Optimization algorithms on matrix manifolds
Many problems in the sciences and engineering can be rephrased as optimization problems on matrix search spaces endowed with a so-called manifold structure. This book shows how to exploit the special structure of such problems to develop efficient numerical algorithms. It places careful emphasis on...
Saved in:
| Main Authors | , , |
|---|---|
| Format | eBook Book |
| Language | English |
| Published |
Princeton
Princeton University Press
2008
|
| Edition | 1 |
| Subjects | |
| Online Access | Get full text |
| ISBN | 9780691132983 0691132984 1400830249 9781400830244 |
| DOI | 10.1515/9781400830244 |
Cover
Table of Contents:
- Optimization algorithms on matrix manifolds -- Contents -- List of Algorithms -- Foreword -- Notation Conventions -- Chapter One: Introduction -- Chapter Two: Motivation and Applications -- Chapter Three: Matrix Manifolds: First-Order Geometry -- Chapter Four: Line-Search Algorithms on Manifolds -- Chapter Five: Matrix Manifolds: Second-Order Geometry -- Chapter Six: Newton's Method -- Chapter Seven: Trust-Region Methods -- Chapter Eight: A Constellation of Superlinear Algorithms -- Appendix A: Elements of Linear Algebra, Topology, and Calculus -- Bibliography -- Index
- Front Matter Table of Contents List of Algorithms Foreword Notation Conventions Chapter One: Introduction Chapter Two: Motivation and Applications Chapter Three: Matrix Manifolds: Chapter Four: Line-Search Algorithms on Manifolds Chapter Five: Matrix Manifolds: Chapter Six: Newton’s Method Chapter Seven: Trust-Region Methods Chapter Eight: A Constellation of Superlinear Algorithms Appendix A Bibliography Index
- Intro -- Contents -- List of Algorithms -- Foreword -- Notation Conventions -- 1. Introduction -- 2. Motivation and Applications -- 2.1 A case study: the eigenvalue problem -- 2.1.1 The eigenvalue problem as an optimization problem -- 2.1.2 Some benefits of an optimization framework -- 2.2 Research problems -- 2.2.1 Singular value problem -- 2.2.2 Matrix approximations -- 2.2.3 Independent component analysis -- 2.2.4 Pose estimation and motion recovery -- 2.3 Notes and references -- 3. Matrix Manifolds: First-Order Geometry -- 3.1 Manifolds -- 3.1.1 Definitions: charts, atlases, manifolds -- 3.1.2 The topology of a manifold* -- 3.1.3 How to recognize a manifold -- 3.1.4 Vector spaces as manifolds -- 3.1.5 The manifolds Rnxp and R*nxp -- 3.1.6 Product manifolds -- 3.2 Differentiable functions -- 3.2.1 Immersions and submersions -- 3.3 Embedded submanifolds -- 3.3.1 General theory -- 3.3.2 The Stiefel manifold -- 3.4 Quotient manifolds -- 3.4.1 Theory of quotient manifolds -- 3.4.2 Functions on quotient manifolds -- 3.4.3 The real projective space RPn-1 -- 3.4.4 The Grassmann manifold Grass(p, n) -- 3.5 Tangent vectors and differential maps -- 3.5.1 Tangent vectors -- 3.5.2 Tangent vectors to a vector space -- 3.5.3 Tangent bundle -- 3.5.4 Vector fields -- 3.5.5 Tangent vectors as derivations* -- 3.5.6 Differential of a mapping -- 3.5.7 Tangent vectors to embedded submanifolds -- 3.5.8 Tangent vectors to quotient manifolds -- 3.6 Riemannian metric, distance, and gradients -- 3.6.1 Riemannian submanifolds -- 3.6.2 Riemannian quotient manifolds -- 3.7 Notes and references -- 4. Line-Search Algorithms on Manifolds -- 4.1 Retractions -- 4.1.1 Retractions on embedded submanifolds -- 4.1.2 Retractions on quotient manifolds -- 4.1.3 Retractions and local coordinates* -- 4.2 Line-search methods -- 4.3 Convergence analysis -- 4.3.1 Convergence on manifolds
- 6.5 Analysis of Rayleigh quotient algorithms -- 6.5.1 Convergence analysis -- 6.5.2 Numerical implementation -- 6.6 Notes and references -- 7. Trust-Region Methods -- 7.1 Models -- 7.1.1 Models in Rn -- 7.1.2 Models in general Euclidean spaces -- 7.1.3 Models on Riemannian manifolds -- 7.2 Trust-region methods -- 7.2.1 Trust-region methods in Rn -- 7.2.2 Trust-region methods on Riemannian manifolds -- 7.3 Computing a trust-region step -- 7.3.1 Computing a nearly exact solution -- 7.3.2 Improving on the Cauchy point -- 7.4 Convergence analysis -- 7.4.1 Global convergence -- 7.4.2 Local convergence -- 7.4.3 Discussion -- 7.5 Applications -- 7.5.1 Checklist -- 7.5.2 Symmetric eigenvalue decomposition -- 7.5.3 Computing an extreme eigenspace -- 7.6 Notes and references -- 8. A Constellation of Superlinear Algorithms -- 8.1 Vector transport -- 8.1.1 Vector transport and affine connections -- 8.1.2 Vector transport by differentiated retraction -- 8.1.3 Vector transport on Riemannian submanifolds -- 8.1.4 Vector transport on quotient manifolds -- 8.2 Approximate Newton methods -- 8.2.1 Finite difference approximations -- 8.2.2 Secant methods -- 8.3 Conjugate gradients -- 8.3.1 Application: Rayleigh quotient minimization -- 8.4 Least-square methods -- 8.4.1 Gauss-Newton methods -- 8.4.2 Levenberg-Marquardt methods -- 8.5 Notes and references -- A. Elements of Linear Algebra, Topology, and Calculus -- A.1 Linear algebra -- A.2 Topology -- A.3 Functions -- A.4 Asymptotic notation -- A.5 Derivatives -- A.6 Taylor's formula -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- Z
- 4.3.2 A topological curiosity* -- 4.3.3 Convergence of line-search methods -- 4.4 Stability of fixed points -- 4.5 Speed of convergence -- 4.5.1 Order of convergence -- 4.5.2 Rate of convergence of line-search methods* -- 4.6 Rayleigh quotient minimization on the sphere -- 4.6.1 Cost function and gradient calculation -- 4.6.2 Critical points of the Rayleigh quotient -- 4.6.3 Armijo line search -- 4.6.4 Exact line search -- 4.6.5 Accelerated line search: locally optimal conjugate gradient -- 4.6.6 Links with the power method and inverse iteration -- 4.7 Refining eigenvector estimates -- 4.8 Brockett cost function on the Stiefel manifold -- 4.8.1 Cost function and search direction -- 4.8.2 Critical points -- 4.9 Rayleigh quotient minimization on the Grassmann manifold -- 4.9.1 Cost function and gradient calculation -- 4.9.2 Line-search algorithm -- 4.10 Notes and references -- 5. Matrix Manifolds: Second-Order Geometry -- 5.1 Newton's method in Rn -- 5.2 Affine connections -- 5.3 Riemannian connection -- 5.3.1 Symmetric connections -- 5.3.2 Definition of the Riemannian connection -- 5.3.3 Riemannian connection on Riemannian submanifolds -- 5.3.4 Riemannian connection on quotient manifolds -- 5.4 Geodesics, exponential mapping, and parallel translation -- 5.5 Riemannian Hessian operator -- 5.6 Second covariant derivative* -- 5.7 Notes and references -- 6. Newton's Method -- 6.1 Newton's method on manifolds -- 6.2 Riemannian Newton method for real-valued functions -- 6.3 Local convergence -- 6.3.1 Calculus approach to local convergence analysis -- 6.4 Rayleigh quotient algorithms -- 6.4.1 Rayleigh quotient on the sphere -- 6.4.2 Rayleigh quotient on the Grassmann manifold -- 6.4.3 Generalized eigenvalue problem -- 6.4.4 The nonsymmetric eigenvalue problem -- 6.4.5 Newton with subspace acceleration: Jacobi-Davidson
- Chapter Six. Newton’s Method
- List of Algorithms
- Notation Conventions
- Index
- -
- /
- Chapter Four. Line-Search Algorithms On Manifolds
- Contents
- Foreword
- Chapter One. Introduction
- Chapter Three. Matrix Manifolds: First-Order Geometry
- Chapter Eight. A Constellation Of Superlinear Algorithms
- A. Elements Of Linear Algebra, Topology, And Calculus
- Chapter Two. Motivation and Applications
- Frontmatter --
- Chapter Seven. Trust-Region Methods
- Chapter Five. Matrix Manifolds: Second-Order Geometry
- Bibliography