applications of Biocomposites -- 3.3.1. Biocomposite Materials in the Field of LEDs -- 3.3.2. Biosensors and Actuators -- 3.3.3. Supercapacitors -- 3.3.4. Photodiodes and Photovoltaic Solar Cells -- 3.3.5. Other Electrical Applications of Biopolymers
- 14.2.3. Types of Reinforcements
- 3.4. Biopolymers in Medical Applications -- 3.4.1. Biopolymer Uses in Bone Tissue Engineering (BTE) -- 3.4.2. Scaffolds Including Calcium Phosphate (CaP) -- 3.4.3. Structure and Organization of Protein Biopolymers -- 3.4.4. Polymeric Biomaterials in Ophthalmology -- 3.4.5. Polymeric Biomaterials for Cardiovascular Disease Therapy -- 3.5. Conclusions -- References -- Chapter 4: Resin-Based Composites in Dentistry-A Review -- Contents -- 4.1. Introduction: Resin-Based Composites (RBC) -- 4.1.1. Matrix in Resin-Based Composite -- 4.1.2. Fillers in Resin-Based Composite -- 4.1.3. Additives in Resin-Based Composite -- 4.2. Polymerization of Resin-Based Composites -- 4.2.1. Kinetics of Photopolymerization Reaction -- 4.2.2. Oxygen Inhibited Layer -- 4.2.3. Post-Polymerization Reaction -- 4.3. Photoinitiators -- 4.3.1. Camphorquinone (CQ) -- 4.3.2. Recent Photoinitiators -- 4.3.2.1. Acyl Phosphine Oxide (APO) -- 4.3.2.2. Phenyl Propanedione (PPD) -- 4.3.2.3. Germanium-Based Photoinitiator -- 4.4. Bulk-Fill Resin-Based Composites -- 4.4.1. Techniques for Resin-Based Composite Application -- 4.4.1.1. Incremental Technique -- 4.4.1.2. Bulk-Fill Technique -- 4.4.2. Bulk-Fill Resin-Based Composites -- 4.4.3. Properties of Bulk-Fill Composites -- 4.4.3.1. Polymerization Shrinkage and Stress -- 4.4.3.2. Cuspal Flexure -- 4.4.3.3. Marginal Adaptability -- 4.5. Light Curing Units -- 4.5.1. Quartz-Tungsten-Halogen Light (QTH) -- 4.5.2. Plasma-Arc Light (PAC) -- 4.5.3. Argon-Ion Laser (AL) -- 4.5.4. Light-Emitting Diode (LED) -- 4.5.5. Development in Light-Emitting Diode -- 4.5.5.1. First-Generation LED -- 4.5.5.2. Second-Generation LED -- 4.5.5.3. Third-Generation LED -- 4.6. Effectiveness of Cure of Resin-Based Composites -- 4.6.1. Vibrational Spectroscopy -- 4.6.2. ISO 4049 Method -- 4.6.3. Surface Hardness (SH)